organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Ethyl-N-phenyl-p-toluene­sulfonamide

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore, Pakistan
*Correspondence e-mail: iukhan.gcu@gmail.com

(Received 23 March 2010; accepted 24 March 2010; online 31 March 2010)

In the title compound, C15H17NO2S, the aromatic rings are oriented at a dihedral angle of 32.8 (1)°. The ethyl group and phenyl ring on the N atom adopt a staggered conformation with respect to the O atoms.

Related literature

For related structures, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o1219.]); Nirmala et al. (2009a[Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009a). Acta Cryst. E65, o3184.],b[Nirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009b). Acta Cryst. E65, o3208.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17NO2S

  • Mr = 275.36

  • Orthorhombic, P b c a

  • a = 14.1248 (6) Å

  • b = 10.4126 (5) Å

  • c = 19.7639 (10) Å

  • V = 2906.8 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.32 × 0.19 × 0.16 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.966

  • 15016 measured reflections

  • 3599 independent reflections

  • 1759 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.157

  • S = 1.00

  • 3597 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In recent literature the crystal structure of simple sulfonamide derivatives have been reported (Gowda et al., 2009) II and (Nirmala et al., 2009a,b) III & IV, which vary to the title compound (I) N-Ethyl-4-methyl-N-phenylbenzenesulfonamide in respect of ethylation at the nitrogen atom of I and substitution of methyl group at phenyl rings of III & IV. The dihedral angles between the both of the phenyl rings of all these four structures are not same as 32.79(0.10)° for I, 68.4 (1)° for II, 49.7 (1)° for III and 56.7 (3)° for IV, which may be due to substitution of alkyl groups at different position in all these molecules. The geometry around the sulphur atom S1 is distorted tertrahedral with the most distortion of 120.13(0.12)° for O1–S1–O2. No suitable hydrogen bonding have been found in the crystal structure of the molecule.

Related literature top

For related structures, see: Gowda et al. (2009); Nirmala et al. (2009a,b).

Experimental top

A mixture of 4-methyl-N-phenylbenzenesulfonamide (500 mg, 2.02 mmol), and sodium hydride (194 mg, 8.08 mmol) in N,N-dimethylformamide (10 ml) was stirred at room temperature for half an hour followed by addition of ethyl iodide (630 mg 4.04 mmol). Stirring was continued further for a period of three hours and the contents were poured over crushed ice. Precipitated product filtered, washed and recrystallized with methanol under slow evaporation for diffraction studies.

Refinement top

All the C—H H-atoms were positioned gemetrically and refined using a riding model with dC–H = 0.93 Å and Uiso(H) = 1.2 Ueq for aromatic (C), with dC–H = 0.96 Å and Uiso(H) = 1.5 Ueq for methyl (C), and with dC–H = 0.97 Å and Uiso(H) = 1.2 Ueq for methylene (C). The two reflections 2 0 0 and 0 0 2 were omitted in final refinement

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The labelled diagram of (I) with 50% probability level of drawn displacement ellipsoids.
[Figure 2] Fig. 2. Unit cell packing for (I) Hydrogen atoms have been omitted for clarity.
N-Ethyl-N-phenyl-p-toluenesulfonamide top
Crystal data top
C15H17NO2SF(000) = 1168
Mr = 275.36Dx = 1.258 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2488 reflections
a = 14.1248 (6) Åθ = 2.6–23.4°
b = 10.4126 (5) ŵ = 0.22 mm1
c = 19.7639 (10) ÅT = 296 K
V = 2906.8 (2) Å3Needle, colorless
Z = 80.32 × 0.19 × 0.16 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3599 independent reflections
Radiation source: fine-focus sealed tube1759 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1810
Tmin = 0.951, Tmax = 0.966k = 1313
15016 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0707P)2 + 0.2464P]
where P = (Fo2 + 2Fc2)/3
3597 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C15H17NO2SV = 2906.8 (2) Å3
Mr = 275.36Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.1248 (6) ŵ = 0.22 mm1
b = 10.4126 (5) ÅT = 296 K
c = 19.7639 (10) Å0.32 × 0.19 × 0.16 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3599 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1759 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.966Rint = 0.045
15016 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
3597 reflectionsΔρmin = 0.31 e Å3
173 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12290 (5)0.31259 (6)0.45059 (3)0.0736 (3)
O10.03439 (13)0.34190 (19)0.48260 (10)0.0982 (6)
O20.14610 (15)0.18289 (15)0.43417 (9)0.0940 (6)
N10.12528 (13)0.39272 (17)0.37947 (10)0.0670 (5)
C10.21256 (17)0.3761 (2)0.50190 (10)0.0605 (6)
C20.19340 (18)0.4774 (2)0.54450 (11)0.0678 (6)
H20.13200.50890.54810.081*
C30.2651 (2)0.5321 (2)0.58177 (12)0.0759 (7)
H30.25140.60040.61050.091*
C40.35649 (19)0.4880 (3)0.57751 (12)0.0739 (7)
C50.3742 (2)0.3868 (3)0.53525 (15)0.0852 (8)
H50.43570.35540.53190.102*
C60.3044 (2)0.3305 (2)0.49782 (13)0.0773 (7)
H60.31860.26170.46960.093*
C70.09842 (18)0.5301 (2)0.38163 (13)0.0760 (7)
H7A0.15440.58250.37490.091*
H7B0.07270.55020.42590.091*
C80.0268 (2)0.5621 (3)0.32876 (15)0.0934 (9)
H8A0.02870.51060.33540.140*
H8B0.05280.54500.28480.140*
H8C0.01030.65130.33200.140*
C90.19267 (18)0.3535 (2)0.32926 (11)0.0625 (6)
C100.2805 (2)0.4097 (2)0.32511 (13)0.0773 (7)
H100.29750.47410.35540.093*
C110.3428 (2)0.3706 (3)0.27619 (15)0.0926 (9)
H110.40220.40860.27350.111*
C120.3186 (3)0.2762 (3)0.23123 (15)0.0975 (10)
H120.36140.25020.19820.117*
C130.2316 (3)0.2209 (3)0.23514 (14)0.0941 (9)
H130.21480.15690.20460.113*
C140.1683 (2)0.2588 (2)0.28389 (13)0.0782 (7)
H140.10900.22040.28630.094*
C150.4350 (2)0.5510 (3)0.61724 (16)0.1138 (11)
H15A0.49070.49820.61540.171*
H15B0.41560.56130.66350.171*
H15C0.44870.63370.59810.171*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0876 (5)0.0553 (4)0.0779 (4)0.0172 (3)0.0110 (4)0.0053 (3)
O10.0785 (13)0.1021 (15)0.1139 (15)0.0314 (10)0.0304 (11)0.0179 (11)
O20.1434 (18)0.0504 (10)0.0881 (12)0.0189 (9)0.0111 (11)0.0017 (8)
N10.0766 (13)0.0560 (11)0.0683 (12)0.0052 (9)0.0052 (10)0.0110 (9)
C10.0756 (17)0.0524 (14)0.0535 (12)0.0029 (11)0.0093 (11)0.0042 (10)
C20.0684 (16)0.0730 (16)0.0621 (14)0.0101 (12)0.0143 (13)0.0062 (12)
C30.087 (2)0.0846 (18)0.0561 (13)0.0084 (14)0.0035 (13)0.0139 (12)
C40.0785 (19)0.0872 (18)0.0561 (13)0.0058 (14)0.0046 (13)0.0069 (13)
C50.080 (2)0.094 (2)0.0811 (18)0.0276 (16)0.0046 (15)0.0030 (15)
C60.097 (2)0.0627 (16)0.0723 (16)0.0241 (14)0.0094 (15)0.0060 (12)
C70.0835 (18)0.0557 (15)0.0887 (17)0.0020 (11)0.0085 (15)0.0107 (12)
C80.100 (2)0.093 (2)0.0877 (19)0.0131 (16)0.0141 (17)0.0042 (15)
C90.0775 (17)0.0494 (12)0.0605 (13)0.0044 (11)0.0115 (12)0.0005 (10)
C100.094 (2)0.0703 (16)0.0677 (15)0.0120 (14)0.0053 (15)0.0000 (12)
C110.090 (2)0.107 (2)0.0802 (19)0.0051 (17)0.0048 (17)0.0132 (18)
C120.117 (3)0.107 (2)0.0684 (19)0.030 (2)0.0103 (18)0.0146 (17)
C130.132 (3)0.082 (2)0.0681 (18)0.0105 (19)0.0103 (19)0.0157 (14)
C140.097 (2)0.0623 (16)0.0749 (17)0.0058 (13)0.0119 (15)0.0113 (13)
C150.099 (2)0.148 (3)0.094 (2)0.008 (2)0.0250 (19)0.006 (2)
Geometric parameters (Å, º) top
S1—O21.4271 (18)C7—H7B0.9700
S1—O11.4339 (19)C8—H8A0.9600
S1—N11.635 (2)C8—H8B0.9600
S1—C11.752 (2)C8—H8C0.9600
N1—C91.434 (3)C9—C101.374 (3)
N1—C71.481 (3)C9—C141.377 (3)
C1—C21.377 (3)C10—C111.370 (4)
C1—C61.384 (3)C10—H100.9300
C2—C31.375 (3)C11—C121.368 (4)
C2—H20.9300C11—H110.9300
C3—C41.373 (3)C12—C131.360 (4)
C3—H30.9300C12—H120.9300
C4—C51.368 (4)C13—C141.372 (4)
C4—C151.509 (4)C13—H130.9300
C5—C61.365 (4)C14—H140.9300
C5—H50.9300C15—H15A0.9600
C6—H60.9300C15—H15B0.9600
C7—C81.492 (3)C15—H15C0.9600
C7—H7A0.9700
O2—S1—O1120.13 (12)H7A—C7—H7B107.9
O2—S1—N1106.42 (10)C7—C8—H8A109.5
O1—S1—N1106.78 (12)C7—C8—H8B109.5
O2—S1—C1108.83 (12)H8A—C8—H8B109.5
O1—S1—C1107.13 (11)C7—C8—H8C109.5
N1—S1—C1106.87 (10)H8A—C8—H8C109.5
C9—N1—C7117.72 (19)H8B—C8—H8C109.5
C9—N1—S1117.59 (15)C10—C9—C14119.5 (3)
C7—N1—S1117.58 (16)C10—C9—N1121.3 (2)
C2—C1—C6118.9 (2)C14—C9—N1119.3 (2)
C2—C1—S1120.07 (19)C11—C10—C9119.7 (3)
C6—C1—S1120.97 (19)C11—C10—H10120.2
C3—C2—C1120.0 (2)C9—C10—H10120.2
C3—C2—H2120.0C12—C11—C10120.8 (3)
C1—C2—H2120.0C12—C11—H11119.6
C4—C3—C2121.4 (2)C10—C11—H11119.6
C4—C3—H3119.3C13—C12—C11119.5 (3)
C2—C3—H3119.3C13—C12—H12120.2
C5—C4—C3117.9 (3)C11—C12—H12120.2
C5—C4—C15121.2 (3)C12—C13—C14120.4 (3)
C3—C4—C15120.9 (3)C12—C13—H13119.8
C6—C5—C4122.0 (3)C14—C13—H13119.8
C6—C5—H5119.0C13—C14—C9120.1 (3)
C4—C5—H5119.0C13—C14—H14120.0
C5—C6—C1119.9 (2)C9—C14—H14120.0
C5—C6—H6120.0C4—C15—H15A109.5
C1—C6—H6120.0C4—C15—H15B109.5
N1—C7—C8111.7 (2)H15A—C15—H15B109.5
N1—C7—H7A109.3C4—C15—H15C109.5
C8—C7—H7A109.3H15A—C15—H15C109.5
N1—C7—H7B109.3H15B—C15—H15C109.5
C8—C7—H7B109.3
O2—S1—N1—C933.36 (19)C15—C4—C5—C6178.5 (3)
O1—S1—N1—C9162.81 (16)C4—C5—C6—C10.2 (4)
C1—S1—N1—C982.81 (18)C2—C1—C6—C50.6 (4)
O2—S1—N1—C7176.76 (17)S1—C1—C6—C5175.9 (2)
O1—S1—N1—C747.31 (19)C9—N1—C7—C880.0 (3)
C1—S1—N1—C767.08 (19)S1—N1—C7—C8130.2 (2)
O2—S1—C1—C2155.91 (18)C7—N1—C9—C1056.3 (3)
O1—S1—C1—C224.6 (2)S1—N1—C9—C1093.6 (2)
N1—S1—C1—C289.5 (2)C7—N1—C9—C14122.9 (2)
O2—S1—C1—C627.6 (2)S1—N1—C9—C1487.2 (2)
O1—S1—C1—C6158.92 (19)C14—C9—C10—C110.3 (4)
N1—S1—C1—C686.9 (2)N1—C9—C10—C11179.5 (2)
C6—C1—C2—C30.4 (3)C9—C10—C11—C120.2 (4)
S1—C1—C2—C3176.14 (18)C10—C11—C12—C130.1 (5)
C1—C2—C3—C40.1 (4)C11—C12—C13—C140.2 (5)
C2—C3—C4—C50.5 (4)C12—C13—C14—C90.1 (4)
C2—C3—C4—C15178.4 (2)C10—C9—C14—C130.2 (4)
C3—C4—C5—C60.3 (4)N1—C9—C14—C13179.4 (2)

Experimental details

Crystal data
Chemical formulaC15H17NO2S
Mr275.36
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)14.1248 (6), 10.4126 (5), 19.7639 (10)
V3)2906.8 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.32 × 0.19 × 0.16
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.951, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
15016, 3599, 1759
Rint0.045
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.157, 1.00
No. of reflections3597
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Footnotes

Current address: Department of Chemistry, Georgetown University, 37th and O St NW, Washington DC 20057-2127 USA.

Acknowledgements

The authors acknowledge the Higher Education Commission (HEC) of Pakistan for providing a grant under the project strengthening the Materials Chemistry Laboratory at GC University Lahore. MNA also acknowledges the HEC for providing a fellowship under the Inter­national Research Support Initiative Program (IRSIP)

References

First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o1219.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009a). Acta Cryst. E65, o3184.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNirmala, P. G., Gowda, B. T., Foro, S. & Fuess, H. (2009b). Acta Cryst. E65, o3208.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds