metal-organic compounds
[(E)-But-2-enoato-κO]chlorido(2,2′-diamino-4,4′-bi-1,3-thiazole-κ2N3,N3′)zinc(II) monohydrate
aDepartment of Chemistry, Shanghai University, People's Republic of China, and bDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn
In the title compound, [Zn(C4H5O2)Cl(C6H6N4S2)]·H2O, the ZnII cation is coordinated by a bidentate diaminobithiazole (DABT) ligand, a but-2-enoate anion and a Cl− anion in a distorted tetrahedral geometry. Within the DABT ligand, the two thiazole rings are twisted to each other at a dihedral angle of 4.38 (10)°. An intramolecular N—H⋯O interaction occurs. The centroid–centroid distance of 3.6650 (17) Å and partially overlapped arrangement between nearly parallel thiazole rings of adjacent complexes indicate the existence of π–π stacking in the Extensive O—H⋯Cl, O—H⋯O, N—H⋯Cl and N—H⋯O hydrogen bonding helps to stabilize the crystal structure.
Related literature
For the potential applications of metal complexes of diaminobithiazole in the biological field, see: Waring (1981); Fisher et al. (1985). For dihedral angles between thiazole rings in diaminobithiazole complexes, see: Du et al. (2010); Zhang et al. (2006).
Experimental
Crystal data
|
Refinement
|
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S160053681001113X/ng2750sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681001113X/ng2750Isup2.hkl
A water-ethanol solution (20 ml, 1:1) of DABT (0.10 g, 0.5 mmol) and ZnCl2 (0.07 g, 0.5 mmol) was refluxed for 10 min, then an aqueous solution (20 ml) of (E)-but-2-enoatic acid (0.09 g, 1 mmol) and NaOH (0.04 g, 1 mmol) was mixed with the above solution. The mixture was refluxed for 6 h and then filtered. The single crystals of the title compound were obtained from the filtrate after a week.
H atoms of water molecule were located in a difference Fourier map and were refined as riding in as-found relative positions with Uiso(H) = 1.2Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.96 Å (methyl), 0.93 Å (aromatic) and N—H = 0.86 Å, and refined in the riding model with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C,N) for the others.
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[Zn(C4H5O2)Cl(C6H6N4S2)]·H2O | F(000) = 816 |
Mr = 402.18 | Dx = 1.725 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 3446 reflections |
a = 7.2782 (13) Å | θ = 2.0–24.6° |
b = 16.2846 (16) Å | µ = 2.04 mm−1 |
c = 13.237 (2) Å | T = 294 K |
β = 99.252 (16)° | Block, yellow |
V = 1548.5 (4) Å3 | 0.36 × 0.30 × 0.24 mm |
Z = 4 |
Rigaku R-AXIS RAPID IP diffractometer | 2735 independent reflections |
Radiation source: fine-focus sealed tube | 2293 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ω scans | θmax = 25.0°, θmin = 2.0° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −8→8 |
Tmin = 0.75, Tmax = 0.88 | k = −12→19 |
7862 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0353P)2 + 1.093P] where P = (Fo2 + 2Fc2)/3 |
2735 reflections | (Δ/σ)max = 0.002 |
191 parameters | Δρmax = 0.71 e Å−3 |
0 restraints | Δρmin = −0.45 e Å−3 |
[Zn(C4H5O2)Cl(C6H6N4S2)]·H2O | V = 1548.5 (4) Å3 |
Mr = 402.18 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 7.2782 (13) Å | µ = 2.04 mm−1 |
b = 16.2846 (16) Å | T = 294 K |
c = 13.237 (2) Å | 0.36 × 0.30 × 0.24 mm |
β = 99.252 (16)° |
Rigaku R-AXIS RAPID IP diffractometer | 2735 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2293 reflections with I > 2σ(I) |
Tmin = 0.75, Tmax = 0.88 | Rint = 0.026 |
7862 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.080 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.71 e Å−3 |
2735 reflections | Δρmin = −0.45 e Å−3 |
191 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn | 0.77894 (5) | 0.12724 (2) | 0.64617 (2) | 0.03260 (13) | |
Cl1 | 1.01129 (13) | 0.21725 (6) | 0.67179 (7) | 0.0541 (3) | |
S1 | 0.93933 (12) | −0.14538 (5) | 0.65212 (7) | 0.0433 (2) | |
S2 | 0.56191 (12) | 0.09881 (5) | 0.30033 (6) | 0.0418 (2) | |
N1 | 0.8456 (3) | 0.00649 (15) | 0.64140 (17) | 0.0314 (6) | |
N2 | 0.9835 (4) | −0.03495 (18) | 0.8057 (2) | 0.0483 (7) | |
H2A | 0.9737 | 0.0134 | 0.8305 | 0.058* | |
H2B | 1.0326 | −0.0740 | 0.8447 | 0.058* | |
N3 | 0.6716 (3) | 0.10813 (15) | 0.49432 (17) | 0.0299 (5) | |
N4 | 0.5365 (4) | 0.22969 (16) | 0.4215 (2) | 0.0444 (7) | |
H4A | 0.5508 | 0.2545 | 0.4796 | 0.053* | |
H4B | 0.4859 | 0.2549 | 0.3670 | 0.053* | |
O1 | 0.5737 (3) | 0.15367 (14) | 0.72007 (17) | 0.0471 (6) | |
O2 | 0.7729 (4) | 0.11162 (17) | 0.8535 (2) | 0.0630 (7) | |
O1W | 0.4071 (4) | 0.29467 (17) | 0.6138 (2) | 0.0726 (8) | |
H1A | 0.2909 | 0.2835 | 0.6079 | 0.087* | |
H1B | 0.4522 | 0.2592 | 0.6587 | 0.087* | |
C1 | 0.9224 (4) | −0.04933 (19) | 0.7066 (2) | 0.0351 (7) | |
C2 | 0.8373 (4) | −0.10659 (19) | 0.5354 (2) | 0.0396 (8) | |
H2 | 0.8137 | −0.1368 | 0.4751 | 0.047* | |
C3 | 0.7965 (4) | −0.02684 (18) | 0.5437 (2) | 0.0316 (7) | |
C4 | 0.7091 (4) | 0.02855 (18) | 0.4637 (2) | 0.0309 (7) | |
C5 | 0.6607 (4) | 0.0136 (2) | 0.3637 (2) | 0.0386 (7) | |
H5 | 0.6782 | −0.0363 | 0.3325 | 0.046* | |
C6 | 0.5924 (4) | 0.15275 (19) | 0.4159 (2) | 0.0333 (7) | |
C7 | 0.6148 (5) | 0.1325 (2) | 0.8138 (3) | 0.0448 (8) | |
C8 | 0.4511 (6) | 0.1316 (2) | 0.8698 (3) | 0.0541 (9) | |
H8 | 0.3377 | 0.1509 | 0.8357 | 0.065* | |
C9 | 0.4583 (6) | 0.1061 (2) | 0.9613 (3) | 0.0623 (11) | |
H9 | 0.5745 | 0.0909 | 0.9963 | 0.075* | |
C10 | 0.2972 (7) | 0.0984 (3) | 1.0172 (3) | 0.0724 (13) | |
H10A | 0.3061 | 0.1397 | 1.0696 | 0.109* | |
H10B | 0.2981 | 0.0450 | 1.0479 | 0.109* | |
H10C | 0.1834 | 0.1057 | 0.9702 | 0.109* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn | 0.0384 (2) | 0.0298 (2) | 0.0298 (2) | −0.00060 (15) | 0.00584 (14) | −0.00417 (15) |
Cl1 | 0.0597 (6) | 0.0545 (6) | 0.0507 (5) | −0.0236 (4) | 0.0161 (4) | −0.0186 (4) |
S1 | 0.0460 (5) | 0.0295 (4) | 0.0551 (5) | 0.0035 (4) | 0.0103 (4) | 0.0042 (4) |
S2 | 0.0460 (5) | 0.0489 (5) | 0.0286 (4) | −0.0057 (4) | 0.0004 (3) | −0.0015 (4) |
N1 | 0.0353 (14) | 0.0292 (13) | 0.0305 (13) | −0.0011 (11) | 0.0076 (10) | 0.0008 (11) |
N2 | 0.0629 (19) | 0.0439 (17) | 0.0357 (15) | 0.0110 (14) | 0.0010 (13) | 0.0064 (13) |
N3 | 0.0316 (13) | 0.0310 (13) | 0.0279 (12) | −0.0041 (11) | 0.0069 (10) | −0.0008 (10) |
N4 | 0.0572 (18) | 0.0363 (16) | 0.0371 (15) | 0.0029 (13) | 0.0001 (13) | 0.0059 (12) |
O1 | 0.0528 (15) | 0.0469 (14) | 0.0449 (14) | 0.0028 (11) | 0.0173 (11) | −0.0083 (11) |
O2 | 0.0653 (19) | 0.0609 (17) | 0.0627 (17) | 0.0061 (14) | 0.0103 (14) | −0.0015 (14) |
O1W | 0.0642 (18) | 0.072 (2) | 0.084 (2) | −0.0139 (15) | 0.0188 (15) | −0.0228 (16) |
C1 | 0.0323 (17) | 0.0348 (17) | 0.0397 (18) | −0.0008 (14) | 0.0100 (13) | 0.0035 (14) |
C2 | 0.046 (2) | 0.0319 (18) | 0.0428 (18) | −0.0028 (14) | 0.0115 (15) | −0.0064 (14) |
C3 | 0.0298 (16) | 0.0315 (17) | 0.0353 (16) | −0.0052 (13) | 0.0110 (12) | −0.0043 (13) |
C4 | 0.0310 (16) | 0.0304 (16) | 0.0329 (16) | −0.0055 (13) | 0.0098 (12) | −0.0025 (13) |
C5 | 0.0449 (19) | 0.0372 (18) | 0.0343 (17) | −0.0060 (15) | 0.0081 (14) | −0.0069 (14) |
C6 | 0.0337 (17) | 0.0347 (17) | 0.0309 (16) | −0.0053 (13) | 0.0038 (13) | 0.0006 (13) |
C7 | 0.056 (2) | 0.0315 (18) | 0.050 (2) | −0.0028 (16) | 0.0166 (17) | −0.0093 (16) |
C8 | 0.062 (2) | 0.051 (2) | 0.051 (2) | 0.0083 (18) | 0.0151 (18) | −0.0034 (18) |
C9 | 0.079 (3) | 0.050 (2) | 0.062 (3) | 0.014 (2) | 0.022 (2) | 0.002 (2) |
C10 | 0.097 (3) | 0.063 (3) | 0.069 (3) | 0.017 (2) | 0.048 (3) | 0.011 (2) |
Zn—O1 | 1.961 (2) | O1—C7 | 1.275 (4) |
Zn—N1 | 2.029 (2) | O2—C7 | 1.234 (4) |
Zn—N3 | 2.060 (2) | O1W—H1A | 0.8564 |
Zn—Cl1 | 2.2223 (9) | O1W—H1B | 0.8550 |
S1—C2 | 1.723 (3) | C2—C3 | 1.340 (4) |
S1—C1 | 1.735 (3) | C2—H2 | 0.9300 |
S2—C5 | 1.718 (3) | C3—C4 | 1.457 (4) |
S2—C6 | 1.747 (3) | C4—C5 | 1.336 (4) |
N1—C1 | 1.315 (4) | C5—H5 | 0.9300 |
N1—C3 | 1.395 (4) | C7—C8 | 1.502 (5) |
N2—C1 | 1.336 (4) | C8—C9 | 1.273 (5) |
N2—H2A | 0.8600 | C8—H8 | 0.9300 |
N2—H2B | 0.8600 | C9—C10 | 1.490 (5) |
N3—C6 | 1.321 (4) | C9—H9 | 0.9300 |
N3—C4 | 1.398 (4) | C10—H10A | 0.9600 |
N4—C6 | 1.323 (4) | C10—H10B | 0.9600 |
N4—H4A | 0.8600 | C10—H10C | 0.9600 |
N4—H4B | 0.8600 | ||
O1—Zn—N1 | 115.69 (10) | C2—C3—N1 | 115.2 (3) |
O1—Zn—N3 | 108.68 (10) | C2—C3—C4 | 128.1 (3) |
N1—Zn—N3 | 83.01 (9) | N1—C3—C4 | 116.7 (2) |
O1—Zn—Cl1 | 113.65 (7) | C5—C4—N3 | 115.0 (3) |
N1—Zn—Cl1 | 117.66 (7) | C5—C4—C3 | 128.5 (3) |
N3—Zn—Cl1 | 114.11 (7) | N3—C4—C3 | 116.5 (2) |
C2—S1—C1 | 89.60 (15) | C4—C5—S2 | 111.1 (2) |
C5—S2—C6 | 89.66 (15) | C4—C5—H5 | 124.5 |
C1—N1—C3 | 111.0 (2) | S2—C5—H5 | 124.5 |
C1—N1—Zn | 136.7 (2) | N3—C6—N4 | 125.2 (3) |
C3—N1—Zn | 112.28 (18) | N3—C6—S2 | 112.9 (2) |
C1—N2—H2A | 120.0 | N4—C6—S2 | 121.9 (2) |
C1—N2—H2B | 120.0 | O2—C7—O1 | 123.1 (3) |
H2A—N2—H2B | 120.0 | O2—C7—C8 | 123.1 (3) |
C6—N3—C4 | 111.3 (2) | O1—C7—C8 | 113.7 (3) |
C6—N3—Zn | 137.1 (2) | C9—C8—C7 | 124.0 (4) |
C4—N3—Zn | 111.23 (18) | C9—C8—H8 | 118.0 |
C6—N4—H4A | 120.0 | C7—C8—H8 | 118.0 |
C6—N4—H4B | 120.0 | C8—C9—C10 | 125.8 (4) |
H4A—N4—H4B | 120.0 | C8—C9—H9 | 117.1 |
C7—O1—Zn | 110.3 (2) | C10—C9—H9 | 117.1 |
H1A—O1W—H1B | 100.6 | C9—C10—H10A | 109.5 |
N1—C1—N2 | 124.2 (3) | C9—C10—H10B | 109.5 |
N1—C1—S1 | 113.6 (2) | H10A—C10—H10B | 109.5 |
N2—C1—S1 | 122.1 (2) | C9—C10—H10C | 109.5 |
C3—C2—S1 | 110.6 (2) | H10A—C10—H10C | 109.5 |
C3—C2—H2 | 124.7 | H10B—C10—H10C | 109.5 |
S1—C2—H2 | 124.7 |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···Cl1i | 0.86 | 2.56 | 3.345 (3) | 152 |
O1W—H1B···O1 | 0.86 | 2.04 | 2.859 (4) | 160 |
N2—H2A···O2 | 0.86 | 2.22 | 2.959 (4) | 144 |
N2—H2B···O1Wii | 0.86 | 2.23 | 3.032 (4) | 154 |
N4—H4A···O1W | 0.86 | 2.30 | 3.043 (4) | 145 |
N4—H4B···Cl1iii | 0.86 | 2.66 | 3.393 (3) | 144 |
Symmetry codes: (i) x−1, y, z; (ii) −x+3/2, y−1/2, −z+3/2; (iii) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C4H5O2)Cl(C6H6N4S2)]·H2O |
Mr | 402.18 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 294 |
a, b, c (Å) | 7.2782 (13), 16.2846 (16), 13.237 (2) |
β (°) | 99.252 (16) |
V (Å3) | 1548.5 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.04 |
Crystal size (mm) | 0.36 × 0.30 × 0.24 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID IP diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.75, 0.88 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7862, 2735, 2293 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.080, 1.05 |
No. of reflections | 2735 |
No. of parameters | 191 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.71, −0.45 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···Cl1i | 0.86 | 2.56 | 3.345 (3) | 152 |
O1W—H1B···O1 | 0.86 | 2.04 | 2.859 (4) | 160 |
N2—H2A···O2 | 0.86 | 2.22 | 2.959 (4) | 144 |
N2—H2B···O1Wii | 0.86 | 2.23 | 3.032 (4) | 154 |
N4—H4A···O1W | 0.86 | 2.30 | 3.043 (4) | 145 |
N4—H4B···Cl1iii | 0.86 | 2.66 | 3.393 (3) | 144 |
Symmetry codes: (i) x−1, y, z; (ii) −x+3/2, y−1/2, −z+3/2; (iii) x−1/2, −y+1/2, z−1/2. |
Acknowledgements
The project was supported by the ZIJIN project of Zhejiang University, China.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Du, M., Liu, B.-X., Nie, J.-J. & Xu, D.-J. (2010). Acta Cryst. E66, m343–m344. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fisher, L. M., Kurod, R. & Sakai, T. (1985). Biochemistry, 24, 3199–3207. CrossRef CAS PubMed Web of Science Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Waring, M. J. (1981). Annu. Rev. Biochem. 50, 159–192. CrossRef CAS PubMed Web of Science Google Scholar
Zhang, L.-J., Liu, B.-X., Ge, H.-Q. & Xu, D.-J. (2006). Acta Cryst. E62, m1944–m1945. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Some metal complexes with 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have shown the potential application in the biological field (Waring, 1981; Fisher et al., 1985). As a part of serial structural investigation of metal complexes with DABT, the title ZnII complex was prepared in the laboratory and its X-ray structure is presented here.
The molecular structure of the title compound is shown in Fig. 1. The ZnII cation is coordinated by a diaminobithiazole (DABT) ligand, a but-2-enoate anion and a Cl- anion in a distorted tetrahedral geometry (Table 1). Within the DABT ligand the two thiazole rings are twisted to each other at a dihedral angle of 4.38 (10)°, which agrees with 9.51 (17)° found in a PbII complex of DABT (Du et al., 2010) and 9.5 (2)° found in a CdII complex of DABT (Zhang et al., 2006). The partially overlapped arrangement of centroids distance of 3.6650 (17) Å between nearly parallel thiazole rings of the adjacent complexes indicate the existence of π-π stacking in the crystal structure (Fig. 2). The extensive hydrogen bonding help to stabilize the crystal structure (Table 2).