organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Cyclo­hexyl-4-meth­yl-N-propyl­benzene­sulfonamide

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore, Pakistan
*Correspondence e-mail: iukhan.gcu@gmail.com

(Received 10 February 2010; accepted 22 February 2010; online 3 March 2010)

The title compound, C16H25NO2S, is a sulfonamide derivative with the substitution of propyl and cyclo­hexyl groups at the N atom. The least-squares plane through all six C atoms of the cyclo­hexyl ring forms a dihedral angle of 58.88 (12)° with the toluene ring. No hydrogen-bonding inter­actions are present in the crystal structure.

Related literature

For the synthesis and related structures, see: Haider et al. (2009[Haider, Z., Khan, I. U., Zia-ur-Rehman, M. & Arshad, M. N. (2009). Acta Cryst. E65, o3165.], 2010[Haider, Z., Arshad, M. N., Simpson, J., Khan, I. U. & Shafiq, M. (2010). Acta Cryst. E66, o102.]).

[Scheme 1]

Experimental

Crystal data
  • C16H25NO2S

  • Mr = 295.43

  • Monoclinic, P 21 /n

  • a = 7.8207 (5) Å

  • b = 25.2915 (16) Å

  • c = 8.3135 (6) Å

  • β = 102.411 (3)°

  • V = 1605.96 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 296 K

  • 0.16 × 0.08 × 0.06 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.988

  • 12946 measured reflections

  • 3004 independent reflections

  • 1271 reflections with I > 2σ(I)

  • Rint = 0.124

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.128

  • S = 0.90

  • 3003 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I) is an analogue to the structures (II) and (III) already published by our group (Haider et al., 2009, 2010). The cyclohexyl ring adopts the chair form, and it is orientented with the least-squares plane of all six carbon atoms at the dihedral angle of 58.88 (12)° with respect to the aromatic ring. This angle compares well with the analogous angle in (III) (59.92 (6)°) but differs slightly from that found in (II) (50.13 (9)°). Likewise, in the title compound (see Fig. 2) and in (II), no hydrogen bonding interaction was observed in the structure.

Related literature top

For the synthesis and related structures, see: Haider et al. (2009, 2010).

Experimental top

A mixture of N-cyclohexyl-4-methyl benzene sulfonamide (1.089 g, 4.3 mmol), and sodium hydride (0.21 g, 8.6 mmol) in N, N-dimethylformamide (10 ml) was stirred at room temperature for half an hour followed by addition of propyl iodode ( 8.6 mmol). Stirring was continued further for a period of three hours and the contents were poured over crushed ice. The precipitated product was isolated, washed and crystallized from methanol solution by slow evaporation.

Refinement top

The C—H H-atoms were positioned gemetrically and were refined using a riding model with C–H = 0.93 Å and Uiso(H) = 1.2 Ueq for aromatic (C), with C–H = 0.97 Å and Uiso(H) = 1.2 Ueq for methylene (C), and with C–H = 0.98 Å and Uiso(H) = 1.2 Ueq for (C7). The low angle reflection (0 2 0) was omitted in the final refinement and the H-atoms for methyl (C13) were refined at two positions using the HFIX 127 command in SHELXL97 with C–H = 0.96 Å and Uiso(H) = 1.5 Ueq for (C13).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The labelled diagram of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Unit cell packing for (I).
N-Cyclohexyl-4-methyl-N-propylbenzenesulfonamide top
Crystal data top
C16H25NO2SF(000) = 640
Mr = 295.43Dx = 1.222 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 856 reflections
a = 7.8207 (5) Åθ = 2.6–17.1°
b = 25.2915 (16) ŵ = 0.20 mm1
c = 8.3135 (6) ÅT = 296 K
β = 102.411 (3)°Needle, colorless
V = 1605.96 (19) Å30.16 × 0.08 × 0.06 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3004 independent reflections
Radiation source: fine-focus sealed tube1271 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.124
ϕ and ω scansθmax = 25.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.980, Tmax = 0.988k = 3030
12946 measured reflectionsl = 810
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0333P)2 + 0.8827P]
where P = (Fo2 + 2Fc2)/3
3003 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H25NO2SV = 1605.96 (19) Å3
Mr = 295.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8207 (5) ŵ = 0.20 mm1
b = 25.2915 (16) ÅT = 296 K
c = 8.3135 (6) Å0.16 × 0.08 × 0.06 mm
β = 102.411 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3004 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1271 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.988Rint = 0.124
12946 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 0.90Δρmax = 0.17 e Å3
3003 reflectionsΔρmin = 0.23 e Å3
183 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.12769 (14)0.12574 (4)0.82665 (13)0.0507 (3)
O10.1615 (4)0.15917 (11)0.9551 (3)0.0687 (9)
O20.2485 (3)0.08478 (11)0.7610 (3)0.0626 (8)
N10.0618 (4)0.09828 (12)0.8964 (4)0.0444 (8)
C10.1095 (5)0.16743 (15)0.6605 (5)0.0410 (10)
C20.0304 (5)0.21596 (16)0.6879 (5)0.0570 (12)
H20.00790.22830.79500.068*
C30.0076 (5)0.24655 (16)0.5559 (6)0.0583 (12)
H30.04770.27920.57610.070*
C40.0647 (5)0.22991 (16)0.3951 (5)0.0475 (11)
C50.1461 (5)0.18147 (16)0.3710 (5)0.0510 (11)
H50.18800.16950.26390.061*
C60.1676 (5)0.14986 (15)0.5021 (5)0.0464 (11)
H60.22110.11700.48240.056*
C70.1201 (5)0.05534 (15)0.7993 (5)0.0479 (11)
H70.01460.03880.73370.058*
C80.2179 (5)0.01308 (14)0.9125 (5)0.0559 (12)
H8A0.14480.00020.98470.067*
H8B0.32300.02820.98040.067*
C90.2676 (6)0.03285 (16)0.8126 (6)0.0709 (14)
H9A0.33440.05870.88670.085*
H9B0.16200.05000.75250.085*
C100.3749 (6)0.01397 (16)0.6925 (5)0.0611 (13)
H10A0.39950.04360.62690.073*
H10B0.48570.00000.75310.073*
C110.2786 (6)0.02856 (18)0.5800 (5)0.0739 (14)
H11A0.17370.01370.51100.089*
H11B0.35260.04160.50890.089*
C120.2289 (6)0.07402 (16)0.6810 (5)0.0654 (13)
H12A0.33460.09080.74230.078*
H12B0.16350.10020.60730.078*
C130.0380 (6)0.26366 (17)0.2532 (5)0.0729 (14)
H13A0.02740.29470.29490.109*0.50
H13B0.14970.27390.18780.109*0.50
H13C0.02540.24390.18650.109*0.50
H13D0.09200.24700.15120.109*0.50
H13E0.08510.26780.25830.109*0.50
H13F0.09000.29780.25970.109*0.50
C140.1931 (5)0.12873 (15)1.0130 (4)0.0508 (11)
H14A0.16500.16600.99870.061*
H14B0.30670.12330.98660.061*
C150.2050 (5)0.11426 (15)1.1910 (5)0.0560 (12)
H15A0.23650.07721.20700.067*
H15B0.09130.11911.21790.067*
C160.3390 (6)0.14751 (16)1.3061 (5)0.0729 (14)
H16A0.45100.14381.27740.109*
H16B0.34730.13591.41740.109*
H16C0.30380.18391.29650.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0461 (7)0.0630 (7)0.0445 (7)0.0111 (7)0.0127 (5)0.0063 (6)
O10.076 (2)0.086 (2)0.050 (2)0.0307 (17)0.0248 (16)0.0003 (16)
O20.0441 (18)0.072 (2)0.071 (2)0.0052 (16)0.0099 (15)0.0123 (16)
N10.042 (2)0.053 (2)0.036 (2)0.0063 (17)0.0035 (16)0.0006 (16)
C10.041 (3)0.044 (2)0.038 (3)0.005 (2)0.006 (2)0.004 (2)
C20.067 (3)0.054 (3)0.044 (3)0.002 (2)0.002 (2)0.013 (2)
C30.066 (3)0.042 (3)0.061 (3)0.007 (2)0.002 (3)0.002 (2)
C40.042 (3)0.051 (3)0.048 (3)0.006 (2)0.007 (2)0.007 (2)
C50.059 (3)0.054 (3)0.036 (3)0.003 (2)0.002 (2)0.001 (2)
C60.047 (3)0.044 (2)0.045 (3)0.005 (2)0.004 (2)0.004 (2)
C70.044 (3)0.060 (3)0.041 (3)0.004 (2)0.010 (2)0.000 (2)
C80.063 (3)0.053 (3)0.058 (3)0.004 (2)0.027 (2)0.013 (2)
C90.073 (4)0.052 (3)0.097 (4)0.005 (3)0.040 (3)0.000 (3)
C100.056 (3)0.058 (3)0.073 (3)0.002 (2)0.024 (3)0.009 (2)
C110.070 (4)0.100 (4)0.057 (3)0.019 (3)0.026 (3)0.002 (3)
C120.072 (3)0.073 (3)0.058 (3)0.026 (3)0.028 (3)0.023 (2)
C130.074 (3)0.075 (3)0.070 (3)0.007 (3)0.016 (3)0.016 (3)
C140.052 (3)0.054 (3)0.046 (3)0.006 (2)0.007 (2)0.004 (2)
C150.060 (3)0.064 (3)0.043 (3)0.003 (2)0.008 (2)0.002 (2)
C160.089 (4)0.075 (3)0.048 (3)0.011 (3)0.001 (3)0.004 (2)
Geometric parameters (Å, º) top
S1—O21.429 (3)C9—H9B0.9700
S1—O11.430 (3)C10—C111.516 (5)
S1—N11.627 (3)C10—H10A0.9700
S1—C11.767 (4)C10—H10B0.9700
N1—C141.469 (4)C11—C121.522 (5)
N1—C71.482 (4)C11—H11A0.9700
C1—C21.371 (5)C11—H11B0.9700
C1—C61.372 (5)C12—H12A0.9700
C2—C31.385 (5)C12—H12B0.9700
C2—H20.9300C13—H13A0.9600
C3—C41.381 (5)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C51.375 (5)C13—H13D0.9600
C4—C131.507 (5)C13—H13E0.9600
C5—C61.391 (5)C13—H13F0.9600
C5—H50.9300C14—C151.507 (5)
C6—H60.9300C14—H14A0.9700
C7—C121.508 (5)C14—H14B0.9700
C7—C81.518 (5)C15—C161.513 (5)
C7—H70.9800C15—H15A0.9700
C8—C91.526 (5)C15—H15B0.9700
C8—H8A0.9700C16—H16A0.9600
C8—H8B0.9700C16—H16B0.9600
C9—C101.513 (5)C16—H16C0.9600
C9—H9A0.9700
O2—S1—O1120.02 (18)C10—C11—C12110.3 (4)
O2—S1—N1107.69 (17)C10—C11—H11A109.6
O1—S1—N1106.65 (17)C12—C11—H11A109.6
O2—S1—C1106.95 (18)C10—C11—H11B109.6
O1—S1—C1106.83 (18)C12—C11—H11B109.6
N1—S1—C1108.25 (16)H11A—C11—H11B108.1
C14—N1—C7119.4 (3)C7—C12—C11111.7 (4)
C14—N1—S1117.7 (2)C7—C12—H12A109.3
C7—N1—S1118.8 (3)C11—C12—H12A109.3
C2—C1—C6119.6 (4)C7—C12—H12B109.3
C2—C1—S1120.9 (3)C11—C12—H12B109.3
C6—C1—S1119.4 (3)H12A—C12—H12B107.9
C1—C2—C3119.9 (4)C4—C13—H13A109.5
C1—C2—H2120.0C4—C13—H13B109.5
C3—C2—H2120.0H13A—C13—H13B109.5
C4—C3—C2121.8 (4)C4—C13—H13C109.5
C4—C3—H3119.1H13A—C13—H13C109.5
C2—C3—H3119.1H13B—C13—H13C109.5
C5—C4—C3117.1 (4)C4—C13—H13D109.5
C5—C4—C13121.9 (4)H13A—C13—H13D141.1
C3—C4—C13121.0 (4)H13B—C13—H13D56.3
C4—C5—C6121.8 (4)H13C—C13—H13D56.3
C4—C5—H5119.1C4—C13—H13E109.5
C6—C5—H5119.1H13A—C13—H13E56.3
C1—C6—C5119.7 (4)H13B—C13—H13E141.1
C1—C6—H6120.1H13C—C13—H13E56.3
C5—C6—H6120.1H13D—C13—H13E109.5
N1—C7—C12114.1 (3)C4—C13—H13F109.5
N1—C7—C8110.6 (3)H13A—C13—H13F56.3
C12—C7—C8110.2 (3)H13B—C13—H13F56.3
N1—C7—H7107.2H13C—C13—H13F141.1
C12—C7—H7107.2H13D—C13—H13F109.5
C8—C7—H7107.2H13E—C13—H13F109.5
C7—C8—C9110.6 (3)N1—C14—C15114.1 (3)
C7—C8—H8A109.5N1—C14—H14A108.7
C9—C8—H8A109.5C15—C14—H14A108.7
C7—C8—H8B109.5N1—C14—H14B108.7
C9—C8—H8B109.5C15—C14—H14B108.7
H8A—C8—H8B108.1H14A—C14—H14B107.6
C10—C9—C8111.2 (3)C14—C15—C16112.0 (3)
C10—C9—H9A109.4C14—C15—H15A109.2
C8—C9—H9A109.4C16—C15—H15A109.2
C10—C9—H9B109.4C14—C15—H15B109.2
C8—C9—H9B109.4C16—C15—H15B109.2
H9A—C9—H9B108.0H15A—C15—H15B107.9
C9—C10—C11111.0 (3)C15—C16—H16A109.5
C9—C10—H10A109.4C15—C16—H16B109.5
C11—C10—H10A109.4H16A—C16—H16B109.5
C9—C10—H10B109.4C15—C16—H16C109.5
C11—C10—H10B109.4H16A—C16—H16C109.5
H10A—C10—H10B108.0H16B—C16—H16C109.5
O2—S1—N1—C14161.9 (3)C2—C1—C6—C50.2 (6)
O1—S1—N1—C1431.8 (3)S1—C1—C6—C5177.0 (3)
C1—S1—N1—C1482.8 (3)C4—C5—C6—C11.2 (6)
O2—S1—N1—C741.0 (3)C14—N1—C7—C1264.2 (5)
O1—S1—N1—C7171.1 (3)S1—N1—C7—C1292.5 (4)
C1—S1—N1—C774.3 (3)C14—N1—C7—C860.7 (4)
O2—S1—C1—C2167.1 (3)S1—N1—C7—C8142.6 (3)
O1—S1—C1—C237.4 (4)N1—C7—C8—C9176.3 (3)
N1—S1—C1—C277.1 (3)C12—C7—C8—C956.6 (5)
O2—S1—C1—C616.1 (3)C7—C8—C9—C1056.6 (5)
O1—S1—C1—C6145.8 (3)C8—C9—C10—C1156.2 (5)
N1—S1—C1—C699.7 (3)C9—C10—C11—C1255.7 (5)
C6—C1—C2—C30.9 (6)N1—C7—C12—C11177.7 (3)
S1—C1—C2—C3175.9 (3)C8—C7—C12—C1157.2 (5)
C1—C2—C3—C40.9 (6)C10—C11—C12—C756.7 (5)
C2—C3—C4—C50.1 (6)C7—N1—C14—C15104.2 (4)
C2—C3—C4—C13179.7 (4)S1—N1—C14—C1598.8 (3)
C3—C4—C5—C61.2 (6)N1—C14—C15—C16178.8 (3)
C13—C4—C5—C6178.7 (4)

Experimental details

Crystal data
Chemical formulaC16H25NO2S
Mr295.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.8207 (5), 25.2915 (16), 8.3135 (6)
β (°) 102.411 (3)
V3)1605.96 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.16 × 0.08 × 0.06
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.980, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
12946, 3004, 1271
Rint0.124
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.128, 0.90
No. of reflections3003
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Footnotes

Current address: Department of Chemistry, Georgetown University, 37th and O St NW, Washington DC 20057-2127 USA.

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for providing a grant under the project of strengthening the Materials Chemistry Laboratory at GC University Lahore, Pakistan.

References

First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHaider, Z., Arshad, M. N., Simpson, J., Khan, I. U. & Shafiq, M. (2010). Acta Cryst. E66, o102.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaider, Z., Khan, I. U., Zia-ur-Rehman, M. & Arshad, M. N. (2009). Acta Cryst. E65, o3165.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds