organic compounds
10-Methyl-9-phenoxycarbonylacridinium trifluoromethanesulfonate monohydrate
aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl
In the 21H16NO2+·CF3SO3−·H2O, the anions and the water molecules are linked by O—H⋯O interactions, while the cations form inversion dimers through π–π interactions between acridine ring systems. These dimers are linked by C—H⋯O and C—F⋯π interactions to adjacent anions, and by C—H⋯π interactions to neighboring cations. The water molecule links two H atoms of the cation by C—H⋯O interactions and two adjacent anions by O—H⋯O interactions. The acridine and benzene ring systems are oriented at 15.6 (1)°. The carboxyl group is twisted at an angle of 77.0 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine units are either parallel or inclined at an angle of 18.4 (1)°.
of the title compound, CRelated literature
For background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Brown et al. (2009); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2007); Trzybiński et al. (2009). For intermolecular interactions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Trzybiński et al. (2009).
Experimental
Crystal data
|
Refinement
|
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810009979/ng2742sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810009979/ng2742Isup2.hkl
The compound was synthesized following a procedure described elsewhere (Trzybiński et al., 2009). 9-(Chlorocarbonyl)-acridine was prepared by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride. The compound obtained was esterified with phenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15h). The product – phenyl acridine-9-carboxylate – was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 3/2 v/v) and quaternarized with a five-fold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane (under an Ar atmosphere at room temperature for 3h) (Sato, 1996). The crude 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with a 25 v/v excess of diethyl ether. Yellow crystals suitable for X-ray investigations were grown from ethanol/H2O, 4/1 v/v, solution (m.p. 263-265K).
The H-atoms of the water molecule were located on a Fourier-difference map, restrained by DFIX command 0.85 for O–H distances and by DFIX 1.39 for H···H distance and refined as riding with Uiso(H) = 1.5Ueq(O). All other H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic H atoms and x = 1.5 for the methyl H atoms.
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2 and Cg4 denote the ring centroids. The O–H···O and C–H···O hydrogen bonds are represented by dashed lines. | |
Fig. 2. The arrangement of the ions in the crystal structure. The O–H···O and C–H···O interactions are represented by dashed lines, the C–H···π, C–F···π and π–π contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x + 1, –y + 1, –z + 1; (ii) x, y – 1, z; (iii) –x, –y + 1, –z + 1; (iv) x – 1/2, –y + 1/2, z – 1/2; (v) –x + 1, –y, –z + 1.] |
C21H16NO2+·CF3SO3−·H2O | F(000) = 992 |
Mr = 481.44 | Dx = 1.503 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 15973 reflections |
a = 11.3807 (4) Å | θ = 3.0–29.3° |
b = 9.5785 (2) Å | µ = 0.22 mm−1 |
c = 19.7134 (6) Å | T = 295 K |
β = 98.172 (3)° | Needle, yellow |
V = 2127.14 (11) Å3 | 0.78 × 0.16 × 0.10 mm |
Z = 4 |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 3792 independent reflections |
Radiation source: Enhanced (Mo) X-ray Source | 2422 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.060 |
Detector resolution: 10.4002 pixels mm-1 | θmax = 25.1°, θmin = 3.0° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008). | k = −11→11 |
Tmin = 0.741, Tmax = 1.000 | l = −23→23 |
46462 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.064 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.211 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.146P)2] where P = (Fo2 + 2Fc2)/3 |
3792 reflections | (Δ/σ)max < 0.001 |
305 parameters | Δρmax = 0.59 e Å−3 |
3 restraints | Δρmin = −0.39 e Å−3 |
C21H16NO2+·CF3SO3−·H2O | V = 2127.14 (11) Å3 |
Mr = 481.44 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.3807 (4) Å | µ = 0.22 mm−1 |
b = 9.5785 (2) Å | T = 295 K |
c = 19.7134 (6) Å | 0.78 × 0.16 × 0.10 mm |
β = 98.172 (3)° |
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer | 3792 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008). | 2422 reflections with I > 2σ(I) |
Tmin = 0.741, Tmax = 1.000 | Rint = 0.060 |
46462 measured reflections |
R[F2 > 2σ(F2)] = 0.064 | 3 restraints |
wR(F2) = 0.211 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.59 e Å−3 |
3792 reflections | Δρmin = −0.39 e Å−3 |
305 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6362 (3) | 0.0857 (3) | 0.60005 (15) | 0.0534 (7) | |
H1 | 0.6328 | 0.1816 | 0.6067 | 0.064* | |
C2 | 0.7417 (3) | 0.0248 (3) | 0.59672 (17) | 0.0647 (8) | |
H2 | 0.8103 | 0.0788 | 0.5999 | 0.078* | |
C3 | 0.7481 (3) | −0.1205 (4) | 0.58836 (19) | 0.0703 (9) | |
H3 | 0.8218 | −0.1620 | 0.5877 | 0.084* | |
C4 | 0.6494 (3) | −0.2020 (3) | 0.58122 (16) | 0.0613 (8) | |
H4 | 0.6561 | −0.2979 | 0.5753 | 0.074* | |
C5 | 0.2201 (3) | −0.2410 (3) | 0.56540 (18) | 0.0700 (10) | |
H5 | 0.2234 | −0.3363 | 0.5567 | 0.084* | |
C6 | 0.1149 (4) | −0.1788 (4) | 0.5680 (2) | 0.0859 (12) | |
H6 | 0.0464 | −0.2332 | 0.5615 | 0.103* | |
C7 | 0.1041 (3) | −0.0366 (4) | 0.5799 (2) | 0.0822 (11) | |
H7 | 0.0296 | 0.0029 | 0.5805 | 0.099* | |
C8 | 0.2025 (3) | 0.0440 (3) | 0.59056 (17) | 0.0637 (9) | |
H8 | 0.1954 | 0.1389 | 0.5991 | 0.076* | |
C9 | 0.4195 (3) | 0.0648 (2) | 0.59775 (13) | 0.0450 (7) | |
N10 | 0.4351 (2) | −0.2193 (2) | 0.57446 (11) | 0.0476 (6) | |
C11 | 0.5304 (3) | 0.0064 (3) | 0.59353 (12) | 0.0439 (7) | |
C12 | 0.5374 (3) | −0.1418 (3) | 0.58269 (13) | 0.0468 (7) | |
C13 | 0.3168 (3) | −0.0151 (3) | 0.58886 (14) | 0.0493 (7) | |
C14 | 0.3255 (3) | −0.1614 (3) | 0.57599 (14) | 0.0506 (7) | |
C15 | 0.4143 (2) | 0.2199 (3) | 0.61254 (14) | 0.0454 (7) | |
O16 | 0.4005 (2) | 0.24024 (17) | 0.67778 (10) | 0.0597 (6) | |
O17 | 0.4242 (2) | 0.30844 (19) | 0.57195 (10) | 0.0647 (6) | |
C18 | 0.4040 (3) | 0.3808 (3) | 0.70187 (14) | 0.0523 (8) | |
C19 | 0.3003 (3) | 0.4502 (3) | 0.70065 (17) | 0.0635 (9) | |
H19 | 0.2286 | 0.4080 | 0.6836 | 0.076* | |
C20 | 0.3034 (4) | 0.5869 (4) | 0.7257 (2) | 0.0763 (11) | |
H20 | 0.2335 | 0.6375 | 0.7252 | 0.092* | |
C21 | 0.4108 (4) | 0.6459 (4) | 0.7509 (2) | 0.0797 (11) | |
H21 | 0.4134 | 0.7366 | 0.7679 | 0.096* | |
C22 | 0.5133 (4) | 0.5729 (4) | 0.7514 (2) | 0.0815 (11) | |
H22 | 0.5855 | 0.6142 | 0.7683 | 0.098* | |
C23 | 0.5108 (3) | 0.4375 (3) | 0.72675 (17) | 0.0669 (9) | |
H23 | 0.5805 | 0.3866 | 0.7272 | 0.080* | |
C24 | 0.4419 (3) | −0.3729 (3) | 0.56256 (17) | 0.0637 (9) | |
H24A | 0.3966 | −0.4213 | 0.5928 | 0.095* | |
H24B | 0.5232 | −0.4026 | 0.5714 | 0.095* | |
H24C | 0.4102 | −0.3937 | 0.5159 | 0.095* | |
O25 | 0.1330 (4) | 0.3806 (6) | 0.5581 (2) | 0.1480 (15) | |
H25A | 0.136 (7) | 0.397 (9) | 0.5162 (16) | 0.222* | |
H25B | 0.064 (4) | 0.350 (10) | 0.563 (4) | 0.222* | |
S26 | 0.15677 (9) | 0.55386 (9) | 0.38344 (5) | 0.0715 (4) | |
O27 | 0.1121 (4) | 0.4342 (3) | 0.41645 (19) | 0.1242 (12) | |
O28 | 0.0899 (3) | 0.6777 (3) | 0.38719 (15) | 0.0997 (9) | |
O29 | 0.2829 (3) | 0.5641 (3) | 0.39743 (18) | 0.1067 (10) | |
C30 | 0.1269 (4) | 0.5037 (5) | 0.2942 (2) | 0.0903 (12) | |
F31 | 0.1687 (3) | 0.6041 (3) | 0.25626 (16) | 0.1375 (12) | |
F32 | 0.0152 (3) | 0.4950 (4) | 0.27144 (17) | 0.1380 (12) | |
F33 | 0.1787 (3) | 0.3873 (3) | 0.28194 (15) | 0.1227 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.065 (2) | 0.0385 (14) | 0.0567 (17) | −0.0056 (13) | 0.0088 (14) | −0.0035 (12) |
C2 | 0.061 (2) | 0.0628 (19) | 0.071 (2) | −0.0063 (16) | 0.0092 (16) | −0.0077 (15) |
C3 | 0.067 (2) | 0.068 (2) | 0.076 (2) | 0.0102 (18) | 0.0113 (17) | −0.0048 (17) |
C4 | 0.078 (2) | 0.0434 (16) | 0.063 (2) | 0.0136 (15) | 0.0108 (16) | −0.0023 (13) |
C5 | 0.082 (3) | 0.0491 (17) | 0.078 (2) | −0.0199 (17) | 0.0084 (18) | −0.0067 (15) |
C6 | 0.063 (3) | 0.082 (3) | 0.111 (3) | −0.027 (2) | 0.008 (2) | −0.018 (2) |
C7 | 0.056 (2) | 0.086 (3) | 0.104 (3) | −0.0065 (19) | 0.011 (2) | −0.019 (2) |
C8 | 0.064 (2) | 0.0529 (17) | 0.074 (2) | −0.0019 (15) | 0.0097 (17) | −0.0084 (14) |
C9 | 0.0643 (19) | 0.0295 (13) | 0.0413 (14) | −0.0039 (12) | 0.0074 (13) | −0.0014 (10) |
N10 | 0.0708 (17) | 0.0262 (10) | 0.0461 (13) | −0.0039 (10) | 0.0091 (11) | −0.0018 (8) |
C11 | 0.0603 (18) | 0.0320 (13) | 0.0392 (14) | −0.0017 (12) | 0.0065 (12) | −0.0017 (10) |
C12 | 0.0670 (19) | 0.0334 (13) | 0.0398 (14) | 0.0012 (13) | 0.0072 (13) | 0.0018 (10) |
C13 | 0.0632 (19) | 0.0371 (14) | 0.0469 (15) | −0.0020 (13) | 0.0058 (13) | −0.0028 (11) |
C14 | 0.066 (2) | 0.0377 (14) | 0.0481 (16) | −0.0117 (13) | 0.0071 (13) | −0.0022 (11) |
C15 | 0.0543 (18) | 0.0311 (13) | 0.0505 (17) | −0.0011 (11) | 0.0071 (13) | −0.0024 (12) |
O16 | 0.0985 (17) | 0.0294 (9) | 0.0546 (13) | −0.0024 (9) | 0.0226 (11) | −0.0024 (8) |
O17 | 0.1108 (19) | 0.0318 (10) | 0.0544 (12) | −0.0024 (10) | 0.0214 (12) | 0.0035 (9) |
C18 | 0.082 (2) | 0.0329 (14) | 0.0457 (15) | −0.0025 (14) | 0.0201 (15) | −0.0031 (11) |
C19 | 0.072 (2) | 0.0525 (18) | 0.069 (2) | −0.0098 (16) | 0.0234 (17) | −0.0085 (14) |
C20 | 0.090 (3) | 0.0555 (19) | 0.091 (3) | 0.0138 (18) | 0.039 (2) | −0.0100 (17) |
C21 | 0.111 (3) | 0.0485 (18) | 0.083 (3) | −0.011 (2) | 0.026 (2) | −0.0207 (17) |
C22 | 0.099 (3) | 0.064 (2) | 0.080 (3) | −0.017 (2) | 0.010 (2) | −0.0235 (18) |
C23 | 0.077 (2) | 0.0539 (18) | 0.069 (2) | 0.0022 (16) | 0.0076 (17) | −0.0084 (15) |
C24 | 0.096 (2) | 0.0253 (13) | 0.072 (2) | −0.0041 (14) | 0.0191 (17) | −0.0056 (12) |
O25 | 0.121 (3) | 0.191 (4) | 0.130 (3) | 0.034 (3) | 0.009 (2) | 0.014 (3) |
S26 | 0.0867 (8) | 0.0584 (5) | 0.0688 (6) | −0.0088 (4) | 0.0084 (5) | −0.0088 (4) |
O27 | 0.174 (3) | 0.092 (2) | 0.118 (3) | −0.020 (2) | 0.058 (2) | 0.0251 (17) |
O28 | 0.133 (3) | 0.0679 (16) | 0.098 (2) | 0.0144 (16) | 0.0154 (17) | −0.0183 (14) |
O29 | 0.090 (2) | 0.100 (2) | 0.119 (2) | −0.0072 (16) | −0.0236 (17) | −0.0098 (17) |
C30 | 0.094 (3) | 0.081 (3) | 0.092 (3) | 0.014 (2) | 0.001 (2) | −0.019 (2) |
F31 | 0.192 (3) | 0.131 (2) | 0.0935 (19) | 0.021 (2) | 0.034 (2) | 0.0265 (16) |
F32 | 0.105 (2) | 0.155 (3) | 0.138 (2) | 0.0063 (18) | −0.0372 (18) | −0.058 (2) |
F33 | 0.161 (3) | 0.0951 (18) | 0.110 (2) | 0.0314 (17) | 0.0119 (17) | −0.0364 (14) |
C1—C2 | 1.345 (4) | C15—O17 | 1.182 (3) |
C1—C11 | 1.414 (4) | C15—O16 | 1.332 (3) |
C1—H1 | 0.9300 | O16—C18 | 1.426 (3) |
C2—C3 | 1.405 (5) | C18—C19 | 1.352 (5) |
C2—H2 | 0.9300 | C18—C23 | 1.357 (5) |
C3—C4 | 1.358 (5) | C19—C20 | 1.398 (5) |
C3—H3 | 0.9300 | C19—H19 | 0.9300 |
C4—C12 | 1.404 (4) | C20—C21 | 1.374 (6) |
C4—H4 | 0.9300 | C20—H20 | 0.9300 |
C5—C6 | 1.345 (5) | C21—C22 | 1.358 (6) |
C5—C14 | 1.412 (4) | C21—H21 | 0.9300 |
C5—H5 | 0.9300 | C22—C23 | 1.384 (5) |
C6—C7 | 1.391 (5) | C22—H22 | 0.9300 |
C6—H6 | 0.9300 | C23—H23 | 0.9300 |
C7—C8 | 1.351 (5) | C24—H24A | 0.9600 |
C7—H7 | 0.9300 | C24—H24B | 0.9600 |
C8—C13 | 1.424 (4) | C24—H24C | 0.9600 |
C8—H8 | 0.9300 | O25—H25A | 0.85 (2) |
C9—C13 | 1.387 (4) | O25—H25B | 0.85 (2) |
C9—C11 | 1.393 (4) | S26—O28 | 1.417 (3) |
C9—C15 | 1.517 (3) | S26—O29 | 1.426 (3) |
N10—C14 | 1.369 (4) | S26—O27 | 1.445 (3) |
N10—C12 | 1.371 (4) | S26—C30 | 1.809 (5) |
N10—C24 | 1.494 (3) | C30—F32 | 1.290 (5) |
C11—C12 | 1.439 (4) | C30—F33 | 1.299 (5) |
C13—C14 | 1.430 (4) | C30—F31 | 1.346 (5) |
C2—C1—C11 | 121.2 (3) | O17—C15—O16 | 125.8 (2) |
C2—C1—H1 | 119.4 | O17—C15—C9 | 124.2 (2) |
C11—C1—H1 | 119.4 | O16—C15—C9 | 110.0 (2) |
C1—C2—C3 | 119.8 (3) | C15—O16—C18 | 117.2 (2) |
C1—C2—H2 | 120.1 | C19—C18—C23 | 123.0 (3) |
C3—C2—H2 | 120.1 | C19—C18—O16 | 118.4 (3) |
C4—C3—C2 | 121.8 (3) | C23—C18—O16 | 118.6 (3) |
C4—C3—H3 | 119.1 | C18—C19—C20 | 118.4 (3) |
C2—C3—H3 | 119.1 | C18—C19—H19 | 120.8 |
C3—C4—C12 | 120.1 (3) | C20—C19—H19 | 120.8 |
C3—C4—H4 | 120.0 | C21—C20—C19 | 119.3 (3) |
C12—C4—H4 | 120.0 | C21—C20—H20 | 120.3 |
C6—C5—C14 | 119.8 (3) | C19—C20—H20 | 120.3 |
C6—C5—H5 | 120.1 | C22—C21—C20 | 120.6 (3) |
C14—C5—H5 | 120.1 | C22—C21—H21 | 119.7 |
C5—C6—C7 | 122.7 (3) | C20—C21—H21 | 119.7 |
C5—C6—H6 | 118.6 | C21—C22—C23 | 120.3 (4) |
C7—C6—H6 | 118.6 | C21—C22—H22 | 119.8 |
C8—C7—C6 | 119.7 (4) | C23—C22—H22 | 119.8 |
C8—C7—H7 | 120.2 | C18—C23—C22 | 118.3 (4) |
C6—C7—H7 | 120.2 | C18—C23—H23 | 120.8 |
C7—C8—C13 | 120.6 (3) | C22—C23—H23 | 120.8 |
C7—C8—H8 | 119.7 | N10—C24—H24A | 109.5 |
C13—C8—H8 | 119.7 | N10—C24—H24B | 109.5 |
C13—C9—C11 | 121.7 (2) | H24A—C24—H24B | 109.5 |
C13—C9—C15 | 120.6 (3) | N10—C24—H24C | 109.5 |
C11—C9—C15 | 117.7 (2) | H24A—C24—H24C | 109.5 |
C14—N10—C12 | 122.6 (2) | H24B—C24—H24C | 109.5 |
C14—N10—C24 | 118.1 (2) | H25A—O25—H25B | 110 (3) |
C12—N10—C24 | 119.3 (2) | O28—S26—O29 | 117.75 (19) |
C9—C11—C1 | 123.1 (2) | O28—S26—O27 | 114.5 (2) |
C9—C11—C12 | 118.3 (2) | O29—S26—O27 | 112.1 (2) |
C1—C11—C12 | 118.6 (3) | O28—S26—C30 | 104.19 (19) |
N10—C12—C4 | 122.2 (2) | O29—S26—C30 | 104.5 (2) |
N10—C12—C11 | 119.2 (3) | O27—S26—C30 | 101.4 (2) |
C4—C12—C11 | 118.6 (3) | F32—C30—F33 | 109.3 (4) |
C9—C13—C8 | 122.3 (2) | F32—C30—F31 | 105.2 (4) |
C9—C13—C14 | 119.0 (3) | F33—C30—F31 | 107.7 (4) |
C8—C13—C14 | 118.7 (3) | F32—C30—S26 | 113.3 (3) |
N10—C14—C5 | 122.4 (3) | F33—C30—S26 | 112.4 (3) |
N10—C14—C13 | 119.2 (2) | F31—C30—S26 | 108.6 (3) |
C5—C14—C13 | 118.5 (3) | ||
C11—C1—C2—C3 | −1.6 (5) | C6—C5—C14—N10 | 179.5 (3) |
C1—C2—C3—C4 | 2.2 (5) | C6—C5—C14—C13 | −0.4 (5) |
C2—C3—C4—C12 | −0.6 (5) | C9—C13—C14—N10 | 1.6 (4) |
C14—C5—C6—C7 | 0.9 (6) | C8—C13—C14—N10 | −179.8 (3) |
C5—C6—C7—C8 | −1.1 (7) | C9—C13—C14—C5 | −178.5 (3) |
C6—C7—C8—C13 | 0.8 (6) | C8—C13—C14—C5 | 0.1 (4) |
C13—C9—C11—C1 | 177.8 (3) | C13—C9—C15—O17 | −104.9 (4) |
C15—C9—C11—C1 | −2.2 (4) | C11—C9—C15—O17 | 75.1 (4) |
C13—C9—C11—C12 | −2.8 (4) | C13—C9—C15—O16 | 76.8 (3) |
C15—C9—C11—C12 | 177.2 (2) | C11—C9—C15—O16 | −103.2 (3) |
C2—C1—C11—C9 | 178.9 (3) | O17—C15—O16—C18 | −3.4 (4) |
C2—C1—C11—C12 | −0.4 (4) | C9—C15—O16—C18 | 174.8 (2) |
C14—N10—C12—C4 | 179.8 (3) | C15—O16—C18—C19 | 94.4 (3) |
C24—N10—C12—C4 | −0.8 (4) | C15—O16—C18—C23 | −87.5 (3) |
C14—N10—C12—C11 | 0.1 (4) | C23—C18—C19—C20 | 0.5 (5) |
C24—N10—C12—C11 | 179.5 (2) | O16—C18—C19—C20 | 178.6 (3) |
C3—C4—C12—N10 | 178.8 (3) | C18—C19—C20—C21 | −0.4 (5) |
C3—C4—C12—C11 | −1.5 (4) | C19—C20—C21—C22 | 0.4 (6) |
C9—C11—C12—N10 | 2.3 (3) | C20—C21—C22—C23 | −0.4 (6) |
C1—C11—C12—N10 | −178.3 (2) | C19—C18—C23—C22 | −0.6 (5) |
C9—C11—C12—C4 | −177.4 (2) | O16—C18—C23—C22 | −178.7 (3) |
C1—C11—C12—C4 | 2.0 (4) | C21—C22—C23—C18 | 0.5 (6) |
C11—C9—C13—C8 | −177.7 (3) | O28—S26—C30—F32 | −53.1 (4) |
C15—C9—C13—C8 | 2.3 (4) | O29—S26—C30—F32 | −177.2 (3) |
C11—C9—C13—C14 | 0.9 (4) | O27—S26—C30—F32 | 66.1 (4) |
C15—C9—C13—C14 | −179.1 (2) | O28—S26—C30—F33 | −177.6 (3) |
C7—C8—C13—C9 | 178.3 (3) | O29—S26—C30—F33 | 58.2 (4) |
C7—C8—C13—C14 | −0.3 (5) | O27—S26—C30—F33 | −58.5 (4) |
C12—N10—C14—C5 | 178.0 (3) | O28—S26—C30—F31 | 63.3 (4) |
C24—N10—C14—C5 | −1.3 (4) | O29—S26—C30—F31 | −60.8 (3) |
C12—N10—C14—C13 | −2.1 (4) | O27—S26—C30—F31 | −177.5 (3) |
C24—N10—C14—C13 | 178.6 (2) |
Cg4 is the centroid of the C18–C23 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O28i | 0.93 | 2.59 | 3.424 (4) | 149 |
C8—H8···O25 | 0.93 | 2.52 | 3.360 (6) | 150 |
C19—H19···O25 | 0.93 | 2.57 | 3.232 (5) | 129 |
C24—H24A···Cg4ii | 0.96 | 2.69 | 3.484 (4) | 140 |
C24—H24C···O29ii | 0.96 | 2.60 | 3.544 (5) | 168 |
O25—H25A···O27 | 0.85 (4) | 1.98 (3) | 2.816 (5) | 170 (8) |
O25—H25B···O28iii | 0.86 (4) | 2.14 (6) | 2.948 (6) | 156 (7) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z; (iii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C21H16NO2+·CF3SO3−·H2O |
Mr | 481.44 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 295 |
a, b, c (Å) | 11.3807 (4), 9.5785 (2), 19.7134 (6) |
β (°) | 98.172 (3) |
V (Å3) | 2127.14 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.22 |
Crystal size (mm) | 0.78 × 0.16 × 0.10 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008). |
Tmin, Tmax | 0.741, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 46462, 3792, 2422 |
Rint | 0.060 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.064, 0.211, 1.03 |
No. of reflections | 3792 |
No. of parameters | 305 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.59, −0.39 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg4 is the centroid of the C18–C23 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O28i | 0.93 | 2.59 | 3.424 (4) | 149 |
C8—H8···O25 | 0.93 | 2.52 | 3.360 (6) | 150 |
C19—H19···O25 | 0.93 | 2.57 | 3.232 (5) | 129 |
C24—H24A···Cg4ii | 0.96 | 2.69 | 3.484 (4) | 140 |
C24—H24C···O29ii | 0.96 | 2.60 | 3.544 (5) | 168 |
O25—H25A···O27 | 0.85 (4) | 1.98 (3) | 2.816 (5) | 170 (8) |
O25—H25B···O28iii | 0.86 (4) | 2.14 (6) | 2.948 (6) | 156 (7) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z; (iii) −x, −y+1, −z+1. |
Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively. |
X—I···J | I···J | X···J | X—I···J |
C30—F31···Cg2iv | 3.269 (3) | 4.075 (4) | 117.8 (2) |
C30—F32···Cg1iv | 3.744 (3) | 4.463 (4) | 116.1 (3) |
Symmetry code: (iv) x-1/2, -y+1/2, z-1/2. |
Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and the perpendicular projection of CgJ on ring I. |
I | J | CgI···CgJ | Dihedral angle | CgI_Perp | CgI_Offset |
1 | 2v | 3.682 (2) | 1.92 (1) | 3.568 (1) | 0.909 (1) |
2 | 1v | 3.682 (2) | 1.92 (1) | 3.591 (1) | 0.814 (1) |
Symmetry code: (v) -x+1, -y, -z+1. |
Acknowledgements
This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32 of the Polish Ministry of Research and Higher Education) for the period 2007–2010.
References
Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386–394. Web of Science CrossRef PubMed CAS Google Scholar
Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669. Web of Science CrossRef Google Scholar
Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer. Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002–3008. Web of Science CrossRef PubMed CAS Google Scholar
Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. 75, 462–470. Web of Science CrossRef Google Scholar
Sato, N. (1996). Tetrahedron Lett. 37, 8519–8522. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sikorski, A., Krzymiński, K., Malecha, P., Lis, T. & Błażejowski, J. (2007). Acta Cryst. E63, o4484–o4485. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430. Web of Science CrossRef CAS Google Scholar
Trzybiński, D., Skupień, M., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o770–o771. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A.M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The crystal structures of six 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates can be found in the Cambridge Structural Database. All of them were determined in our laboratory and concern derivatives substituted in the phenyl fragment. For a long time we were unable to obtain crystals of the parent compound, i.e. unsubstituted 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonate, suitable for X-Ray investigations. Eventually we succeeded, and we present here the crystal structure of the monohydrate of this compound. The reason for our interest in this group of compounds is their chemiluminogenic properties, which means they can be used as chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels (Zomer & Jacquemijns, 2001). These compounds are rouitenely applied in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Roda et al., 2003; Brown et al., 2009). The cations of the above mentioned salts undergo oxidation with hydrogen peroxide in alkaline media; at the same time the phenoxycarbonyl fragment is removed and the remainder of the molecule is converted to electronically excited, light-emitting 10-methyl-9-acridinone (Rak et al., 1999). This forms the basis for analytical applications (Zomer & Jacquemijns, 2001).
In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2007; Trzybiński et al., 2009). With respective average deviations from planarity of 0.0292 (3) Å and 0.0016 (3) Å, the acridine and benzene ring systems are oriented at 15.6 (1)°. The carboxyl group is twisted at an angle of 77.0 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (at an angle of 0.0 (1)°) or inclined at an angle of 18.4 (1)° in the lattice.
In the crystal structure, the anions form hydrates with water molecules through O–H···O interactions, while the inversely oriented cations form dimers through π–π interactions involving acridine moieties (Tables 1 and 3, Figs. 1 and 2). These dimers are linked by C–H···O (Table 1, Fig. 2) and C–F···π (Table 2, Fig. 2) interactions to adjacent anions, and by C–H···π (Table 1, Fig. 2) interactions to neighboring cations. The water molecule links two sites of the cation by C–H···O interactions and two adjacent anions by O–H···O interactions (Table 1, Figs. 1 and 2). The O–H···O and C–H···O interactions are of the hydrogen bond type (Bianchi et al., 2004; Novoa et al., 2006). The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C–F···π (Dorn et al., 2005) and the π–π (Hunter et al., 2001) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.