organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(2-hy­droxy­acetamido)benzoate

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, and bInorganic Chemistry, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden
*Correspondence e-mail: sadaf03_2000@yahoo.com

(Received 19 January 2010; accepted 12 March 2010; online 24 March 2010)

The title compound, C10H11NO4, was formed from 4,1-benzoxazepine-2,5(1H,3H)-dione and ammonia gas. Intra­molecular hydrogen bonding is present between the amide N—H group and the carbonyl O atom of the ester group. The crystal structure features inter­molecular O—H⋯O hydrogen bonds.

Related literature

For the pharmagological activity of different quinazolinones, see: Kenichi et al. (1985[Kenichi, O., Yoshihisa, Y., Toyonari, O., Toru, I. & Yoshio, I. (1985). J. Med. Chem. 28, 568-576.]); Lyle (1985a[Lyle, F. R. (1985a). US Patent 5 973 257.],b[Lyle, F. R. (1985b). Chem. Abstr. 65, 2870.]); Mhaske & Argade (2006[Mhaske, S. B. & Argade, N. P. (2006). Tetrahedron, 62, 9787-9826.]); Xia et al. (2001[Xia, Y., Yang, Z. Y., Hour, M. J., Kuo, S. C., Xia, P., Bastow, K. F., Nakanishi, Y., Nampoothiri, P., Hackl, T., Hamel, E. & Lee, K. H. (2001). Bioorg. Med. Chem. Lett. 11, 1193-1196.]). For details of the synthesis, see: Iacobelli et al. (1965[Iacobelli, J., Uskokovic, M. & Wenner, W. (1965). J. Heterocycl. Chem, 2, 323-325.]); Uskokovic et al. (1964[Uskokovic, M., Iacobelli, J., Toome, V. & Wenner, W. (1964). J. Org. Chem. 29, 582-584.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11NO4

  • Mr = 209.20

  • Orthorhombic, P 21 21 21

  • a = 3.938 (2) Å

  • b = 8.808 (4) Å

  • c = 27.94 (4) Å

  • V = 969.1 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 299 K

  • 0.60 × 0.13 × 0.07 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 7794 measured reflections

  • 1107 independent reflections

  • 846 reflections with I > 2σ(I)

  • Rint = 0.104

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.127

  • S = 1.12

  • 1107 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3 0.90 1.95 2.669 (4) 136
O1—H1⋯O2i 0.90 1.91 2.758 (4) 157
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

4,1-Benzoxazepin-2,5-diones are synthetic heterocyclic compounds that can be converted to quinazolinones which have a broad range of pharmacological activities (Xia et al., 2001; Kenichi et al., 1985; Lyle, 1985a,b; Mhaske & Argade, 2006). The title compound (I) (Fig. 1) was formed in a ring-cleaving reaction of 4,1-benzoxazepin-2,5-dione and gaseous ammonia (Fig. 2), instead of the expected ring contraction product i.e.quinazolinone. The crystal packing of the title compound is stabilized by intermolecular O–H···O bonding. Additionally, intramolecular N–H···O bonds are present.

Related literature top

For the pharmagological activity of different quinazolinones, see: Kenichi et al. (1985); Lyle (1985a,b); Mhaske & Argade (2006); Xia et al. (2001). For synthetic details, see: Iacobelli et al. (1965); Uskokovic et al. (1964).

Experimental top

4,1-benzoxazepin-2,5(1H,3H)-dione was prepared from the corresponding 2-[(2-chloroethanoyl)amino]benzoic acid (Iacobelli et al., 1965). Ammonia gas was passed through the suspension of 4,1-benzoxazepin-2,5(1H,3H)-dione (3 g, 0.0169 mole) in dry methanol (400 ml) for three hours and kept at room temperature for seven days. After workup according to reported procedure (Uskokovic et al., 1964) the residue was collected and recrystallized from methanol to give the title compound (I), m.p. 161 °C, yield 31%, Rf 0.76 acetone / benzene (3:7). The undissolved part was recrystallized from hot water to give 2-(1-hydroxymethyl)-4(3H)-quinazolinone, m.p. 214 °C; yield 16%, Rf 0.35 acetone / benzene (3:7).

Refinement top

Due to the absence of significant anomalous dispersion, 662 Friedel pairs were merged prior to refinement. H atoms attached to the phenyl group and the methylene group were located in the Fourier map (C–H=0.98–1.04 Å (aromatic), C–H=0.96–1.06 Å (methylene)). All other H atoms were placed at calculated positions (C–H = 0.96 (methyl), N – H=0.90 Å, O–H = 0.90 Å). All atoms were refined as riding on the respective carrier atom.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot.
[Figure 2] Fig. 2. The prepapration of the title compound.
Methyl 2-(2-hydroxyacetamido)benzoate top
Crystal data top
C10H11NO4F(000) = 440
Mr = 209.20Dx = 1.434 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 20 reflections
a = 3.938 (2) Åθ = 5.9–19.1°
b = 8.808 (4) ŵ = 0.11 mm1
c = 27.94 (4) ÅT = 299 K
V = 969.1 (15) Å3Needle, colourless
Z = 40.60 × 0.13 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.104
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 4.6°
ϕ and ω scansh = 44
7794 measured reflectionsk = 1010
1107 independent reflectionsl = 3333
846 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.4762P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
1107 reflectionsΔρmax = 0.18 e Å3
137 parametersΔρmin = 0.21 e Å3
0 restraints
Crystal data top
C10H11NO4V = 969.1 (15) Å3
Mr = 209.20Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 3.938 (2) ŵ = 0.11 mm1
b = 8.808 (4) ÅT = 299 K
c = 27.94 (4) Å0.60 × 0.13 × 0.07 mm
Data collection top
Nonius KappaCCD
diffractometer
846 reflections with I > 2σ(I)
7794 measured reflectionsRint = 0.104
1107 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.12Δρmax = 0.18 e Å3
1107 reflectionsΔρmin = 0.21 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9247 (10)0.4009 (4)0.09627 (12)0.0331 (9)
C21.0237 (11)0.3866 (4)0.04884 (13)0.0425 (10)
C31.1821 (12)0.5015 (5)0.02483 (13)0.0467 (11)
C41.2470 (12)0.6356 (5)0.04868 (14)0.0468 (11)
C51.1577 (11)0.6541 (4)0.09563 (13)0.0421 (10)
C60.9931 (9)0.5380 (4)0.12037 (12)0.0338 (9)
C70.9656 (11)0.6678 (4)0.19938 (13)0.0382 (10)
C80.8338 (11)0.6424 (4)0.24887 (13)0.0429 (10)
C90.7492 (10)0.2746 (4)0.12057 (13)0.0368 (9)
C100.5821 (14)0.0186 (4)0.11595 (17)0.0627 (14)
N10.8981 (9)0.5541 (3)0.16834 (10)0.0367 (8)
O10.6276 (7)0.5119 (3)0.25294 (8)0.0482 (8)
O21.1235 (9)0.7833 (3)0.18947 (9)0.0545 (9)
O30.6172 (9)0.2797 (3)0.15945 (10)0.0546 (8)
O40.7495 (8)0.1475 (3)0.09478 (9)0.0529 (8)
H20.96310.29430.03120.051*
H31.25680.48540.01040.056*
H41.38790.71480.03170.056*
H51.20630.75590.11210.051*
H8A0.68600.73780.25950.051*
H8B1.02390.62570.26950.051*
H10A0.70490.01320.14390.075*
H10B0.57490.06310.09320.075*
H10C0.35480.04620.12480.075*
H1N0.74020.48620.17740.044*
H10.74630.43320.26470.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.038 (2)0.0260 (18)0.0351 (17)0.0004 (18)0.0033 (18)0.0036 (15)
C20.050 (3)0.037 (2)0.041 (2)0.002 (2)0.003 (2)0.0059 (17)
C30.055 (3)0.049 (2)0.0360 (18)0.002 (2)0.004 (2)0.002 (2)
C40.052 (3)0.043 (2)0.045 (2)0.005 (2)0.005 (2)0.0112 (19)
C50.050 (3)0.032 (2)0.044 (2)0.008 (2)0.002 (2)0.0064 (18)
C60.033 (2)0.034 (2)0.0344 (17)0.0008 (18)0.0028 (17)0.0025 (16)
C70.042 (2)0.0298 (19)0.043 (2)0.002 (2)0.0050 (18)0.0055 (17)
C80.046 (2)0.040 (2)0.0422 (19)0.005 (2)0.001 (2)0.0041 (18)
C90.039 (2)0.0304 (19)0.0405 (19)0.0024 (19)0.005 (2)0.0016 (17)
C100.075 (4)0.030 (2)0.083 (3)0.015 (3)0.006 (3)0.001 (2)
N10.0444 (19)0.0288 (15)0.0370 (15)0.0097 (17)0.0031 (16)0.0025 (13)
O10.060 (2)0.0346 (14)0.0502 (14)0.0024 (16)0.0045 (16)0.0060 (13)
O20.079 (2)0.0317 (14)0.0528 (15)0.0158 (18)0.0039 (17)0.0075 (13)
O30.079 (2)0.0363 (14)0.0487 (15)0.0143 (18)0.0146 (17)0.0024 (13)
O40.073 (2)0.0281 (14)0.0577 (16)0.0129 (15)0.0110 (17)0.0084 (13)
Geometric parameters (Å, º) top
C1—C21.387 (5)C9—O41.331 (4)
C1—C61.409 (5)C10—O41.440 (5)
C1—C91.475 (5)C2—H20.9802
C2—C31.365 (5)C3—H31.0375
C3—C41.380 (6)C4—H41.0097
C4—C51.368 (5)C5—H51.0250
C5—C61.394 (5)C8—H8A1.0646
C6—N11.399 (5)C8—H8B0.9558
C7—O21.224 (4)C10—H10A0.9600
C7—N11.351 (5)C10—H10B0.9600
C7—C81.493 (5)C10—H10C0.9600
C8—O11.412 (5)N1—H1N0.8989
C9—O31.205 (4)O1—H10.8986
C2—C1—C6118.7 (3)C2—C3—H3119.7
C2—C1—C9120.2 (3)C4—C3—H3121.5
C6—C1—C9121.1 (3)C5—C4—H4120.6
C3—C2—C1122.1 (4)C3—C4—H4117.8
C2—C3—C4118.8 (3)C4—C5—H5119.0
C5—C4—C3121.1 (4)C6—C5—H5120.4
C4—C5—C6120.5 (4)O1—C8—H8A107.8
C5—C6—N1121.7 (3)C7—C8—H8A109.4
C5—C6—C1118.8 (3)O1—C8—H8B106.0
N1—C6—C1119.5 (3)C7—C8—H8B108.0
O2—C7—N1124.8 (3)H8A—C8—H8B112.4
O2—C7—C8120.7 (3)O4—C10—H10A109.5
N1—C7—C8114.5 (3)O4—C10—H10B109.5
O1—C8—C7113.3 (3)H10A—C10—H10B109.5
O3—C9—O4121.4 (3)O4—C10—H10C109.5
O3—C9—C1126.0 (3)H10A—C10—H10C109.5
O4—C9—C1112.6 (3)H10B—C10—H10C109.5
C7—N1—C6129.6 (3)C7—N1—H1N116.6
C9—O4—C10116.1 (3)C6—N1—H1N112.8
C3—C2—H2118.6C8—O1—H1111.0
C1—C2—H2119.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.901.952.669 (4)136
O1—H1···O2i0.901.912.758 (4)157
Symmetry code: (i) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H11NO4
Mr209.20
Crystal system, space groupOrthorhombic, P212121
Temperature (K)299
a, b, c (Å)3.938 (2), 8.808 (4), 27.94 (4)
V3)969.1 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.60 × 0.13 × 0.07
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7794, 1107, 846
Rint0.104
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.127, 1.12
No. of reflections1107
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: COLLECT (Nonius, 1999), DIRAX (Duisenberg, 1992), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.901.952.669 (4)136
O1—H1···O2i0.901.912.758 (4)157
Symmetry code: (i) x+2, y1/2, z+1/2.
 

Acknowledgements

NK is grateful to the Pakistan Science Foundation for financial assistance for the research work. The Swedish Research Council (VR) is acknowledged for providing funding for the diffractometer.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIacobelli, J., Uskokovic, M. & Wenner, W. (1965). J. Heterocycl. Chem, 2, 323–325.  CrossRef CAS Google Scholar
First citationKenichi, O., Yoshihisa, Y., Toyonari, O., Toru, I. & Yoshio, I. (1985). J. Med. Chem. 28, 568–576.  PubMed Web of Science Google Scholar
First citationLyle, F. R. (1985a). US Patent 5 973 257.  Google Scholar
First citationLyle, F. R. (1985b). Chem. Abstr. 65, 2870.  Google Scholar
First citationMhaske, S. B. & Argade, N. P. (2006). Tetrahedron, 62, 9787–9826.  Web of Science CrossRef CAS Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUskokovic, M., Iacobelli, J., Toome, V. & Wenner, W. (1964). J. Org. Chem. 29, 582–584.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationXia, Y., Yang, Z. Y., Hour, M. J., Kuo, S. C., Xia, P., Bastow, K. F., Nakanishi, Y., Nampoothiri, P., Hackl, T., Hamel, E. & Lee, K. H. (2001). Bioorg. Med. Chem. Lett. 11, 1193–1196.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds