organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,3-Di­methyl­phen­yl)succinimide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 18 March 2010; accepted 21 March 2010; online 24 March 2010)

In the title compound, C12H13NO2, the dihedral angle between the aromatic benzene ring and the imide segment is 67.7 (1)°. The mol­ecules in the crystal are packed into layered chains along the c axis.

Related literature

For our study of the effect of ring and side-chain substitutions on the structures of biologically significant compounds, see: Gowda et al. (2007[Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91-100.]); Saraswathi et al. (2010a[Saraswathi, B. S., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o325.],b[Saraswathi, B. S., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o881.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13NO2

  • Mr = 203.23

  • Monoclinic, P 21 /c

  • a = 6.0600 (5) Å

  • b = 16.429 (2) Å

  • c = 10.593 (1) Å

  • β = 91.992 (8)°

  • V = 1054.00 (18) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 299 K

  • 0.40 × 0.20 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 2096 measured reflections

  • 1883 independent reflections

  • 1472 reflections with I > 2σ(I)

  • Rint = 0.016

  • 3 standard reflections every 120 min intensity decay: 1.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.122

  • S = 1.05

  • 1883 reflections

  • 139 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of studying the effect of ring and side chain substitutions on the structures of biologically significant compounds (Gowda et al., 2007; Saraswathi et al., 2010a,b), the crystal structure of N,N-(2,3-dimethylphenyl)succinimide has been determined (Fig. 1). The dihedral angle between the benzene ring and the imide segment in the molecule is 67.7 (1)°, compared to the values of 85.7 (1)° in N,N-(2,4-dimethylphenyl)succinimide (Saraswathi et al., 2010b) and 75.9 (1)° N,N-(2,6-dimethylphenyl)succinimide (Saraswathi et al., 2010a).

The torsion angles of the groups, C2 - C1 - N1 - C7, C6 - C1 - N1 - C7, C2 - C1 - N1 - C10 and C6 - C1 - N1 - C10 in the molecule are 70.2 (2), -109.3 (2), -113.1 (2) and 67.5 (2)°, respectively, while the torsional angles of the groups, O1 - C7 - N1 - C1, C8 - C7 - N1 - C1, O2 - C10 - N1 - C1 and C9 - C10 - N1 - C1 are 2.9 (3), -177.4 (2), 0.2 (3) and -180.0 (2)°, respectively.

The packing of molecules into layered row like chains along c-axis is shown in Fig.2.

Related literature top

For our study of the effect of ring and side-chain substitutions on the

structures of biologically significant compounds, see: Gowda et al. (2007); Saraswathi et al. (2010a,b).

Experimental top

The solution of succinic anhydride (0.025 mole) in toluene (25 ml) was treated dropwise with the solution of 2,3-dimethylaniline (0.025 mole) also in toluene (25 ml) with constant stirring. The resulting mixture was stirred for one h and set aside for an additional hour at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2,3-dimethylaniline. The resultant solid N-(2,3-dimethylphenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol.

N-(2,3-Dimethylphenyl)succinamic acid was heated for 2 h and then allowed to cool slowly to room temperature to get the compound, N-(2,3-dimethylphenyl)succinimide. The purity of the compound was checked and characterized by its infrared spectra.

Prism like colourless single crystals of the compound used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å. Isotropic displacement parameters for the H atoms were set equal to 1.2 Ueq (parent atom).

In the absence of significant anomalous dispersion effects, Friedel pairs were merged and the Δf"term set to zero.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound.
N-(2,3-Dimethylphenyl)succinimide top
Crystal data top
C12H13NO2F(000) = 432
Mr = 203.23Dx = 1.281 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 6.0600 (5) Åθ = 5.4–18.0°
b = 16.429 (2) ŵ = 0.71 mm1
c = 10.593 (1) ÅT = 299 K
β = 91.992 (8)°Prism, colourless
V = 1054.00 (18) Å30.40 × 0.20 × 0.15 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.016
Radiation source: fine-focus sealed tubeθmax = 66.9°, θmin = 5.0°
Graphite monochromatorh = 71
ω/2θ scansk = 190
2096 measured reflectionsl = 1212
1883 independent reflections3 standard reflections every 120 min
1472 reflections with I > 2σ(I) intensity decay: 1.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.2594P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1883 reflectionsΔρmax = 0.18 e Å3
139 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0081 (9)
Crystal data top
C12H13NO2V = 1054.00 (18) Å3
Mr = 203.23Z = 4
Monoclinic, P21/cCu Kα radiation
a = 6.0600 (5) ŵ = 0.71 mm1
b = 16.429 (2) ÅT = 299 K
c = 10.593 (1) Å0.40 × 0.20 × 0.15 mm
β = 91.992 (8)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.016
2096 measured reflections3 standard reflections every 120 min
1883 independent reflections intensity decay: 1.0%
1472 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.05Δρmax = 0.18 e Å3
1883 reflectionsΔρmin = 0.21 e Å3
139 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0295 (3)0.64329 (10)0.78424 (14)0.0372 (4)
C20.1636 (3)0.60330 (10)0.70029 (15)0.0376 (4)
C30.1134 (3)0.61237 (11)0.57082 (15)0.0452 (4)
C40.0697 (3)0.65748 (12)0.53242 (17)0.0546 (5)
H40.10260.66320.44650.066*
C50.2041 (3)0.69410 (12)0.61716 (19)0.0557 (5)
H50.32810.72300.58880.067*
C60.1541 (3)0.68768 (11)0.74460 (18)0.0467 (4)
H60.24240.71280.80310.056*
C70.2655 (3)0.67879 (11)0.97290 (16)0.0449 (4)
C80.2745 (3)0.65793 (14)1.11109 (17)0.0579 (5)
H8A0.27800.70691.16220.069*
H8B0.40450.62561.13240.069*
C90.0665 (4)0.60978 (13)1.13227 (17)0.0567 (5)
H9A0.10210.55711.16890.068*
H9B0.02870.63881.18870.068*
C100.0448 (3)0.59991 (11)1.00467 (17)0.0461 (4)
C110.3529 (3)0.55084 (11)0.74623 (17)0.0478 (5)
H11A0.33930.53980.83460.057*
H11B0.48960.57870.73320.057*
H11C0.35090.50050.70020.057*
C120.2559 (4)0.57447 (15)0.47345 (18)0.0657 (6)
H12A0.24170.51630.47670.079*
H12B0.40720.58940.49050.079*
H12C0.20980.59350.39100.079*
N10.0830 (2)0.63939 (9)0.91715 (12)0.0393 (4)
O10.3887 (2)0.72166 (9)0.91606 (13)0.0598 (4)
O20.2143 (2)0.56450 (9)0.97796 (13)0.0629 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0369 (8)0.0402 (9)0.0343 (8)0.0050 (7)0.0002 (6)0.0017 (7)
C20.0378 (8)0.0377 (8)0.0372 (8)0.0035 (7)0.0002 (7)0.0019 (7)
C30.0537 (10)0.0461 (10)0.0357 (9)0.0048 (8)0.0001 (7)0.0012 (7)
C40.0657 (12)0.0582 (12)0.0387 (10)0.0021 (10)0.0131 (9)0.0073 (9)
C50.0473 (10)0.0570 (12)0.0618 (12)0.0069 (9)0.0129 (9)0.0082 (9)
C60.0387 (9)0.0495 (10)0.0519 (10)0.0029 (8)0.0027 (8)0.0018 (8)
C70.0419 (9)0.0512 (11)0.0415 (9)0.0016 (8)0.0015 (7)0.0083 (8)
C80.0617 (12)0.0701 (13)0.0411 (10)0.0007 (10)0.0073 (9)0.0074 (9)
C90.0758 (14)0.0576 (12)0.0369 (10)0.0013 (10)0.0049 (9)0.0013 (9)
C100.0510 (11)0.0458 (10)0.0417 (9)0.0011 (8)0.0053 (8)0.0052 (8)
C110.0466 (10)0.0521 (11)0.0449 (10)0.0058 (8)0.0032 (8)0.0025 (8)
C120.0805 (15)0.0784 (15)0.0385 (10)0.0053 (12)0.0067 (10)0.0076 (10)
N10.0396 (7)0.0456 (8)0.0328 (7)0.0029 (6)0.0031 (6)0.0000 (6)
O10.0493 (8)0.0726 (10)0.0576 (8)0.0187 (7)0.0058 (6)0.0073 (7)
O20.0546 (8)0.0747 (10)0.0592 (8)0.0185 (7)0.0015 (7)0.0170 (7)
Geometric parameters (Å, º) top
C1—C61.383 (2)C8—C91.512 (3)
C1—C21.390 (2)C8—H8A0.9700
C1—N11.435 (2)C8—H8B0.9700
C2—C31.402 (2)C9—C101.498 (3)
C2—C111.502 (2)C9—H9A0.9700
C3—C41.384 (3)C9—H9B0.9700
C3—C121.503 (3)C10—O21.206 (2)
C4—C51.372 (3)C10—N11.389 (2)
C4—H40.9300C11—H11A0.9600
C5—C61.377 (3)C11—H11B0.9600
C5—H50.9300C11—H11C0.9600
C6—H60.9300C12—H12A0.9600
C7—O11.203 (2)C12—H12B0.9600
C7—N11.395 (2)C12—H12C0.9600
C7—C81.503 (3)
C6—C1—C2122.47 (15)H8A—C8—H8B108.8
C6—C1—N1118.25 (15)C10—C9—C8105.92 (15)
C2—C1—N1119.28 (14)C10—C9—H9A110.6
C1—C2—C3117.62 (15)C8—C9—H9A110.6
C1—C2—C11121.38 (15)C10—C9—H9B110.6
C3—C2—C11120.98 (15)C8—C9—H9B110.6
C4—C3—C2119.26 (17)H9A—C9—H9B108.7
C4—C3—C12119.62 (17)O2—C10—N1123.97 (17)
C2—C3—C12121.12 (17)O2—C10—C9128.09 (17)
C5—C4—C3122.07 (17)N1—C10—C9107.93 (15)
C5—C4—H4119.0C2—C11—H11A109.5
C3—C4—H4119.0C2—C11—H11B109.5
C4—C5—C6119.49 (17)H11A—C11—H11B109.5
C4—C5—H5120.3C2—C11—H11C109.5
C6—C5—H5120.3H11A—C11—H11C109.5
C5—C6—C1119.02 (17)H11B—C11—H11C109.5
C5—C6—H6120.5C3—C12—H12A109.5
C1—C6—H6120.5C3—C12—H12B109.5
O1—C7—N1123.82 (16)H12A—C12—H12B109.5
O1—C7—C8128.24 (17)C3—C12—H12C109.5
N1—C7—C8107.95 (15)H12A—C12—H12C109.5
C7—C8—C9105.16 (15)H12B—C12—H12C109.5
C7—C8—H8A110.7C10—N1—C7112.72 (14)
C9—C8—H8A110.7C10—N1—C1124.29 (14)
C7—C8—H8B110.7C7—N1—C1122.92 (14)
C9—C8—H8B110.7
C6—C1—C2—C33.0 (2)C7—C8—C9—C103.9 (2)
N1—C1—C2—C3176.40 (15)C8—C9—C10—O2178.99 (19)
C6—C1—C2—C11175.79 (16)C8—C9—C10—N10.8 (2)
N1—C1—C2—C114.8 (2)O2—C10—N1—C7177.23 (18)
C1—C2—C3—C42.4 (2)C9—C10—N1—C72.9 (2)
C11—C2—C3—C4176.39 (17)O2—C10—N1—C10.2 (3)
C1—C2—C3—C12177.13 (18)C9—C10—N1—C1179.96 (16)
C11—C2—C3—C124.1 (3)O1—C7—N1—C10174.22 (17)
C2—C3—C4—C50.2 (3)C8—C7—N1—C105.5 (2)
C12—C3—C4—C5179.3 (2)O1—C7—N1—C12.9 (3)
C3—C4—C5—C61.5 (3)C8—C7—N1—C1177.41 (15)
C4—C5—C6—C10.9 (3)C6—C1—N1—C1067.5 (2)
C2—C1—C6—C51.4 (3)C2—C1—N1—C10113.08 (19)
N1—C1—C6—C5178.08 (16)C6—C1—N1—C7109.27 (19)
O1—C7—C8—C9174.0 (2)C2—C1—N1—C770.2 (2)
N1—C7—C8—C95.7 (2)

Experimental details

Crystal data
Chemical formulaC12H13NO2
Mr203.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)6.0600 (5), 16.429 (2), 10.593 (1)
β (°) 91.992 (8)
V3)1054.00 (18)
Z4
Radiation typeCu Kα
µ (mm1)0.71
Crystal size (mm)0.40 × 0.20 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2096, 1883, 1472
Rint0.016
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.122, 1.05
No. of reflections1883
No. of parameters139
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91–100.  CAS Google Scholar
First citationSaraswathi, B. S., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaraswathi, B. S., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o881.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds