metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-4-hydr­­oxy-N′-(4-meth­­oxy-2-oxido­benzyl­­idene)benzohydrazidato]bis­­[pyridine­copper(II)]

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and bDepartment of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@perdana.um.edu.my

(Received 8 March 2010; accepted 25 March 2010; online 31 March 2010)

In the title compound, [Cu2(C15H12N2O4)2(C6H5N)2], each CuII atom is chelated by the tridentate doubly deprotonated Schiff base and a pyridine mol­ecule in a nearly planar environment (r.m.s. deviation for all non-H atoms = 0.107 Å). The metal ions are bridged by one O atom from the symmetry-related Schiff base ligands, forming a centrosymmetric dinuclear copper(II) complex. The dimeric complex is linked to another dimer via weaker Cu—O inter­actions and also O—H⋯N hydrogen bonds.

Related literature

For the crystal structure of the monohydrated Schiff base ligand, see: Mohd Lair et al. (2009a[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009a). Acta Cryst. E65, o189.]). For the structure of the pyridine adduct of the copper complex of the 4-nitro analog, see: Mohd Lair et al. (2009b[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009b). Acta Cryst. E65, m121.]). For the crystal structure of a dinuclear copper(II) salphen complex with a similar coordin­ation, see: Yu et al. (2008[Yu, G., Ding, Y., Wang, L., Fu, Z. & Hu, X. (2008). Acta Cryst. E64, m504.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C15H12N2O4)2(C6H5N)2]

  • Mr = 853.83

  • Monoclinic, P 21 /n

  • a = 13.3666 (3) Å

  • b = 7.9402 (2) Å

  • c = 16.7229 (3) Å

  • β = 94.775 (1)°

  • V = 1768.70 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 100 K

  • 0.26 × 0.12 × 0.01 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.734, Tmax = 0.991

  • 10121 measured reflections

  • 4035 independent reflections

  • 3473 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.075

  • S = 1.01

  • 4035 reflections

  • 257 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.83 (1) 1.91 (1) 2.743 (2) 178 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The title compound is the pyridine adduct of the copper complex of 4-hydroxy-N'-(2-hydroxy-4-methoxybenzylidene)benzohydrazide. In the asymmetric unit, which contains one half of the formula unit, the copper ion is four coordinated in an approximately planar environment, the highest deviation from the best plane passing through all non-H atoms being 0.348 (2) Å for O2. From this point of view, it is similar to the structure of the 4-nitrated analogous compound (Mohd Lair et al. 2009b). However, replacement of the electron-withdrawing nitro group by a hydroxy group resulted in bridging the copper ions by O2 atoms from the symmetry related Schiff bases at (-x+1, -y+2, -z), forming a centrosymmetric dinuclear CuII complex. The distance of Cu1—O2i is 2.778 (1) Å which is similar to the length of the Cu—O bridge (2.783 Å) in the dinuclear copper (II) salphen complex (Yu et al. 2008). Morever, there is a weak interaction between the copper ions and O3 atoms from the symmetry related molecules at (-x+1, -y+1, -z) with Cu1—O3iii distance of 3.576 (2) Å, which binds the molecules in one-dimensional infinite chains. Intermolecular hydrogen bonds between the hydroxy groups and the imine N atoms of the neighboring molecules connect the complexes to each other.

Related literature top

For the crystal structure of the monohydrated Schiff base ligand, see: Mohd Lair et al. (2009a). For the structure of the pyridine adduct of the copper complex of the 4-nitro analog, see: Mohd Lair et al. (2009b). For crystal structure of dinuclear copper(II) salphen complex with a similar coordination see: Yu et al. (2008).

Experimental top

The Schiff base ligand was prepared as reported previously (Mohd Lair et al., 2009a). A mixture of the Schiff base (0.57 g, 2 mmol) and copper(II) acetate monohydrate (0.4 g, 2 mmol) in the presence of a few drops of triethylamine was refluxed in ethanol (100 ml) for 5 hours. The resulting green precipitate was then filtered, washed with ethanol and dried over silica gel. The green crystal of the title compound was obtained by slow evaporation of a pyridine solution of the compound.

Refinement top

A low angle reflection, (-1 0 1), probably affected by extinction, was omitted from the dataset. C-bound hydrogen atoms were placed at calculated positions (C–H 0.95–0.98 Å), and were treated as riding on their parent atoms, with U(H) set to 1.2–1.5 times Ueq(C). The hydroxy H-atom was located in a difference Fourier map, and was refined with distance restraints of O–H 0.84±0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at 60% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the interaction between Cu1 and O3 from the symmetry related molecule at (-x+1, -y+1, -z). Hydrogen atoms have been omitted for clarity.
Bis[µ-4-hydroxy-N'-(4-methoxy-2- oxidobenzylidene)benzohydrazidato]bis[pyridinecopper(II)] top
Crystal data top
[Cu2(C15H12N2O4)2(C6H5N)2]F(000) = 876
Mr = 853.83Dx = 1.603 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4307 reflections
a = 13.3666 (3) Åθ = 2.8–30.2°
b = 7.9402 (2) ŵ = 1.27 mm1
c = 16.7229 (3) ÅT = 100 K
β = 94.775 (1)°Lath, pale green
V = 1768.70 (7) Å30.26 × 0.12 × 0.01 mm
Z = 2
Data collection top
Bruker SMART APEXII
diffractometer
4035 independent reflections
Radiation source: fine-focus sealed tube3473 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.734, Tmax = 0.991k = 710
10121 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0332P)2 + 1.6174P]
where P = (Fo2 + 2Fc2)/3
4035 reflections(Δ/σ)max = 0.001
257 parametersΔρmax = 0.41 e Å3
1 restraintΔρmin = 0.26 e Å3
Crystal data top
[Cu2(C15H12N2O4)2(C6H5N)2]V = 1768.70 (7) Å3
Mr = 853.83Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.3666 (3) ŵ = 1.27 mm1
b = 7.9402 (2) ÅT = 100 K
c = 16.7229 (3) Å0.26 × 0.12 × 0.01 mm
β = 94.775 (1)°
Data collection top
Bruker SMART APEXII
diffractometer
4035 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3473 reflections with I > 2σ(I)
Tmin = 0.734, Tmax = 0.991Rint = 0.021
10121 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.41 e Å3
4035 reflectionsΔρmin = 0.26 e Å3
257 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.511594 (16)0.77247 (3)0.003528 (13)0.01666 (8)
O10.36136 (10)1.26026 (19)0.39906 (8)0.0223 (3)
H10.3017 (9)1.277 (3)0.4068 (15)0.033*
O20.49690 (10)0.92300 (18)0.08564 (8)0.0189 (3)
O30.51275 (10)0.62681 (19)0.09181 (8)0.0231 (3)
O40.39119 (10)0.28970 (18)0.31267 (8)0.0226 (3)
N10.33448 (12)0.8237 (2)0.07305 (9)0.0165 (3)
N20.37010 (11)0.74438 (19)0.00604 (9)0.0159 (3)
N30.66146 (12)0.7893 (2)0.00376 (9)0.0169 (3)
C10.36838 (14)1.1762 (2)0.32891 (11)0.0178 (4)
C20.28481 (14)1.1087 (2)0.28451 (11)0.0191 (4)
H20.22001.12060.30320.023*
C30.29600 (14)1.0246 (2)0.21334 (11)0.0178 (4)
H30.23850.98000.18340.021*
C40.39081 (14)1.0044 (2)0.18485 (11)0.0166 (4)
C50.47366 (14)1.0747 (3)0.22963 (11)0.0207 (4)
H50.53851.06420.21080.025*
C60.46282 (14)1.1589 (3)0.30079 (11)0.0213 (4)
H60.52001.20510.33050.026*
C70.40775 (14)0.9119 (2)0.11040 (10)0.0165 (4)
C80.30712 (14)0.6628 (2)0.04221 (11)0.0171 (4)
H80.23840.66370.03160.021*
C90.33470 (14)0.5707 (2)0.11095 (11)0.0168 (4)
C100.25867 (14)0.4850 (2)0.15879 (11)0.0192 (4)
H100.19140.49270.14480.023*
C110.27833 (14)0.3915 (3)0.22433 (11)0.0206 (4)
H110.22580.33460.25520.025*
C120.37823 (14)0.3815 (2)0.24505 (11)0.0188 (4)
C130.45461 (14)0.4615 (3)0.20009 (11)0.0197 (4)
H130.52140.45240.21510.024*
C140.43541 (14)0.5572 (2)0.13177 (11)0.0182 (4)
C150.48858 (15)0.2908 (3)0.34204 (12)0.0251 (4)
H15A0.50920.40730.35090.038*
H15B0.48650.22860.39280.038*
H15C0.53680.23730.30260.038*
C160.71550 (15)0.7054 (3)0.04781 (11)0.0201 (4)
H160.68100.64020.08900.024*
C170.81867 (15)0.7103 (3)0.04325 (12)0.0239 (4)
H170.85430.64810.08030.029*
C180.87010 (15)0.8063 (3)0.01561 (12)0.0249 (4)
H180.94130.81240.01960.030*
C190.81467 (15)0.8934 (3)0.06856 (12)0.0249 (4)
H190.84750.96120.10950.030*
C200.71148 (15)0.8808 (3)0.06130 (11)0.0207 (4)
H200.67440.93940.09860.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01512 (12)0.01935 (13)0.01608 (12)0.00010 (9)0.00468 (8)0.00223 (9)
O10.0198 (7)0.0291 (8)0.0184 (7)0.0027 (6)0.0046 (5)0.0057 (6)
O20.0171 (6)0.0236 (7)0.0171 (6)0.0008 (6)0.0066 (5)0.0034 (6)
O30.0162 (6)0.0304 (8)0.0231 (7)0.0017 (6)0.0048 (5)0.0092 (6)
O40.0235 (7)0.0255 (8)0.0196 (7)0.0019 (6)0.0061 (5)0.0054 (6)
N10.0192 (7)0.0173 (8)0.0139 (7)0.0010 (6)0.0069 (6)0.0004 (6)
N20.0175 (7)0.0155 (8)0.0154 (7)0.0010 (6)0.0063 (6)0.0004 (6)
N30.0175 (7)0.0172 (8)0.0162 (7)0.0013 (6)0.0031 (6)0.0023 (6)
C10.0223 (9)0.0170 (9)0.0147 (8)0.0032 (7)0.0045 (7)0.0009 (7)
C20.0159 (9)0.0220 (10)0.0204 (9)0.0018 (7)0.0068 (7)0.0001 (8)
C30.0176 (9)0.0166 (10)0.0195 (9)0.0011 (7)0.0029 (7)0.0005 (7)
C40.0194 (9)0.0156 (9)0.0154 (8)0.0015 (7)0.0041 (7)0.0024 (7)
C50.0169 (9)0.0262 (11)0.0196 (9)0.0003 (8)0.0051 (7)0.0005 (8)
C60.0175 (9)0.0262 (11)0.0202 (9)0.0003 (8)0.0015 (7)0.0016 (8)
C70.0196 (9)0.0158 (10)0.0147 (8)0.0019 (7)0.0055 (7)0.0043 (7)
C80.0176 (9)0.0153 (9)0.0192 (9)0.0003 (7)0.0064 (7)0.0034 (7)
C90.0201 (9)0.0141 (9)0.0165 (8)0.0002 (7)0.0038 (7)0.0018 (7)
C100.0167 (9)0.0196 (10)0.0219 (9)0.0007 (7)0.0059 (7)0.0022 (8)
C110.0202 (9)0.0212 (10)0.0202 (9)0.0032 (8)0.0015 (7)0.0002 (8)
C120.0248 (10)0.0155 (9)0.0166 (9)0.0006 (7)0.0054 (7)0.0010 (7)
C130.0169 (9)0.0217 (10)0.0213 (9)0.0006 (7)0.0058 (7)0.0014 (8)
C140.0204 (9)0.0164 (9)0.0182 (9)0.0001 (7)0.0042 (7)0.0013 (7)
C150.0250 (10)0.0289 (11)0.0224 (10)0.0032 (9)0.0084 (8)0.0036 (9)
C160.0221 (9)0.0211 (10)0.0176 (9)0.0010 (8)0.0048 (7)0.0016 (8)
C170.0206 (9)0.0296 (11)0.0225 (9)0.0012 (8)0.0074 (8)0.0028 (8)
C180.0184 (9)0.0343 (12)0.0221 (9)0.0018 (9)0.0027 (7)0.0000 (9)
C190.0231 (10)0.0305 (12)0.0209 (9)0.0016 (9)0.0006 (8)0.0048 (8)
C200.0222 (9)0.0219 (10)0.0184 (9)0.0018 (8)0.0043 (7)0.0005 (8)
Geometric parameters (Å, º) top
Cu1—O31.8765 (14)C5—H50.9500
Cu1—N21.9242 (15)C6—H60.9500
Cu1—O21.9338 (13)C8—C91.436 (3)
Cu1—N32.0012 (16)C8—H80.9500
Cu1—O2i2.7784 (14)C9—C101.414 (3)
O1—C11.360 (2)C9—C141.422 (3)
O1—H10.830 (10)C10—C111.367 (3)
O2—C71.297 (2)C10—H100.9500
O3—C141.306 (2)C11—C121.409 (3)
O4—C121.368 (2)C11—H110.9500
O4—C151.429 (2)C12—C131.372 (3)
N1—C71.318 (2)C13—C141.413 (3)
N1—N21.403 (2)C13—H130.9500
N2—C81.291 (2)C15—H15A0.9800
N3—C201.340 (2)C15—H15B0.9800
N3—C161.346 (2)C15—H15C0.9800
C1—C61.390 (3)C16—C171.375 (3)
C1—C21.396 (3)C16—H160.9500
C2—C31.384 (3)C17—C181.382 (3)
C2—H20.9500C17—H170.9500
C3—C41.400 (3)C18—C191.386 (3)
C3—H30.9500C18—H180.9500
C4—C51.400 (3)C19—C201.378 (3)
C4—C71.479 (2)C19—H190.9500
C5—C61.383 (3)C20—H200.9500
O3—Cu1—N293.82 (6)N2—C8—C9123.94 (17)
O3—Cu1—O2174.65 (6)N2—C8—H8118.0
N2—Cu1—O281.02 (6)C9—C8—H8118.0
O3—Cu1—N390.87 (6)C10—C9—C14118.39 (17)
N2—Cu1—N3171.29 (6)C10—C9—C8118.51 (16)
O2—Cu1—N394.43 (6)C14—C9—C8123.06 (17)
O3—Cu1—O2i98.64 (5)C11—C10—C9122.52 (17)
N2—Cu1—O2i98.16 (5)C11—C10—H10118.7
O2—Cu1—O2i80.83 (5)C9—C10—H10118.7
N3—Cu1—O2i88.37 (5)C10—C11—C12118.48 (18)
C1—O1—H1110.6 (18)C10—C11—H11120.8
C7—O2—Cu1111.04 (12)C12—C11—H11120.8
C14—O3—Cu1127.26 (12)O4—C12—C13124.03 (17)
C12—O4—C15117.55 (15)O4—C12—C11114.89 (17)
C7—N1—N2109.19 (14)C13—C12—C11121.07 (17)
C8—N2—N1118.52 (15)C12—C13—C14120.99 (17)
C8—N2—Cu1126.91 (13)C12—C13—H13119.5
N1—N2—Cu1114.57 (11)C14—C13—H13119.5
C20—N3—C16117.79 (17)O3—C14—C13116.87 (16)
C20—N3—Cu1121.15 (13)O3—C14—C9124.60 (17)
C16—N3—Cu1121.04 (13)C13—C14—C9118.53 (17)
O1—C1—C6118.04 (17)O4—C15—H15A109.5
O1—C1—C2122.52 (16)O4—C15—H15B109.5
C6—C1—C2119.43 (17)H15A—C15—H15B109.5
C3—C2—C1120.25 (17)O4—C15—H15C109.5
C3—C2—H2119.9H15A—C15—H15C109.5
C1—C2—H2119.9H15B—C15—H15C109.5
C2—C3—C4120.92 (17)N3—C16—C17122.65 (18)
C2—C3—H3119.5N3—C16—H16118.7
C4—C3—H3119.5C17—C16—H16118.7
C3—C4—C5118.07 (17)C16—C17—C18119.48 (18)
C3—C4—C7123.35 (17)C16—C17—H17120.3
C5—C4—C7118.58 (16)C18—C17—H17120.3
C6—C5—C4121.20 (17)C17—C18—C19118.02 (19)
C6—C5—H5119.4C17—C18—H18121.0
C4—C5—H5119.4C19—C18—H18121.0
C5—C6—C1120.12 (18)C20—C19—C18119.46 (19)
C5—C6—H6119.9C20—C19—H19120.3
C1—C6—H6119.9C18—C19—H19120.3
O2—C7—N1123.45 (16)N3—C20—C19122.60 (18)
O2—C7—C4116.35 (16)N3—C20—H20118.7
N1—C7—C4120.20 (16)C19—C20—H20118.7
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1ii0.83 (1)1.91 (1)2.743 (2)178 (3)
Symmetry code: (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C15H12N2O4)2(C6H5N)2]
Mr853.83
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)13.3666 (3), 7.9402 (2), 16.7229 (3)
β (°) 94.775 (1)
V3)1768.70 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.26 × 0.12 × 0.01
Data collection
DiffractometerBruker SMART APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.734, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
10121, 4035, 3473
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.075, 1.01
No. of reflections4035
No. of parameters257
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.26

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.830 (10)1.914 (10)2.743 (2)178 (3)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant No. FP009/2008 C).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009a). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009b). Acta Cryst. E65, m121.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationYu, G., Ding, Y., Wang, L., Fu, Z. & Hu, X. (2008). Acta Cryst. E64, m504.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds