metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(E)-But-2-enoato-κO]chlorido(2,2′-di­amino-4,4′-bi-1,3-thia­zole-κ2N3,N3′)zinc(II) monohydrate

aDepartment of Chemistry, Shanghai University, People's Republic of China, and bDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 23 March 2010; accepted 24 March 2010; online 27 March 2010)

In the title compound, [Zn(C4H5O2)Cl(C6H6N4S2)]·H2O, the ZnII cation is coordinated by a bidentate diamino­bithia­zole (DABT) ligand, a but-2-enoate anion and a Cl anion in a distorted tetra­hedral geometry. Within the DABT ligand, the two thia­zole rings are twisted to each other at a dihedral angle of 4.38 (10)°. An intra­molecular N—H⋯O inter­action occurs. The centroid–centroid distance of 3.6650 (17) Å and partially overlapped arrangement between nearly parallel thia­zole rings of adjacent complexes indicate the existence of ππ stacking in the crystal structure. Extensive O—H⋯Cl, O—H⋯O, N—H⋯Cl and N—H⋯O hydrogen bonding helps to stabilize the crystal structure.

Related literature

For the potential applications of metal complexes of diamino­bithia­zole in the biological field, see: Waring (1981[Waring, M. J. (1981). Annu. Rev. Biochem. 50, 159-192.]); Fisher et al. (1985[Fisher, L. M., Kurod, R. & Sakai, T. (1985). Biochemistry, 24, 3199-3207.]). For dihedral angles between thia­zole rings in diamino­bithia­zole complexes, see: Du et al. (2010[Du, M., Liu, B.-X., Nie, J.-J. & Xu, D.-J. (2010). Acta Cryst. E66, m343-m344.]); Zhang et al. (2006[Zhang, L.-J., Liu, B.-X., Ge, H.-Q. & Xu, D.-J. (2006). Acta Cryst. E62, m1944-m1945.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C4H5O2)Cl(C6H6N4S2)]·H2O

  • Mr = 402.18

  • Monoclinic, P 21 /n

  • a = 7.2782 (13) Å

  • b = 16.2846 (16) Å

  • c = 13.237 (2) Å

  • β = 99.252 (16)°

  • V = 1548.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.04 mm−1

  • T = 294 K

  • 0.36 × 0.30 × 0.24 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.75, Tmax = 0.88

  • 7862 measured reflections

  • 2735 independent reflections

  • 2293 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.080

  • S = 1.05

  • 2735 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected bond lengths (Å)

Zn—O1 1.961 (2)
Zn—N1 2.029 (2)
Zn—N3 2.060 (2)
Zn—Cl1 2.2223 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯Cl1i 0.86 2.56 3.345 (3) 152
O1W—H1B⋯O1 0.86 2.04 2.859 (4) 160
N2—H2A⋯O2 0.86 2.22 2.959 (4) 144
N2—H2B⋯O1Wii 0.86 2.23 3.032 (4) 154
N4—H4A⋯O1W 0.86 2.30 3.043 (4) 145
N4—H4B⋯Cl1iii 0.86 2.66 3.393 (3) 144
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Some metal complexes with 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have shown the potential application in the biological field (Waring, 1981; Fisher et al., 1985). As a part of serial structural investigation of metal complexes with DABT, the title ZnII complex was prepared in the laboratory and its X-ray structure is presented here.

The molecular structure of the title compound is shown in Fig. 1. The ZnII cation is coordinated by a diaminobithiazole (DABT) ligand, a but-2-enoate anion and a Cl- anion in a distorted tetrahedral geometry (Table 1). Within the DABT ligand the two thiazole rings are twisted to each other at a dihedral angle of 4.38 (10)°, which agrees with 9.51 (17)° found in a PbII complex of DABT (Du et al., 2010) and 9.5 (2)° found in a CdII complex of DABT (Zhang et al., 2006). The partially overlapped arrangement of centroids distance of 3.6650 (17) Å between nearly parallel thiazole rings of the adjacent complexes indicate the existence of π-π stacking in the crystal structure (Fig. 2). The extensive hydrogen bonding help to stabilize the crystal structure (Table 2).

Related literature top

For the potential applications of metal complexes of diaminobithiazole in the biological field, see: Waring (1981); Fisher et al. (1985). For dihedral angles between thiazole rings in diaminobithiazole complexes, see: Du et al. (2010); Zhang et al. (2006).

Experimental top

A water-ethanol solution (20 ml, 1:1) of DABT (0.10 g, 0.5 mmol) and ZnCl2 (0.07 g, 0.5 mmol) was refluxed for 10 min, then an aqueous solution (20 ml) of (E)-but-2-enoatic acid (0.09 g, 1 mmol) and NaOH (0.04 g, 1 mmol) was mixed with the above solution. The mixture was refluxed for 6 h and then filtered. The single crystals of the title compound were obtained from the filtrate after a week.

Refinement top

H atoms of water molecule were located in a difference Fourier map and were refined as riding in as-found relative positions with Uiso(H) = 1.2Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.96 Å (methyl), 0.93 Å (aromatic) and N—H = 0.86 Å, and refined in the riding model with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C,N) for the others.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 40% probability displacement ellipsoids. Dashed lines indicate the hydrogen bonding.
[Figure 2] Fig. 2. The partially overlapped arrangement between thiazole rings showing π-π stacking [symmetry code: (i) 1-x, -y, 1-z].
[(E)-But-2-enoato-κO]chlorido(2,2'-diamino-4,4'-bi-1,3- thiazole-κ2N3,N3')zinc(II) monohydrate top
Crystal data top
[Zn(C4H5O2)Cl(C6H6N4S2)]·H2OF(000) = 816
Mr = 402.18Dx = 1.725 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3446 reflections
a = 7.2782 (13) Åθ = 2.0–24.6°
b = 16.2846 (16) ŵ = 2.04 mm1
c = 13.237 (2) ÅT = 294 K
β = 99.252 (16)°Block, yellow
V = 1548.5 (4) Å30.36 × 0.30 × 0.24 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2735 independent reflections
Radiation source: fine-focus sealed tube2293 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 88
Tmin = 0.75, Tmax = 0.88k = 1219
7862 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0353P)2 + 1.093P]
where P = (Fo2 + 2Fc2)/3
2735 reflections(Δ/σ)max = 0.002
191 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Zn(C4H5O2)Cl(C6H6N4S2)]·H2OV = 1548.5 (4) Å3
Mr = 402.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2782 (13) ŵ = 2.04 mm1
b = 16.2846 (16) ÅT = 294 K
c = 13.237 (2) Å0.36 × 0.30 × 0.24 mm
β = 99.252 (16)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2735 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2293 reflections with I > 2σ(I)
Tmin = 0.75, Tmax = 0.88Rint = 0.026
7862 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.05Δρmax = 0.71 e Å3
2735 reflectionsΔρmin = 0.45 e Å3
191 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.77894 (5)0.12724 (2)0.64617 (2)0.03260 (13)
Cl11.01129 (13)0.21725 (6)0.67179 (7)0.0541 (3)
S10.93933 (12)0.14538 (5)0.65212 (7)0.0433 (2)
S20.56191 (12)0.09881 (5)0.30033 (6)0.0418 (2)
N10.8456 (3)0.00649 (15)0.64140 (17)0.0314 (6)
N20.9835 (4)0.03495 (18)0.8057 (2)0.0483 (7)
H2A0.97370.01340.83050.058*
H2B1.03260.07400.84470.058*
N30.6716 (3)0.10813 (15)0.49432 (17)0.0299 (5)
N40.5365 (4)0.22969 (16)0.4215 (2)0.0444 (7)
H4A0.55080.25450.47960.053*
H4B0.48590.25490.36700.053*
O10.5737 (3)0.15367 (14)0.72007 (17)0.0471 (6)
O20.7729 (4)0.11162 (17)0.8535 (2)0.0630 (7)
O1W0.4071 (4)0.29467 (17)0.6138 (2)0.0726 (8)
H1A0.29090.28350.60790.087*
H1B0.45220.25920.65870.087*
C10.9224 (4)0.04933 (19)0.7066 (2)0.0351 (7)
C20.8373 (4)0.10659 (19)0.5354 (2)0.0396 (8)
H20.81370.13680.47510.047*
C30.7965 (4)0.02684 (18)0.5437 (2)0.0316 (7)
C40.7091 (4)0.02855 (18)0.4637 (2)0.0309 (7)
C50.6607 (4)0.0136 (2)0.3637 (2)0.0386 (7)
H50.67820.03630.33250.046*
C60.5924 (4)0.15275 (19)0.4159 (2)0.0333 (7)
C70.6148 (5)0.1325 (2)0.8138 (3)0.0448 (8)
C80.4511 (6)0.1316 (2)0.8698 (3)0.0541 (9)
H80.33770.15090.83570.065*
C90.4583 (6)0.1061 (2)0.9613 (3)0.0623 (11)
H90.57450.09090.99630.075*
C100.2972 (7)0.0984 (3)1.0172 (3)0.0724 (13)
H10A0.30610.13971.06960.109*
H10B0.29810.04501.04790.109*
H10C0.18340.10570.97020.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.0384 (2)0.0298 (2)0.0298 (2)0.00060 (15)0.00584 (14)0.00417 (15)
Cl10.0597 (6)0.0545 (6)0.0507 (5)0.0236 (4)0.0161 (4)0.0186 (4)
S10.0460 (5)0.0295 (4)0.0551 (5)0.0035 (4)0.0103 (4)0.0042 (4)
S20.0460 (5)0.0489 (5)0.0286 (4)0.0057 (4)0.0004 (3)0.0015 (4)
N10.0353 (14)0.0292 (13)0.0305 (13)0.0011 (11)0.0076 (10)0.0008 (11)
N20.0629 (19)0.0439 (17)0.0357 (15)0.0110 (14)0.0010 (13)0.0064 (13)
N30.0316 (13)0.0310 (13)0.0279 (12)0.0041 (11)0.0069 (10)0.0008 (10)
N40.0572 (18)0.0363 (16)0.0371 (15)0.0029 (13)0.0001 (13)0.0059 (12)
O10.0528 (15)0.0469 (14)0.0449 (14)0.0028 (11)0.0173 (11)0.0083 (11)
O20.0653 (19)0.0609 (17)0.0627 (17)0.0061 (14)0.0103 (14)0.0015 (14)
O1W0.0642 (18)0.072 (2)0.084 (2)0.0139 (15)0.0188 (15)0.0228 (16)
C10.0323 (17)0.0348 (17)0.0397 (18)0.0008 (14)0.0100 (13)0.0035 (14)
C20.046 (2)0.0319 (18)0.0428 (18)0.0028 (14)0.0115 (15)0.0064 (14)
C30.0298 (16)0.0315 (17)0.0353 (16)0.0052 (13)0.0110 (12)0.0043 (13)
C40.0310 (16)0.0304 (16)0.0329 (16)0.0055 (13)0.0098 (12)0.0025 (13)
C50.0449 (19)0.0372 (18)0.0343 (17)0.0060 (15)0.0081 (14)0.0069 (14)
C60.0337 (17)0.0347 (17)0.0309 (16)0.0053 (13)0.0038 (13)0.0006 (13)
C70.056 (2)0.0315 (18)0.050 (2)0.0028 (16)0.0166 (17)0.0093 (16)
C80.062 (2)0.051 (2)0.051 (2)0.0083 (18)0.0151 (18)0.0034 (18)
C90.079 (3)0.050 (2)0.062 (3)0.014 (2)0.022 (2)0.002 (2)
C100.097 (3)0.063 (3)0.069 (3)0.017 (2)0.048 (3)0.011 (2)
Geometric parameters (Å, º) top
Zn—O11.961 (2)O1—C71.275 (4)
Zn—N12.029 (2)O2—C71.234 (4)
Zn—N32.060 (2)O1W—H1A0.8564
Zn—Cl12.2223 (9)O1W—H1B0.8550
S1—C21.723 (3)C2—C31.340 (4)
S1—C11.735 (3)C2—H20.9300
S2—C51.718 (3)C3—C41.457 (4)
S2—C61.747 (3)C4—C51.336 (4)
N1—C11.315 (4)C5—H50.9300
N1—C31.395 (4)C7—C81.502 (5)
N2—C11.336 (4)C8—C91.273 (5)
N2—H2A0.8600C8—H80.9300
N2—H2B0.8600C9—C101.490 (5)
N3—C61.321 (4)C9—H90.9300
N3—C41.398 (4)C10—H10A0.9600
N4—C61.323 (4)C10—H10B0.9600
N4—H4A0.8600C10—H10C0.9600
N4—H4B0.8600
O1—Zn—N1115.69 (10)C2—C3—N1115.2 (3)
O1—Zn—N3108.68 (10)C2—C3—C4128.1 (3)
N1—Zn—N383.01 (9)N1—C3—C4116.7 (2)
O1—Zn—Cl1113.65 (7)C5—C4—N3115.0 (3)
N1—Zn—Cl1117.66 (7)C5—C4—C3128.5 (3)
N3—Zn—Cl1114.11 (7)N3—C4—C3116.5 (2)
C2—S1—C189.60 (15)C4—C5—S2111.1 (2)
C5—S2—C689.66 (15)C4—C5—H5124.5
C1—N1—C3111.0 (2)S2—C5—H5124.5
C1—N1—Zn136.7 (2)N3—C6—N4125.2 (3)
C3—N1—Zn112.28 (18)N3—C6—S2112.9 (2)
C1—N2—H2A120.0N4—C6—S2121.9 (2)
C1—N2—H2B120.0O2—C7—O1123.1 (3)
H2A—N2—H2B120.0O2—C7—C8123.1 (3)
C6—N3—C4111.3 (2)O1—C7—C8113.7 (3)
C6—N3—Zn137.1 (2)C9—C8—C7124.0 (4)
C4—N3—Zn111.23 (18)C9—C8—H8118.0
C6—N4—H4A120.0C7—C8—H8118.0
C6—N4—H4B120.0C8—C9—C10125.8 (4)
H4A—N4—H4B120.0C8—C9—H9117.1
C7—O1—Zn110.3 (2)C10—C9—H9117.1
H1A—O1W—H1B100.6C9—C10—H10A109.5
N1—C1—N2124.2 (3)C9—C10—H10B109.5
N1—C1—S1113.6 (2)H10A—C10—H10B109.5
N2—C1—S1122.1 (2)C9—C10—H10C109.5
C3—C2—S1110.6 (2)H10A—C10—H10C109.5
C3—C2—H2124.7H10B—C10—H10C109.5
S1—C2—H2124.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···Cl1i0.862.563.345 (3)152
O1W—H1B···O10.862.042.859 (4)160
N2—H2A···O20.862.222.959 (4)144
N2—H2B···O1Wii0.862.233.032 (4)154
N4—H4A···O1W0.862.303.043 (4)145
N4—H4B···Cl1iii0.862.663.393 (3)144
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y1/2, z+3/2; (iii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C4H5O2)Cl(C6H6N4S2)]·H2O
Mr402.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)7.2782 (13), 16.2846 (16), 13.237 (2)
β (°) 99.252 (16)
V3)1548.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.04
Crystal size (mm)0.36 × 0.30 × 0.24
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.75, 0.88
No. of measured, independent and
observed [I > 2σ(I)] reflections
7862, 2735, 2293
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.080, 1.05
No. of reflections2735
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.45

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Zn—O11.961 (2)Zn—N32.060 (2)
Zn—N12.029 (2)Zn—Cl12.2223 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···Cl1i0.862.563.345 (3)152
O1W—H1B···O10.862.042.859 (4)160
N2—H2A···O20.862.222.959 (4)144
N2—H2B···O1Wii0.862.233.032 (4)154
N4—H4A···O1W0.862.303.043 (4)145
N4—H4B···Cl1iii0.862.663.393 (3)144
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y1/2, z+3/2; (iii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The project was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDu, M., Liu, B.-X., Nie, J.-J. & Xu, D.-J. (2010). Acta Cryst. E66, m343–m344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFisher, L. M., Kurod, R. & Sakai, T. (1985). Biochemistry, 24, 3199–3207.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaring, M. J. (1981). Annu. Rev. Biochem. 50, 159–192.  CrossRef CAS PubMed Web of Science Google Scholar
First citationZhang, L.-J., Liu, B.-X., Ge, H.-Q. & Xu, D.-J. (2006). Acta Cryst. E62, m1944–m1945.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds