organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Hy­droxy­ethyl)(prop­yl)aza­nium 2-[(2-carb­oxy­phen­yl)disulfan­yl]benzoate monohydrate

a5959 FM 1960 Road West, Houston, Texas 77069, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 23 February 2010; accepted 1 March 2010; online 6 March 2010)

With the exception of the terminal hydr­oxy group [N—C—C—O = 53.8 (5)°], the cation of the title salt hydrate, C5H14NO+·C14H9O4S2−.H2O, is a straight chain. A twisted conformation is found for the anion [C—S—S—C = −87.44 (16)°]. In the crystal, the anions self-assemble into a helical supra­molecular chain via charge-assisted O—H⋯Oc hydrogen bonds. These chains are connected into a three-dimensional network via N—H⋯Oc, N—H⋯Ow, Oh—H⋯Ocb, and Ow—H⋯Oc hydrogen-bonding inter­actions (c = carboxyl­ate, w = water, h = hydr­oxy and cb = carbon­yl).

Related literature

For related studies on co-crystal/salt formation involving 2-[(2-carboxy­phen­yl)disulfan­yl]benzoic acid, see: Broker & Tiekink (2007[Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096-1109.]); Broker et al. (2008[Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879-887.]). For software for searching the Cambridge Structural Database, see: Bruno et al. (2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]).

[Scheme 1]

Experimental

Crystal data
  • C5H14NO+·C14H9O4S2·H2O

  • Mr = 427.52

  • Monoclinic, P 21 /n

  • a = 8.1207 (16) Å

  • b = 17.714 (4) Å

  • c = 14.483 (3) Å

  • β = 99.58 (3)°

  • V = 2054.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 173 K

  • 0.20 × 0.20 × 0.05 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.803, Tmax = 1.000

  • 12346 measured reflections

  • 3600 independent reflections

  • 3316 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.155

  • S = 1.17

  • 3600 reflections

  • 265 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2o⋯O3i 0.84 1.70 2.535 (4) 178
N1—H1n⋯O4ii 0.90 2.10 2.887 (4) 146
N1—H2n⋯O1wiii 0.90 1.92 2.773 (5) 158
O5—H5o⋯O1iv 0.84 1.94 2.751 (5) 162
O1w—H1w⋯O4v 0.84 1.99 2.823 (5) 174
O1w—H2w⋯O3 0.84 2.26 3.036 (5) 154
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y+2, -z+2; (v) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The title salt hydrate, (I), was obtained during crystallisation experiments involving various N-containing species with the dicarboxylic acid, 2-[(2-carboxyphenyl)disulfanyl]benzoic acid (Broker & Tiekink, 2007; Broker et al., 2008). The asymmetric unit of (I) comprises an aminium cation, Fig. 1, a uninegative 2,2'-dithio(benzoic acid)benzoate anion, Fig. 2, and a solvent water molecule of crystallisation.

The cation is linear with the exception of the terminal hydroxyl group which is twisted out of the chain as seen in the O5–C15–C16–N1 torsion angle of 53.8 (5) °. Confirmation of protonation of the amine-N1 atom during crystallisation is seen in the pattern of hydrogen bonding interactions, see below. A search of the CSD (Bruno et al., 2002) suggests that this is the first structural characterisation reported for the 2-hydroxyethyl(propyl)aminium cation. The 2,2'-dithio(benzoic acid)benzoate molecule is twisted [C3–S1–S2–C10 = -87.44 (16) °] in accord with expectation with the conformation stabilised by intramolecular S···O interactions of 2.633 (3) Å for S2···O3 and 2.647 (3) Å for S3···O4 (Broker & Tiekink (2007). Confirmation that the C8—O1, O2 residue is in the acid form is found in the disparity of the C1–O1 and C1–O2 bond distances, i.e. 1.212 (4) and 1.316 (4) Å, respectively, compared with the equivalence of the C8–O3 and C8–O4 bond distances of 1.266 (4) and 1.247 (4) Å, respectively. The O1-carboxylic acid group is co-planar with the benzene ring to which it is connected with the C3–C2–C1–O1 and torsion angle being -2.9 (5) Å, but the O3-carboxylate group is not: the O3–C8–C9–C10 torsion angle being -21.0 (5) °.

The most distinctive feature of the crystal packing is supramolecular chain formed via self-association between 2,2'-dithio(benzoic acid)benzoate anions, as normally seen for such species (Broker & Tiekink, 2007), Fig. 2 and Table 1. The chain has a helical topology being generated by 21-screw symmetry along the b axis of the monoclinic unit cell. The next most prominent O–H···O interaction involves the O5-hydroxyl group and the carbonyl-O1 atom. The remaining carboxylate-O4 associates with the water molecule of crystallization. The water molecule also forms a hydrogen bond with a neighbouring carboxylate-O3 atom and with a centrosymmetrically related water molecule to form a 12-membered {···OCO···HOH}2 synthon. The aminium-H2n atom forms a donor interaction to a O1w-water molecule so that the latter participates in three hydrogen bonds. The second ammonium-H1n atom forms a N—H···O hydrogen bond with the carboxylate-O4 atom which is also connected to the O1w-water molecule and therefore closes a 12-membered centrosymmetric {···O···HNH···OH}2 synthon. In this way the components of the crystal structure are linked into a 3-D network, Table 1.

Related literature top

For related studies on co-crystal/salt formation involving 2-[(2-carboxyphenyl)disulfanyl]benzoic acid, see: Broker & Tiekink (2007); Broker et al. (2008). For software for searching the Cambridge Structural Database, see: Bruno et al. (2002).

Experimental top

The title salt (I) was obtained by dissolving 2-[(2-carboxyphenyl)disulfanyl]benzoic acid (0.100 g, Fluka) in ethanol (20 ml) to which was added the amine in 1:1, 1:2 and 1:3 stoichiometric ratios in three separate experiments. Regardless of the stoichiometry, only crystals of (I) were harvested as proved by multiple unit cell determinations, m.pt. 429–431 K

Refinement top

The H-atoms located from difference maps but placed in their idealised positions (O–H = 0.84 Å, N–H = 0.90 Å, and C–H 0.93-0.97 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2-1.5Ueq(carrier atom). The maximum and minimum residual electron density peaks of 1.11 and 0.43 e Å-3, respectively, were located 0.91 Å and 0.60 Å from the H15b and O1w atoms, respectively.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the cation in (I) showing atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. Molecular structure of the anion in (I) showing atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 3] Fig. 3. Supramolecular chain formation in (I) mediated by charge-assisted O–H···O- (orange dashed lines) hydrogen bonding. Colour code: S, yellow; O, red; N, blue; C, grey; H, green.
(2-Hydroxyethyl)(propyl)azanium 2-[(2-carboxyphenyl)disulfanyl]benzoate monohydrate top
Crystal data top
C5H14NO+·C14H9O4S2·H2OF(000) = 904
Mr = 427.52Dx = 1.382 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6664 reflections
a = 8.1207 (16) Åθ = 3.4–30.5°
b = 17.714 (4) ŵ = 0.30 mm1
c = 14.483 (3) ÅT = 173 K
β = 99.58 (3)°Prism, colourless
V = 2054.3 (7) Å30.20 × 0.20 × 0.05 mm
Z = 4
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3600 independent reflections
Radiation source: fine-focus sealed tube3316 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 25.0°, θmin = 3.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.803, Tmax = 1.000k = 2119
12346 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0515P)2 + 2.9819P]
where P = (Fo2 + 2Fc2)/3
3600 reflections(Δ/σ)max = 0.001
265 parametersΔρmax = 1.11 e Å3
5 restraintsΔρmin = 0.43 e Å3
Crystal data top
C5H14NO+·C14H9O4S2·H2OV = 2054.3 (7) Å3
Mr = 427.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1207 (16) ŵ = 0.30 mm1
b = 17.714 (4) ÅT = 173 K
c = 14.483 (3) Å0.20 × 0.20 × 0.05 mm
β = 99.58 (3)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
3600 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3316 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 1.000Rint = 0.051
12346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0685 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.17Δρmax = 1.11 e Å3
3600 reflectionsΔρmin = 0.43 e Å3
265 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.69957 (11)0.89493 (5)0.68210 (6)0.0297 (3)
S20.63482 (11)0.78938 (5)0.62977 (6)0.0301 (3)
O10.8096 (3)1.01510 (14)0.78455 (18)0.0366 (6)
O21.0446 (3)1.07927 (16)0.7855 (2)0.0442 (7)
H2o1.02161.10320.83170.066*
O30.5300 (3)0.65217 (14)0.5766 (2)0.0436 (7)
O40.2893 (3)0.62652 (15)0.48483 (19)0.0426 (7)
O50.4552 (5)0.9986 (2)1.1203 (3)0.0670 (10)
H5O0.36200.99261.13730.101*
O1W0.6571 (5)0.5265 (2)0.4645 (3)0.0763 (11)
H1W0.67550.48210.48380.114*
H2W0.59870.55040.49740.114*
N10.4341 (4)0.87963 (18)0.9850 (2)0.0387 (8)
H1N0.53170.89350.96850.046*
H2N0.36300.91870.97280.046*
C10.9391 (4)1.0248 (2)0.7550 (2)0.0300 (8)
C20.9888 (4)0.9776 (2)0.6796 (2)0.0298 (8)
C30.8909 (4)0.9169 (2)0.6417 (2)0.0274 (7)
C40.9445 (5)0.8745 (2)0.5709 (3)0.0353 (9)
H40.87980.83420.54430.042*
C51.0921 (5)0.8913 (2)0.5397 (3)0.0428 (10)
H51.12630.86240.49280.051*
C61.1889 (5)0.9512 (2)0.5783 (3)0.0444 (10)
H61.28840.96270.55750.053*
C71.1376 (5)0.9937 (2)0.6473 (3)0.0386 (9)
H71.20301.03390.67310.046*
C80.4090 (4)0.66936 (19)0.5131 (2)0.0286 (8)
C90.4176 (4)0.74599 (19)0.4703 (2)0.0264 (7)
C100.5159 (4)0.80430 (18)0.5153 (2)0.0238 (7)
C110.5186 (4)0.8742 (2)0.4707 (2)0.0292 (8)
H110.58380.91320.50010.035*
C120.4245 (4)0.8856 (2)0.3827 (2)0.0324 (8)
H120.42630.93250.35400.039*
C130.3281 (5)0.8281 (2)0.3371 (2)0.0352 (9)
H130.26640.83570.27770.042*
C140.3250 (4)0.7591 (2)0.3812 (2)0.0330 (8)
H140.25980.72040.35100.040*
C150.5417 (6)0.9308 (3)1.1412 (3)0.0498 (11)
H15A0.54890.92031.20750.060*
H15B0.65460.93671.12860.060*
C160.4617 (6)0.8648 (2)1.0865 (3)0.0474 (11)
H16A0.53260.82071.09990.057*
H16B0.35550.85381.10590.057*
C170.3663 (5)0.8148 (2)0.9263 (3)0.0427 (10)
H17A0.26520.79740.94690.051*
H17B0.44670.77390.93560.051*
C180.3278 (6)0.8329 (3)0.8244 (3)0.0527 (11)
H18A0.42880.84990.80320.063*
H18B0.24710.87370.81460.063*
C190.2579 (7)0.7645 (3)0.7669 (4)0.0674 (14)
H19A0.23450.77790.70190.101*
H19B0.15680.74810.78700.101*
H19C0.33830.72430.77570.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0292 (5)0.0334 (5)0.0270 (5)0.0037 (4)0.0063 (4)0.0028 (4)
S20.0311 (5)0.0289 (5)0.0283 (5)0.0037 (4)0.0004 (4)0.0062 (4)
O10.0369 (15)0.0395 (15)0.0347 (14)0.0020 (11)0.0097 (11)0.0078 (12)
O20.0370 (15)0.0421 (16)0.0548 (18)0.0075 (12)0.0114 (13)0.0189 (14)
O30.0340 (15)0.0321 (14)0.0610 (18)0.0064 (11)0.0027 (13)0.0199 (14)
O40.0427 (16)0.0370 (15)0.0471 (16)0.0134 (12)0.0048 (13)0.0007 (13)
O50.075 (2)0.066 (2)0.068 (2)0.011 (2)0.0340 (19)0.0046 (19)
O1W0.077 (3)0.049 (2)0.109 (3)0.0073 (19)0.033 (2)0.017 (2)
N10.0402 (19)0.0356 (18)0.0403 (18)0.0005 (14)0.0066 (14)0.0047 (15)
C10.0293 (19)0.0285 (19)0.0306 (19)0.0029 (15)0.0004 (15)0.0008 (16)
C20.0290 (19)0.0286 (18)0.0312 (19)0.0028 (14)0.0034 (15)0.0002 (16)
C30.0264 (18)0.0294 (18)0.0261 (17)0.0026 (14)0.0038 (14)0.0017 (15)
C40.037 (2)0.031 (2)0.038 (2)0.0029 (16)0.0060 (16)0.0062 (17)
C50.042 (2)0.043 (2)0.048 (2)0.0028 (18)0.0229 (19)0.006 (2)
C60.038 (2)0.043 (2)0.056 (3)0.0059 (18)0.0198 (19)0.008 (2)
C70.032 (2)0.035 (2)0.050 (2)0.0036 (16)0.0111 (17)0.0084 (19)
C80.0268 (18)0.0259 (18)0.0354 (19)0.0021 (14)0.0116 (15)0.0018 (16)
C90.0260 (17)0.0273 (18)0.0276 (17)0.0015 (14)0.0095 (14)0.0026 (15)
C100.0225 (17)0.0258 (17)0.0238 (16)0.0048 (13)0.0061 (13)0.0007 (14)
C110.0290 (18)0.0268 (18)0.0311 (19)0.0013 (14)0.0034 (14)0.0023 (16)
C120.038 (2)0.0316 (19)0.0288 (18)0.0047 (16)0.0087 (15)0.0064 (16)
C130.039 (2)0.041 (2)0.0242 (18)0.0041 (17)0.0021 (15)0.0026 (17)
C140.036 (2)0.034 (2)0.0294 (19)0.0019 (16)0.0056 (15)0.0054 (17)
C150.048 (3)0.065 (3)0.037 (2)0.002 (2)0.0095 (19)0.002 (2)
C160.058 (3)0.047 (3)0.039 (2)0.001 (2)0.013 (2)0.012 (2)
C170.047 (2)0.033 (2)0.050 (2)0.0032 (17)0.0146 (19)0.0003 (19)
C180.063 (3)0.047 (3)0.047 (2)0.002 (2)0.004 (2)0.004 (2)
C190.070 (3)0.072 (3)0.062 (3)0.019 (3)0.014 (3)0.016 (3)
Geometric parameters (Å, º) top
S1—C31.791 (3)C7—H70.9300
S1—S22.0528 (13)C8—C91.498 (5)
S2—C101.793 (3)C9—C101.399 (5)
O1—C11.212 (4)C9—C141.400 (5)
O2—C11.316 (4)C10—C111.398 (5)
O2—H2O0.8400C11—C121.387 (5)
O3—C81.266 (4)C11—H110.9300
O4—C81.247 (4)C12—C131.384 (5)
O5—C151.400 (6)C12—H120.9300
O5—H5O0.8401C13—C141.381 (5)
O1W—H1W0.8401C13—H130.9300
O1W—H2W0.8401C14—H140.9300
N1—C161.473 (5)C15—C161.499 (6)
N1—C171.479 (5)C15—H15A0.9700
N1—H1N0.9000C15—H15B0.9700
N1—H2N0.9000C16—H16A0.9700
C1—C21.485 (5)C16—H16B0.9700
C2—C31.394 (5)C17—C181.491 (6)
C2—C71.395 (5)C17—H17A0.9700
C3—C41.399 (5)C17—H17B0.9700
C4—C51.381 (5)C18—C191.526 (6)
C4—H40.9300C18—H18A0.9700
C5—C61.383 (6)C18—H18B0.9700
C5—H50.9300C19—H19A0.9600
C6—C71.369 (5)C19—H19B0.9600
C6—H60.9300C19—H19C0.9600
C3—S1—S2105.07 (12)C12—C11—H11119.8
C10—S2—S1105.81 (12)C10—C11—H11119.8
C1—O2—H2O114.7C13—C12—C11120.8 (3)
C15—O5—H5O105.7C13—C12—H12119.6
H1W—O1W—H2W111.6C11—C12—H12119.6
C16—N1—C17114.5 (3)C14—C13—C12118.9 (3)
C16—N1—H1N108.6C14—C13—H13120.6
C17—N1—H1N108.6C12—C13—H13120.6
C16—N1—H2N108.6C13—C14—C9121.7 (3)
C17—N1—H2N108.6C13—C14—H14119.2
H1N—N1—H2N107.6C9—C14—H14119.2
O1—C1—O2122.7 (3)O5—C15—C16113.4 (4)
O1—C1—C2122.5 (3)O5—C15—H15A108.9
O2—C1—C2114.7 (3)C16—C15—H15A108.9
C3—C2—C7119.7 (3)O5—C15—H15B108.9
C3—C2—C1121.1 (3)C16—C15—H15B108.9
C7—C2—C1119.2 (3)H15A—C15—H15B107.7
C2—C3—C4118.4 (3)N1—C16—C15111.7 (3)
C2—C3—S1120.6 (3)N1—C16—H16A109.3
C4—C3—S1121.1 (3)C15—C16—H16A109.3
C5—C4—C3121.1 (3)N1—C16—H16B109.3
C5—C4—H4119.4C15—C16—H16B109.3
C3—C4—H4119.4H16A—C16—H16B108.0
C4—C5—C6120.0 (4)N1—C17—C18113.5 (3)
C4—C5—H5120.0N1—C17—H17A108.9
C6—C5—H5120.0C18—C17—H17A108.9
C7—C6—C5119.6 (4)N1—C17—H17B108.9
C7—C6—H6120.2C18—C17—H17B108.9
C5—C6—H6120.2H17A—C17—H17B107.7
C6—C7—C2121.2 (4)C17—C18—C19111.6 (4)
C6—C7—H7119.4C17—C18—H18A109.3
C2—C7—H7119.4C19—C18—H18A109.3
O4—C8—O3124.1 (3)C17—C18—H18B109.3
O4—C8—C9120.2 (3)C19—C18—H18B109.3
O3—C8—C9115.7 (3)H18A—C18—H18B108.0
C10—C9—C14119.0 (3)C18—C19—H19A109.5
C10—C9—C8122.6 (3)C18—C19—H19B109.5
C14—C9—C8118.4 (3)H19A—C19—H19B109.5
C11—C10—C9119.3 (3)C18—C19—H19C109.5
C11—C10—S2120.7 (3)H19A—C19—H19C109.5
C9—C10—S2120.0 (3)H19B—C19—H19C109.5
C12—C11—C10120.4 (3)
C3—S1—S2—C1087.44 (16)O4—C8—C9—C1420.8 (5)
O1—C1—C2—C32.9 (5)O3—C8—C9—C14158.1 (3)
O2—C1—C2—C3178.7 (3)C14—C9—C10—C110.4 (5)
O1—C1—C2—C7178.1 (3)C8—C9—C10—C11179.5 (3)
O2—C1—C2—C70.2 (5)C14—C9—C10—S2179.6 (3)
C7—C2—C3—C41.0 (5)C8—C9—C10—S21.3 (4)
C1—C2—C3—C4180.0 (3)S1—S2—C10—C1115.5 (3)
C7—C2—C3—S1179.9 (3)S1—S2—C10—C9163.7 (2)
C1—C2—C3—S10.9 (5)C9—C10—C11—C120.1 (5)
S2—S1—C3—C2166.8 (3)S2—C10—C11—C12179.1 (3)
S2—S1—C3—C414.1 (3)C10—C11—C12—C130.8 (5)
C2—C3—C4—C50.9 (6)C11—C12—C13—C140.9 (5)
S1—C3—C4—C5180.0 (3)C12—C13—C14—C90.4 (5)
C3—C4—C5—C60.4 (6)C10—C9—C14—C130.2 (5)
C4—C5—C6—C70.1 (7)C8—C9—C14—C13179.3 (3)
C5—C6—C7—C20.0 (6)C17—N1—C16—C15175.9 (3)
C3—C2—C7—C60.5 (6)O5—C15—C16—N153.8 (5)
C1—C2—C7—C6179.5 (4)C16—N1—C17—C18175.8 (4)
O4—C8—C9—C10160.1 (3)N1—C17—C18—C19179.8 (4)
O3—C8—C9—C1021.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2o···O3i0.841.702.535 (4)178
N1—H1n···O4ii0.902.102.887 (4)146
N1—H2n···O1wiii0.901.922.773 (5)158
O5—H5o···O1iv0.841.942.751 (5)162
O1w—H1w···O4v0.841.992.823 (5)174
O1w—H2w···O30.842.263.036 (5)154
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x1/2, y+3/2, z+1/2; (iv) x+1, y+2, z+2; (v) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC5H14NO+·C14H9O4S2·H2O
Mr427.52
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)8.1207 (16), 17.714 (4), 14.483 (3)
β (°) 99.58 (3)
V3)2054.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.20 × 0.20 × 0.05
Data collection
DiffractometerRigaku AFC12K/SATURN724
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.803, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12346, 3600, 3316
Rint0.051
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.155, 1.17
No. of reflections3600
No. of parameters265
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.11, 0.43

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2o···O3i0.841.702.535 (4)178
N1—H1n···O4ii0.902.102.887 (4)146
N1—H2n···O1wiii0.901.922.773 (5)158
O5—H5o···O1iv0.841.942.751 (5)162
O1w—H1w···O4v0.841.992.823 (5)174
O1w—H2w···O30.842.263.036 (5)154
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x1/2, y+3/2, z+1/2; (iv) x+1, y+2, z+2; (v) x+1, y+1, z+1.
 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds