organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o906-o907

10-Methyl-9-phen­oxy­carbonyl­acridinium tri­fluoro­methane­sulfonate monohydrate

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: bla@chem.univ.gda.pl

(Received 9 March 2010; accepted 17 March 2010; online 24 March 2010)

In the crystal structure of the title compound, C21H16NO2+·CF3SO3·H2O, the anions and the water mol­ecules are linked by O—H⋯O inter­actions, while the cations form inversion dimers through ππ inter­actions between acridine ring systems. These dimers are linked by C—H⋯O and C—F⋯π inter­actions to adjacent anions, and by C—H⋯π inter­actions to neighboring cations. The water mol­ecule links two H atoms of the cation by C—H⋯O inter­actions and two adjacent anions by O—H⋯O inter­actions. The acridine and benzene ring systems are oriented at 15.6 (1)°. The carboxyl group is twisted at an angle of 77.0 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine units are either parallel or inclined at an angle of 18.4 (1)°.

Related literature

For background to the chemiluminogenic properties of 9-phenoxy­carbonyl-10-methyl­acridinium trifluoro­meth­ane­sulf­on­ates, see: Brown et al. (2009[Brown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386-394.]); Rak et al. (1999[Rak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002-3008.]); Roda et al. (2003[Roda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. 75, 462-470.]); Zomer & Jacquemijns (2001[Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A.M. Garcia-Campana & W. R. G. Baeyens, pp. 529-549. New York: Marcel Dekker.]). For related structures, see: Sikorski et al. (2007[Sikorski, A., Krzymiński, K., Malecha, P., Lis, T. & Błażejowski, J. (2007). Acta Cryst. E63, o4484-o4485.]); Trzybiński et al. (2009[Trzybiński, D., Skupień, M., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o770-o771.]). For inter­molecular inter­actions, see: Bianchi et al. (2004[Bianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559-568.]); Dorn et al. (2005[Dorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633-641.]); Hunter et al. (2001[Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651-669.]); Novoa et al. (2006[Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding - New Insights, edited by S. Grabowski, pp. 193-244. The Netherlands: Springer.]); Takahashi et al. (2001[Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421-2430.]). For the synthesis, see: Sato (1996[Sato, N. (1996). Tetrahedron Lett. 37, 8519-8522.]); Trzybiński et al. (2009[Trzybiński, D., Skupień, M., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o770-o771.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16NO2+·CF3SO3·H2O

  • Mr = 481.44

  • Monoclinic, P 21 /n

  • a = 11.3807 (4) Å

  • b = 9.5785 (2) Å

  • c = 19.7134 (6) Å

  • β = 98.172 (3)°

  • V = 2127.14 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 295 K

  • 0.78 × 0.16 × 0.10 mm

Data collection
  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]). Tmin = 0.741, Tmax = 1.000

  • 46462 measured reflections

  • 3792 independent reflections

  • 2422 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.211

  • S = 1.03

  • 3792 reflections

  • 305 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O28i 0.93 2.59 3.424 (4) 149
C8—H8⋯O25 0.93 2.52 3.360 (6) 150
C19—H19⋯O25 0.93 2.57 3.232 (5) 129
C24—H24ACg4ii 0.96 2.69 3.484 (4) 140
C24—H24C⋯O29ii 0.96 2.60 3.544 (5) 168
O25—H25A⋯O27 0.85 (4) 1.98 (3) 2.816 (5) 170 (8)
O25—H25B⋯O28iii 0.86 (4) 2.14 (6) 2.948 (6) 156 (7)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z; (iii) -x, -y+1, -z+1.

Table 2
C—F⋯π inter­actions (Å, °)

Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively.

XIJ IJ XJ XIJ
C30—F31⋯Cg2iv 3.269 (3) 4.075 (4) 117.8 (2)
C30—F32⋯Cg1iv 3.744 (3) 4.463 (4) 116.1 (3)
Symmetry code: (iv) [x -{\script{1\over 2}}, -y+ {\script{1\over 2}}, z-{\script{1\over 2}}].

Table 3
ππ inter­actions (Å, °)

Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively. CgICgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and the perpendicular projection of CgJ on ring I.

I J CgICgJ Dihedral angle CgI_Perp CgI_Offset
1 2v 3.682 (2) 1.92 (1) 3.568 (1) 0.909 (1)
2 1v 3.682 (2) 1.92 (1) 3.591 (1) 0.814 (1)
Symmetry code: (v) −x + 1, −y, −z + 1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The crystal structures of six 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates can be found in the Cambridge Structural Database. All of them were determined in our laboratory and concern derivatives substituted in the phenyl fragment. For a long time we were unable to obtain crystals of the parent compound, i.e. unsubstituted 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonate, suitable for X-Ray investigations. Eventually we succeeded, and we present here the crystal structure of the monohydrate of this compound. The reason for our interest in this group of compounds is their chemiluminogenic properties, which means they can be used as chemiluminescent indicators or the chemiluminogenic fragments of chemiluminescent labels (Zomer & Jacquemijns, 2001). These compounds are rouitenely applied in assays of biologically and environmentally important entities such as antigens, antibodies, enzymes or DNA fragments (Roda et al., 2003; Brown et al., 2009). The cations of the above mentioned salts undergo oxidation with hydrogen peroxide in alkaline media; at the same time the phenoxycarbonyl fragment is removed and the remainder of the molecule is converted to electronically excited, light-emitting 10-methyl-9-acridinone (Rak et al., 1999). This forms the basis for analytical applications (Zomer & Jacquemijns, 2001).

In the cation of the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the acridinium moiety are typical of acridine-based derivatives (Sikorski et al., 2007; Trzybiński et al., 2009). With respective average deviations from planarity of 0.0292 (3) Å and 0.0016 (3) Å, the acridine and benzene ring systems are oriented at 15.6 (1)°. The carboxyl group is twisted at an angle of 77.0 (1)° relative to the acridine skeleton. The mean planes of the adjacent acridine moieties are parallel (at an angle of 0.0 (1)°) or inclined at an angle of 18.4 (1)° in the lattice.

In the crystal structure, the anions form hydrates with water molecules through O–H···O interactions, while the inversely oriented cations form dimers through ππ interactions involving acridine moieties (Tables 1 and 3, Figs. 1 and 2). These dimers are linked by C–H···O (Table 1, Fig. 2) and C–F···π (Table 2, Fig. 2) interactions to adjacent anions, and by C–H···π (Table 1, Fig. 2) interactions to neighboring cations. The water molecule links two sites of the cation by C–H···O interactions and two adjacent anions by O–H···O interactions (Table 1, Figs. 1 and 2). The O–H···O and C–H···O interactions are of the hydrogen bond type (Bianchi et al., 2004; Novoa et al., 2006). The C–H···π interactions should be of an attractive nature (Takahashi et al., 2001), like the C–F···π (Dorn et al., 2005) and the ππ (Hunter et al., 2001) interactions. The crystal structure is stabilized by a network of these short-range specific interactions and by long-range electrostatic interactions between ions.

Related literature top

For general background to the chemiluminogenic properties of 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonates, see: Brown et al. (2009); Rak et al. (1999); Roda et al. (2003); Zomer & Jacquemijns (2001). For related structures, see: Sikorski et al. (2007); Trzybiński et al. (2009). For intermolecular interactions, see: Bianchi et al. (2004); Dorn et al. (2005); Hunter et al. (2001); Novoa et al. (2006); Takahashi et al. (2001). For the synthesis, see: Sato (1996); Trzybiński et al. (2009).

Experimental top

The compound was synthesized following a procedure described elsewhere (Trzybiński et al., 2009). 9-(Chlorocarbonyl)-acridine was prepared by treating acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride. The compound obtained was esterified with phenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15h). The product – phenyl acridine-9-carboxylate – was purified chromatographically (SiO2, cyclohexane/ethyl acetate, 3/2 v/v) and quaternarized with a five-fold molar excess of methyl trifluoromethanesulfonate dissolved in anhydrous dichloromethane (under an Ar atmosphere at room temperature for 3h) (Sato, 1996). The crude 9-phenoxycarbonyl-10-methylacridinium trifluoromethanesulfonate was dissolved in a small amount of ethanol, filtered and precipitated with a 25 v/v excess of diethyl ether. Yellow crystals suitable for X-ray investigations were grown from ethanol/H2O, 4/1 v/v, solution (m.p. 263-265K).

Refinement top

The H-atoms of the water molecule were located on a Fourier-difference map, restrained by DFIX command 0.85 for O–H distances and by DFIX 1.39 for H···H distance and refined as riding with Uiso(H) = 1.5Ueq(O). All other H atoms were positioned geometrically, with C—H = 0.93 Å and 0.96 Å for the aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.2 for the aromatic H atoms and x = 1.5 for the methyl H atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2 and Cg4 denote the ring centroids. The O–H···O and C–H···O hydrogen bonds are represented by dashed lines.
[Figure 2] Fig. 2. The arrangement of the ions in the crystal structure. The O–H···O and C–H···O interactions are represented by dashed lines, the C–H···π, C–F···π and ππ contacts by dotted lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x + 1, –y + 1, –z + 1; (ii) x, y – 1, z; (iii) –x, –y + 1, –z + 1; (iv) x – 1/2, –y + 1/2, z – 1/2; (v) –x + 1, –y, –z + 1.]
10-Methyl-9-phenoxycarbonylacridinium trifluoromethanesulfonate monohydrate top
Crystal data top
C21H16NO2+·CF3SO3·H2OF(000) = 992
Mr = 481.44Dx = 1.503 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 15973 reflections
a = 11.3807 (4) Åθ = 3.0–29.3°
b = 9.5785 (2) ŵ = 0.22 mm1
c = 19.7134 (6) ÅT = 295 K
β = 98.172 (3)°Needle, yellow
V = 2127.14 (11) Å30.78 × 0.16 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
3792 independent reflections
Radiation source: Enhanced (Mo) X-ray Source2422 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
Detector resolution: 10.4002 pixels mm-1θmax = 25.1°, θmin = 3.0°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008).
k = 1111
Tmin = 0.741, Tmax = 1.000l = 2323
46462 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.211H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.146P)2]
where P = (Fo2 + 2Fc2)/3
3792 reflections(Δ/σ)max < 0.001
305 parametersΔρmax = 0.59 e Å3
3 restraintsΔρmin = 0.39 e Å3
Crystal data top
C21H16NO2+·CF3SO3·H2OV = 2127.14 (11) Å3
Mr = 481.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.3807 (4) ŵ = 0.22 mm1
b = 9.5785 (2) ÅT = 295 K
c = 19.7134 (6) Å0.78 × 0.16 × 0.10 mm
β = 98.172 (3)°
Data collection top
Oxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
3792 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008).
2422 reflections with I > 2σ(I)
Tmin = 0.741, Tmax = 1.000Rint = 0.060
46462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0643 restraints
wR(F2) = 0.211H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.59 e Å3
3792 reflectionsΔρmin = 0.39 e Å3
305 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6362 (3)0.0857 (3)0.60005 (15)0.0534 (7)
H10.63280.18160.60670.064*
C20.7417 (3)0.0248 (3)0.59672 (17)0.0647 (8)
H20.81030.07880.59990.078*
C30.7481 (3)0.1205 (4)0.58836 (19)0.0703 (9)
H30.82180.16200.58770.084*
C40.6494 (3)0.2020 (3)0.58122 (16)0.0613 (8)
H40.65610.29790.57530.074*
C50.2201 (3)0.2410 (3)0.56540 (18)0.0700 (10)
H50.22340.33630.55670.084*
C60.1149 (4)0.1788 (4)0.5680 (2)0.0859 (12)
H60.04640.23320.56150.103*
C70.1041 (3)0.0366 (4)0.5799 (2)0.0822 (11)
H70.02960.00290.58050.099*
C80.2025 (3)0.0440 (3)0.59056 (17)0.0637 (9)
H80.19540.13890.59910.076*
C90.4195 (3)0.0648 (2)0.59775 (13)0.0450 (7)
N100.4351 (2)0.2193 (2)0.57446 (11)0.0476 (6)
C110.5304 (3)0.0064 (3)0.59353 (12)0.0439 (7)
C120.5374 (3)0.1418 (3)0.58269 (13)0.0468 (7)
C130.3168 (3)0.0151 (3)0.58886 (14)0.0493 (7)
C140.3255 (3)0.1614 (3)0.57599 (14)0.0506 (7)
C150.4143 (2)0.2199 (3)0.61254 (14)0.0454 (7)
O160.4005 (2)0.24024 (17)0.67778 (10)0.0597 (6)
O170.4242 (2)0.30844 (19)0.57195 (10)0.0647 (6)
C180.4040 (3)0.3808 (3)0.70187 (14)0.0523 (8)
C190.3003 (3)0.4502 (3)0.70065 (17)0.0635 (9)
H190.22860.40800.68360.076*
C200.3034 (4)0.5869 (4)0.7257 (2)0.0763 (11)
H200.23350.63750.72520.092*
C210.4108 (4)0.6459 (4)0.7509 (2)0.0797 (11)
H210.41340.73660.76790.096*
C220.5133 (4)0.5729 (4)0.7514 (2)0.0815 (11)
H220.58550.61420.76830.098*
C230.5108 (3)0.4375 (3)0.72675 (17)0.0669 (9)
H230.58050.38660.72720.080*
C240.4419 (3)0.3729 (3)0.56256 (17)0.0637 (9)
H24A0.39660.42130.59280.095*
H24B0.52320.40260.57140.095*
H24C0.41020.39370.51590.095*
O250.1330 (4)0.3806 (6)0.5581 (2)0.1480 (15)
H25A0.136 (7)0.397 (9)0.5162 (16)0.222*
H25B0.064 (4)0.350 (10)0.563 (4)0.222*
S260.15677 (9)0.55386 (9)0.38344 (5)0.0715 (4)
O270.1121 (4)0.4342 (3)0.41645 (19)0.1242 (12)
O280.0899 (3)0.6777 (3)0.38719 (15)0.0997 (9)
O290.2829 (3)0.5641 (3)0.39743 (18)0.1067 (10)
C300.1269 (4)0.5037 (5)0.2942 (2)0.0903 (12)
F310.1687 (3)0.6041 (3)0.25626 (16)0.1375 (12)
F320.0152 (3)0.4950 (4)0.27144 (17)0.1380 (12)
F330.1787 (3)0.3873 (3)0.28194 (15)0.1227 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.065 (2)0.0385 (14)0.0567 (17)0.0056 (13)0.0088 (14)0.0035 (12)
C20.061 (2)0.0628 (19)0.071 (2)0.0063 (16)0.0092 (16)0.0077 (15)
C30.067 (2)0.068 (2)0.076 (2)0.0102 (18)0.0113 (17)0.0048 (17)
C40.078 (2)0.0434 (16)0.063 (2)0.0136 (15)0.0108 (16)0.0023 (13)
C50.082 (3)0.0491 (17)0.078 (2)0.0199 (17)0.0084 (18)0.0067 (15)
C60.063 (3)0.082 (3)0.111 (3)0.027 (2)0.008 (2)0.018 (2)
C70.056 (2)0.086 (3)0.104 (3)0.0065 (19)0.011 (2)0.019 (2)
C80.064 (2)0.0529 (17)0.074 (2)0.0019 (15)0.0097 (17)0.0084 (14)
C90.0643 (19)0.0295 (13)0.0413 (14)0.0039 (12)0.0074 (13)0.0014 (10)
N100.0708 (17)0.0262 (10)0.0461 (13)0.0039 (10)0.0091 (11)0.0018 (8)
C110.0603 (18)0.0320 (13)0.0392 (14)0.0017 (12)0.0065 (12)0.0017 (10)
C120.0670 (19)0.0334 (13)0.0398 (14)0.0012 (13)0.0072 (13)0.0018 (10)
C130.0632 (19)0.0371 (14)0.0469 (15)0.0020 (13)0.0058 (13)0.0028 (11)
C140.066 (2)0.0377 (14)0.0481 (16)0.0117 (13)0.0071 (13)0.0022 (11)
C150.0543 (18)0.0311 (13)0.0505 (17)0.0011 (11)0.0071 (13)0.0024 (12)
O160.0985 (17)0.0294 (9)0.0546 (13)0.0024 (9)0.0226 (11)0.0024 (8)
O170.1108 (19)0.0318 (10)0.0544 (12)0.0024 (10)0.0214 (12)0.0035 (9)
C180.082 (2)0.0329 (14)0.0457 (15)0.0025 (14)0.0201 (15)0.0031 (11)
C190.072 (2)0.0525 (18)0.069 (2)0.0098 (16)0.0234 (17)0.0085 (14)
C200.090 (3)0.0555 (19)0.091 (3)0.0138 (18)0.039 (2)0.0100 (17)
C210.111 (3)0.0485 (18)0.083 (3)0.011 (2)0.026 (2)0.0207 (17)
C220.099 (3)0.064 (2)0.080 (3)0.017 (2)0.010 (2)0.0235 (18)
C230.077 (2)0.0539 (18)0.069 (2)0.0022 (16)0.0076 (17)0.0084 (15)
C240.096 (2)0.0253 (13)0.072 (2)0.0041 (14)0.0191 (17)0.0056 (12)
O250.121 (3)0.191 (4)0.130 (3)0.034 (3)0.009 (2)0.014 (3)
S260.0867 (8)0.0584 (5)0.0688 (6)0.0088 (4)0.0084 (5)0.0088 (4)
O270.174 (3)0.092 (2)0.118 (3)0.020 (2)0.058 (2)0.0251 (17)
O280.133 (3)0.0679 (16)0.098 (2)0.0144 (16)0.0154 (17)0.0183 (14)
O290.090 (2)0.100 (2)0.119 (2)0.0072 (16)0.0236 (17)0.0098 (17)
C300.094 (3)0.081 (3)0.092 (3)0.014 (2)0.001 (2)0.019 (2)
F310.192 (3)0.131 (2)0.0935 (19)0.021 (2)0.034 (2)0.0265 (16)
F320.105 (2)0.155 (3)0.138 (2)0.0063 (18)0.0372 (18)0.058 (2)
F330.161 (3)0.0951 (18)0.110 (2)0.0314 (17)0.0119 (17)0.0364 (14)
Geometric parameters (Å, º) top
C1—C21.345 (4)C15—O171.182 (3)
C1—C111.414 (4)C15—O161.332 (3)
C1—H10.9300O16—C181.426 (3)
C2—C31.405 (5)C18—C191.352 (5)
C2—H20.9300C18—C231.357 (5)
C3—C41.358 (5)C19—C201.398 (5)
C3—H30.9300C19—H190.9300
C4—C121.404 (4)C20—C211.374 (6)
C4—H40.9300C20—H200.9300
C5—C61.345 (5)C21—C221.358 (6)
C5—C141.412 (4)C21—H210.9300
C5—H50.9300C22—C231.384 (5)
C6—C71.391 (5)C22—H220.9300
C6—H60.9300C23—H230.9300
C7—C81.351 (5)C24—H24A0.9600
C7—H70.9300C24—H24B0.9600
C8—C131.424 (4)C24—H24C0.9600
C8—H80.9300O25—H25A0.85 (2)
C9—C131.387 (4)O25—H25B0.85 (2)
C9—C111.393 (4)S26—O281.417 (3)
C9—C151.517 (3)S26—O291.426 (3)
N10—C141.369 (4)S26—O271.445 (3)
N10—C121.371 (4)S26—C301.809 (5)
N10—C241.494 (3)C30—F321.290 (5)
C11—C121.439 (4)C30—F331.299 (5)
C13—C141.430 (4)C30—F311.346 (5)
C2—C1—C11121.2 (3)O17—C15—O16125.8 (2)
C2—C1—H1119.4O17—C15—C9124.2 (2)
C11—C1—H1119.4O16—C15—C9110.0 (2)
C1—C2—C3119.8 (3)C15—O16—C18117.2 (2)
C1—C2—H2120.1C19—C18—C23123.0 (3)
C3—C2—H2120.1C19—C18—O16118.4 (3)
C4—C3—C2121.8 (3)C23—C18—O16118.6 (3)
C4—C3—H3119.1C18—C19—C20118.4 (3)
C2—C3—H3119.1C18—C19—H19120.8
C3—C4—C12120.1 (3)C20—C19—H19120.8
C3—C4—H4120.0C21—C20—C19119.3 (3)
C12—C4—H4120.0C21—C20—H20120.3
C6—C5—C14119.8 (3)C19—C20—H20120.3
C6—C5—H5120.1C22—C21—C20120.6 (3)
C14—C5—H5120.1C22—C21—H21119.7
C5—C6—C7122.7 (3)C20—C21—H21119.7
C5—C6—H6118.6C21—C22—C23120.3 (4)
C7—C6—H6118.6C21—C22—H22119.8
C8—C7—C6119.7 (4)C23—C22—H22119.8
C8—C7—H7120.2C18—C23—C22118.3 (4)
C6—C7—H7120.2C18—C23—H23120.8
C7—C8—C13120.6 (3)C22—C23—H23120.8
C7—C8—H8119.7N10—C24—H24A109.5
C13—C8—H8119.7N10—C24—H24B109.5
C13—C9—C11121.7 (2)H24A—C24—H24B109.5
C13—C9—C15120.6 (3)N10—C24—H24C109.5
C11—C9—C15117.7 (2)H24A—C24—H24C109.5
C14—N10—C12122.6 (2)H24B—C24—H24C109.5
C14—N10—C24118.1 (2)H25A—O25—H25B110 (3)
C12—N10—C24119.3 (2)O28—S26—O29117.75 (19)
C9—C11—C1123.1 (2)O28—S26—O27114.5 (2)
C9—C11—C12118.3 (2)O29—S26—O27112.1 (2)
C1—C11—C12118.6 (3)O28—S26—C30104.19 (19)
N10—C12—C4122.2 (2)O29—S26—C30104.5 (2)
N10—C12—C11119.2 (3)O27—S26—C30101.4 (2)
C4—C12—C11118.6 (3)F32—C30—F33109.3 (4)
C9—C13—C8122.3 (2)F32—C30—F31105.2 (4)
C9—C13—C14119.0 (3)F33—C30—F31107.7 (4)
C8—C13—C14118.7 (3)F32—C30—S26113.3 (3)
N10—C14—C5122.4 (3)F33—C30—S26112.4 (3)
N10—C14—C13119.2 (2)F31—C30—S26108.6 (3)
C5—C14—C13118.5 (3)
C11—C1—C2—C31.6 (5)C6—C5—C14—N10179.5 (3)
C1—C2—C3—C42.2 (5)C6—C5—C14—C130.4 (5)
C2—C3—C4—C120.6 (5)C9—C13—C14—N101.6 (4)
C14—C5—C6—C70.9 (6)C8—C13—C14—N10179.8 (3)
C5—C6—C7—C81.1 (7)C9—C13—C14—C5178.5 (3)
C6—C7—C8—C130.8 (6)C8—C13—C14—C50.1 (4)
C13—C9—C11—C1177.8 (3)C13—C9—C15—O17104.9 (4)
C15—C9—C11—C12.2 (4)C11—C9—C15—O1775.1 (4)
C13—C9—C11—C122.8 (4)C13—C9—C15—O1676.8 (3)
C15—C9—C11—C12177.2 (2)C11—C9—C15—O16103.2 (3)
C2—C1—C11—C9178.9 (3)O17—C15—O16—C183.4 (4)
C2—C1—C11—C120.4 (4)C9—C15—O16—C18174.8 (2)
C14—N10—C12—C4179.8 (3)C15—O16—C18—C1994.4 (3)
C24—N10—C12—C40.8 (4)C15—O16—C18—C2387.5 (3)
C14—N10—C12—C110.1 (4)C23—C18—C19—C200.5 (5)
C24—N10—C12—C11179.5 (2)O16—C18—C19—C20178.6 (3)
C3—C4—C12—N10178.8 (3)C18—C19—C20—C210.4 (5)
C3—C4—C12—C111.5 (4)C19—C20—C21—C220.4 (6)
C9—C11—C12—N102.3 (3)C20—C21—C22—C230.4 (6)
C1—C11—C12—N10178.3 (2)C19—C18—C23—C220.6 (5)
C9—C11—C12—C4177.4 (2)O16—C18—C23—C22178.7 (3)
C1—C11—C12—C42.0 (4)C21—C22—C23—C180.5 (6)
C11—C9—C13—C8177.7 (3)O28—S26—C30—F3253.1 (4)
C15—C9—C13—C82.3 (4)O29—S26—C30—F32177.2 (3)
C11—C9—C13—C140.9 (4)O27—S26—C30—F3266.1 (4)
C15—C9—C13—C14179.1 (2)O28—S26—C30—F33177.6 (3)
C7—C8—C13—C9178.3 (3)O29—S26—C30—F3358.2 (4)
C7—C8—C13—C140.3 (5)O27—S26—C30—F3358.5 (4)
C12—N10—C14—C5178.0 (3)O28—S26—C30—F3163.3 (4)
C24—N10—C14—C51.3 (4)O29—S26—C30—F3160.8 (3)
C12—N10—C14—C132.1 (4)O27—S26—C30—F31177.5 (3)
C24—N10—C14—C13178.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O28i0.932.593.424 (4)149
C8—H8···O250.932.523.360 (6)150
C19—H19···O250.932.573.232 (5)129
C24—H24A···Cg4ii0.962.693.484 (4)140
C24—H24C···O29ii0.962.603.544 (5)168
O25—H25A···O270.85 (4)1.98 (3)2.816 (5)170 (8)
O25—H25B···O28iii0.86 (4)2.14 (6)2.948 (6)156 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H16NO2+·CF3SO3·H2O
Mr481.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)11.3807 (4), 9.5785 (2), 19.7134 (6)
β (°) 98.172 (3)
V3)2127.14 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.78 × 0.16 × 0.10
Data collection
DiffractometerOxford Diffraction Gemini R Ultra Ruby CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008).
Tmin, Tmax0.741, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
46462, 3792, 2422
Rint0.060
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.211, 1.03
No. of reflections3792
No. of parameters305
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.39

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C18–C23 ring.
D—H···AD—HH···AD···AD—H···A
C2—H2···O28i0.932.593.424 (4)149
C8—H8···O250.932.523.360 (6)150
C19—H19···O250.932.573.232 (5)129
C24—H24A···Cg4ii0.962.693.484 (4)140
C24—H24C···O29ii0.962.603.544 (5)168
O25—H25A···O270.85 (4)1.98 (3)2.816 (5)170 (8)
O25—H25B···O28iii0.86 (4)2.14 (6)2.948 (6)156 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x, y+1, z+1.
C—F···π interactions (Å, °) top
Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively.
XI···JI···JX···JXI···J
C30—F31···Cg2iv3.269 (3)4.075 (4)117.8 (2)
C30—F32···Cg1iv3.744 (3)4.463 (4)116.1 (3)
Symmetry code: (iv) x-1/2, -y+1/2, z-1/2.
ππ interactions (Å, °) top
Cg1 and Cg2 are the centroids of the C9/N10/C11–C14 and C1–C4/C11/C12 rings, respectively. CgI···CgJ is the distance between ring centroids. The dihedral angle is that between the planes of the rings I and J. CgI_Perp is the perpendicular distance of CgI from ring J. CgI_Offset is the distance between CgI and the perpendicular projection of CgJ on ring I.
IJCgI···CgJDihedral angleCgI_PerpCgI_Offset
12v3.682 (2)1.92 (1)3.568 (1)0.909 (1)
21v3.682 (2)1.92 (1)3.591 (1)0.814 (1)
Symmetry code: (v) -x+1, -y, -z+1.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research (grant No. N204 123 32/3143, contract No. 3143/H03/2007/32 of the Polish Ministry of Research and Higher Education) for the period 2007–2010.

References

First citationBianchi, R., Forni, A. & Pilati, T. (2004). Acta Cryst. B60, 559–568.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrown, R. C., Li, Z., Rutter, A. J., Mu, X., Weeks, O. H., Smith, K. & Weeks, I. (2009). Org. Biomol. Chem. 7, 386–394.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDorn, T., Janiak, C. & Abu-Shandi, K. (2005). CrystEngComm, 7, 633–641.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.  Web of Science CrossRef Google Scholar
First citationNovoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRak, J., Skurski, P. & Błażejowski, J. (1999). J. Org. Chem. 64, 3002–3008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRoda, A., Guardigli, M., Michelini, E., Mirasoli, M. & Pasini, P. (2003). Anal. Chem. 75, 462–470.  Web of Science CrossRef Google Scholar
First citationSato, N. (1996). Tetrahedron Lett. 37, 8519–8522.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSikorski, A., Krzymiński, K., Malecha, P., Lis, T. & Błażejowski, J. (2007). Acta Cryst. E63, o4484–o4485.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.  Web of Science CrossRef CAS Google Scholar
First citationTrzybiński, D., Skupień, M., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2009). Acta Cryst. E65, o770–o771.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A.M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o906-o907
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds