organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Naphthalene-1,4-di­yl)di­methyl dibenzoate

aDepartment of Chemistry, ZunYi Normal College, ZunYi 563002, People's Republic of China
*Correspondence e-mail: liangyou_xia@126.com

(Received 11 January 2010; accepted 4 March 2010; online 17 March 2010)

In the title compound, C26H20O4, the complete molecule is generated by a crystallographic 2-fold axis and the naphthalene ring system is planar within 0.05 (4) Å. The dihedral angles between the –COO plane, the benzene ring and naphthalene ring system are 12.83 (3) and 12.93 (1)°, respectively. The –COO plane and the benzene ring are almost coplanar, forming a dihedral angle of 2.59 (8)°.

Related literature

For applications of related naphthalene derivatives, see: Fukuzumi et al. (1994[Fukuzumi, T., Tajiri, T., Tsukada, H. & Yoshida, J. (1994). Jpn Patent JP 06 298919.]); Madsen et al. (2002[Madsen, P. et al. (2002). J. Med. Chem. 45, 5755-5775.]); Strey & Voss (1998[Strey, K. & Voss, J. (1998). J. Chem. Res. (S.), pp. 110-111; J. Chem. Res. (M.), pp. 648-682.]); Tsukada et al. (1994[Tsukada, H., Tajiri, T., Fukuzumi, T. & Yoshida, J. (1994). Jpn Patent JP 06 298918.]).

[Scheme 1]

Experimental

Crystal data
  • C26H20O4

  • Mr = 396.42

  • Orthorhombic, F d d 2

  • a = 3.9919 (6) Å

  • b = 60.385 (8) Å

  • c = 16.231 (2) Å

  • V = 3912.5 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.50 × 0.38 × 0.07 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.957, Tmax = 0.994

  • 6343 measured reflections

  • 937 independent reflections

  • 822 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.081

  • S = 1.08

  • 937 reflections

  • 136 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Numerous 1,4-naphthalene derivatives have been synthesized and studied. 1,4-naphthalene derivatives are important intermediates for applications such as monomers in the preparation of polymers (Fukuzumi et al., 1994; Tsukada et al., 1994). The title compound has a 2-fold axis of symmetry passing through the long axis of napthalene (Fig. 1). The naphthalene ring system is planar within 0.05 (4)A°. The dihedral angles of the C1/O1/O2 plane, the C2—C7 ring and naphthalene ring are 12.83 (3)° and 12.93 (1)°, respectively. Molecules of the title compound are closely stacked with a repeat equal to the a-axial dimension.

Related literature top

For applications of related naphthalene derivatives, see: Fukuzumi et al. (1994); Madsen et al. (2002); Strey & Voss (1998); Tsukada et al. (1994).

Experimental top

The title compound was synthesized according to the reported procedure of Strey & Voss (1998) and Madsen et al. (2002). Colourless single crystals suitable for X-ray diffraction were obtained by recrystallization from ethyl acetate.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 and 0.97Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, Uiso(H)= 1.2Ueq(C). In the absence of significant anomalous scattering, Friedel opposites were merged (862 Friedel pairs).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids and the atomic numbering. Symmetry code: A = 1.5 -x,0.5-y, z.
(Naphthalene-1,4-diyl)dimethyl dibenzoate top
Crystal data top
C26H20O4F(000) = 1664
Mr = 396.42Dx = 1.346 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2 dCell parameters from 1789 reflections
a = 3.9919 (6) Åθ = 2.6–25.3°
b = 60.385 (8) ŵ = 0.09 mm1
c = 16.231 (2) ÅT = 296 K
V = 3912.5 (9) Å3Block, colourless
Z = 80.50 × 0.38 × 0.07 mm
Data collection top
Bruker APEXII
diffractometer
937 independent reflections
Radiation source: fine-focus sealed tube822 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 44
Tmin = 0.957, Tmax = 0.994k = 7272
6343 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0506P)2]
where P = (Fo2 + 2Fc2)/3
937 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.10 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C26H20O4V = 3912.5 (9) Å3
Mr = 396.42Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 3.9919 (6) ŵ = 0.09 mm1
b = 60.385 (8) ÅT = 296 K
c = 16.231 (2) Å0.50 × 0.38 × 0.07 mm
Data collection top
Bruker APEXII
diffractometer
937 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
822 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.994Rint = 0.027
6343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.081H-atom parameters constrained
S = 1.08Δρmax = 0.10 e Å3
937 reflectionsΔρmin = 0.15 e Å3
136 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1416 (5)0.16848 (3)0.65497 (12)0.0680 (6)
O20.4250 (4)0.19760 (2)0.60506 (10)0.0507 (4)
C10.2722 (6)0.17767 (3)0.59764 (15)0.0467 (5)
C20.2903 (6)0.16879 (3)0.51236 (15)0.0452 (5)
C30.1552 (6)0.14804 (3)0.49816 (16)0.0556 (7)
H30.05160.14040.54080.067*
C40.1746 (8)0.13876 (4)0.42042 (17)0.0652 (8)
H40.08810.12470.41120.078*
C50.3209 (7)0.15021 (4)0.35675 (18)0.0655 (7)
H50.33020.14400.30440.079*
C60.4533 (7)0.17084 (4)0.37037 (17)0.0611 (7)
H60.55220.17860.32720.073*
C70.4407 (7)0.18018 (4)0.44775 (16)0.0522 (6)
H70.53280.19410.45680.063*
C80.4461 (6)0.20608 (3)0.68748 (14)0.0455 (5)
H8A0.57840.19610.72130.055*
H8B0.22360.20710.71120.055*
C90.6053 (5)0.22851 (3)0.68603 (13)0.0413 (5)
C100.6767 (5)0.23923 (3)0.76281 (14)0.0391 (5)
C110.6072 (6)0.22913 (4)0.83964 (14)0.0474 (6)
H110.51090.21510.84050.057*
C120.6774 (7)0.23935 (4)0.91223 (14)0.0537 (6)
H120.62960.23230.96180.064*
C130.6778 (6)0.23930 (4)0.61428 (14)0.0468 (6)
H130.63140.23240.56430.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0943 (15)0.0554 (11)0.0542 (11)0.0234 (10)0.0100 (11)0.0017 (9)
O20.0665 (11)0.0417 (8)0.0440 (9)0.0096 (7)0.0002 (8)0.0032 (7)
C10.0565 (14)0.0351 (10)0.0486 (13)0.0024 (10)0.0037 (11)0.0034 (11)
C20.0506 (13)0.0390 (11)0.0458 (13)0.0011 (9)0.0074 (10)0.0022 (10)
C30.0679 (17)0.0407 (12)0.0582 (17)0.0059 (11)0.0134 (13)0.0024 (11)
C40.087 (2)0.0445 (13)0.0640 (18)0.0039 (13)0.0223 (15)0.0045 (13)
C50.084 (2)0.0592 (15)0.0538 (15)0.0109 (14)0.0130 (14)0.0110 (14)
C60.0730 (18)0.0615 (16)0.0488 (15)0.0047 (13)0.0000 (13)0.0010 (12)
C70.0627 (15)0.0423 (11)0.0517 (14)0.0017 (11)0.0027 (12)0.0001 (11)
C80.0526 (13)0.0420 (11)0.0418 (13)0.0017 (10)0.0006 (11)0.0024 (11)
C90.0441 (13)0.0398 (11)0.0399 (13)0.0027 (9)0.0010 (10)0.0006 (10)
C100.0412 (11)0.0398 (10)0.0362 (11)0.0054 (9)0.0006 (10)0.0003 (10)
C110.0558 (15)0.0422 (11)0.0442 (13)0.0007 (10)0.0014 (12)0.0053 (11)
C120.0667 (17)0.0573 (14)0.0371 (13)0.0034 (11)0.0039 (12)0.0064 (10)
C130.0598 (14)0.0445 (11)0.0362 (12)0.0047 (10)0.0032 (11)0.0040 (10)
Geometric parameters (Å, º) top
O1—C11.202 (3)C7—H70.9300
O2—C11.354 (3)C8—C91.496 (3)
O2—C81.435 (3)C8—H8A0.9700
C1—C21.486 (3)C8—H8B0.9700
C2—C31.384 (3)C9—C131.365 (3)
C2—C71.390 (3)C9—C101.433 (3)
C3—C41.383 (4)C10—C111.416 (3)
C3—H30.9300C10—C10i1.426 (4)
C4—C51.374 (4)C11—C121.359 (3)
C4—H40.9300C11—H110.9300
C5—C61.371 (4)C12—C12i1.410 (5)
C5—H50.9300C12—H120.9300
C6—C71.378 (4)C13—C13i1.415 (4)
C6—H60.9300C13—H130.9300
C1—O2—C8115.25 (18)O2—C8—C9109.48 (18)
O1—C1—O2122.4 (2)O2—C8—H8A109.8
O1—C1—C2125.1 (2)C9—C8—H8A109.8
O2—C1—C2112.43 (19)O2—C8—H8B109.8
C3—C2—C7119.4 (2)C9—C8—H8B109.8
C3—C2—C1117.6 (2)H8A—C8—H8B108.2
C7—C2—C1123.03 (19)C13—C9—C10118.96 (18)
C4—C3—C2119.8 (2)C13—C9—C8122.36 (19)
C4—C3—H3120.1C10—C9—C8118.67 (18)
C2—C3—H3120.1C11—C10—C10i118.26 (12)
C5—C4—C3120.4 (2)C11—C10—C9122.17 (17)
C5—C4—H4119.8C10i—C10—C9119.57 (11)
C3—C4—H4119.8C12—C11—C10121.8 (2)
C6—C5—C4120.0 (3)C12—C11—H11119.1
C6—C5—H5120.0C10—C11—H11119.1
C4—C5—H5120.0C11—C12—C12i119.92 (13)
C5—C6—C7120.3 (3)C11—C12—H12120.0
C5—C6—H6119.8C12i—C12—H12120.0
C7—C6—H6119.8C9—C13—C13i121.47 (12)
C6—C7—C2120.1 (2)C9—C13—H13119.3
C6—C7—H7120.0C13i—C13—H13119.3
C2—C7—H7120.0
C8—O2—C1—O15.3 (3)C1—C2—C7—C6179.0 (2)
C8—O2—C1—C2174.01 (19)C1—O2—C8—C9177.40 (18)
O1—C1—C2—C32.0 (4)O2—C8—C9—C136.7 (3)
O2—C1—C2—C3177.2 (2)O2—C8—C9—C10174.77 (18)
O1—C1—C2—C7179.2 (3)C13—C9—C10—C11179.7 (2)
O2—C1—C2—C71.6 (3)C8—C9—C10—C111.2 (3)
C7—C2—C3—C40.8 (4)C13—C9—C10—C10i0.4 (3)
C1—C2—C3—C4178.1 (2)C8—C9—C10—C10i179.0 (2)
C2—C3—C4—C51.4 (4)C10i—C10—C11—C120.2 (4)
C3—C4—C5—C61.0 (4)C9—C10—C11—C12179.7 (2)
C4—C5—C6—C70.0 (4)C10—C11—C12—C12i0.2 (5)
C5—C6—C7—C20.6 (4)C10—C9—C13—C13i0.2 (4)
C3—C2—C7—C60.2 (4)C8—C9—C13—C13i178.7 (3)
Symmetry code: (i) x+3/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC26H20O4
Mr396.42
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)296
a, b, c (Å)3.9919 (6), 60.385 (8), 16.231 (2)
V3)3912.5 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.38 × 0.07
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.957, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
6343, 937, 822
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 1.08
No. of reflections937
No. of parameters136
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.10, 0.15

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Science and Technology Foundation of Zunyi City of China (No. 200723)

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFukuzumi, T., Tajiri, T., Tsukada, H. & Yoshida, J. (1994). Jpn Patent JP 06 298919.  Google Scholar
First citationMadsen, P. et al. (2002). J. Med. Chem. 45, 5755–5775.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrey, K. & Voss, J. (1998). J. Chem. Res. (S.), pp. 110–111; J. Chem. Res. (M.), pp. 648–682.  Google Scholar
First citationTsukada, H., Tajiri, T., Fukuzumi, T. & Yoshida, J. (1994). Jpn Patent JP 06 298918.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds