organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,2-Tri­bromo-N-(2-methyl­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 19 February 2010; accepted 16 March 2010; online 20 March 2010)

The asymmetric unit of the title compound, C9H8Br3NO, contains two independent mol­ecules. Intra­molecular N—H⋯Br hydrogen bonds are present in both mol­ecules. In the crystal, mol­ecules are packed into columnar chains by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For preparation of the title compound, see: Gowda et al. (2003[Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801-806.]). For background to our study of the effect of ring and side-chain substituents on the solid state structures of N-aromatic amides and for related structures, see: Brown (1966[Brown, C. J. (1966). Acta Cryst. 21, 442-445.]); Gowda et al. (2009[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o3242.], 2010[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o386.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8Br3NO

  • Mr = 385.89

  • Monoclinic, P 21 /c

  • a = 9.949 (2) Å

  • b = 21.429 (4) Å

  • c = 11.653 (2) Å

  • β = 107.69 (1)°

  • V = 2366.9 (8) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 12.40 mm−1

  • T = 299 K

  • 0.55 × 0.28 × 0.28 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.056, Tmax = 0.129

  • 5721 measured reflections

  • 4204 independent reflections

  • 3666 reflections with I > 2σ(I)

  • Rint = 0.149

  • 3 standard reflections every 120 min intensity decay: 1.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.212

  • S = 1.05

  • 4204 reflections

  • 260 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.77 e Å−3

  • Δρmin = −1.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2 0.84 (4) 2.28 (6) 3.031 (8) 149 (9)
N1—H1N⋯Br1 0.84 (4) 2.53 (9) 3.048 (7) 120 (8)
N2—H2N⋯O1i 0.85 (4) 2.23 (7) 2.928 (9) 139 (9)
N2—H2N⋯Br5 0.85 (4) 2.50 (9) 3.036 (6) 122 (8)
Symmetry code: (i) x+1, y, z.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the effect of ring and the side chain substituents on the solid state structures of N-aromatic amides (Gowda et al., 2009, 2010), the structure of 2,2,2-tribromo-N-(2-methylphenyl)acetamide has been determined (Fig.1). The asymmetric unit of the structure contains two independent molecules. The conformation of the N—H bond in the structure is anti to the C=O bond in the side chain, similar to that observed in 2,2,2-tribromo-N-(phenyl)acetamide, 2,2,2-tribromo-N-(2-chlorophenyl)acetamide (Gowda et al., 2010), 2,2,2-tribromo-N-(3-methylphenyl)acetamide (Gowda et al., 2009) and other amides (Brown, 1966). The structure of the title compound shows both intramolecular N—H···Br and intermolecular N—H···O H-bonding. A packing diagram of molecules showing the hydrogen bonds N1—H1N···O2 and N2—H2N···O1 (Table 1) involved in the formation of molecular chains is shown in Fig. 2.

Related literature top

For preparation of the title compound, see: Gowda et al. (2003). For background to our study of the effect of ring and side-chain substituents on the solid state structures of N-aromatic amides and for related structures, see: Brown (1966); Gowda et al. (2009, 2010).

Experimental top

The title compound was prepared from o-toluidine, tribromoacetic acid and phosphorylchloride according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was further characterized by recording its infrared spectra. Single crystals of the title compound used for X-ray diffraction studies were obtained by a slow evaporation of its solution in petroleum ether at room temperature.

Refinement top

The H atoms of the NH groups were located in a difference map and later restrained to the distance N—H = 0.86 (4) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The largest residual electron-density features are located in the region of Br5 and Br6. The highest peak is 0.84 Å from Br5 and the deepest hole is 0.82 Å from Br6.

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecular packing in the structure of the title compound with hydrogen bonds shown as dashed lines.
2,2,2-Tribromo-N-(2-methylphenyl)acetamide top
Crystal data top
C9H8Br3NOF(000) = 1456
Mr = 385.89Dx = 2.166 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.949 (2) Åθ = 4.1–18.8°
b = 21.429 (4) ŵ = 12.40 mm1
c = 11.653 (2) ÅT = 299 K
β = 107.69 (1)°Rod, colourless
V = 2366.9 (8) Å30.55 × 0.28 × 0.28 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
3666 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.149
Graphite monochromatorθmax = 67.0°, θmin = 4.1°
ω/2θ scansh = 113
Absorption correction: ψ scan
(North et al., 1968)
k = 250
Tmin = 0.056, Tmax = 0.129l = 1313
5721 measured reflections3 standard reflections every 120 min
4204 independent reflections intensity decay: 1.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.212 w = 1/[σ2(Fo2) + (0.1206P)2 + 14.5272P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4204 reflectionsΔρmax = 1.77 e Å3
260 parametersΔρmin = 1.34 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00203 (19)
Crystal data top
C9H8Br3NOV = 2366.9 (8) Å3
Mr = 385.89Z = 8
Monoclinic, P21/cCu Kα radiation
a = 9.949 (2) ŵ = 12.40 mm1
b = 21.429 (4) ÅT = 299 K
c = 11.653 (2) Å0.55 × 0.28 × 0.28 mm
β = 107.69 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3666 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.149
Tmin = 0.056, Tmax = 0.1293 standard reflections every 120 min
5721 measured reflections intensity decay: 1.5%
4204 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0732 restraints
wR(F2) = 0.212H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1206P)2 + 14.5272P]
where P = (Fo2 + 2Fc2)/3
4204 reflectionsΔρmax = 1.77 e Å3
260 parametersΔρmin = 1.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0153 (8)0.3501 (4)0.6789 (7)0.0360 (16)
C20.0276 (9)0.3149 (4)0.7841 (7)0.0428 (18)
C30.0010 (11)0.2519 (5)0.7730 (10)0.059 (2)
H30.02860.22720.84180.071*
C40.0656 (12)0.2238 (5)0.6631 (12)0.063 (3)
H40.08110.18090.65870.076*
C50.1078 (11)0.2593 (5)0.5620 (11)0.061 (3)
H50.15350.24100.48810.073*
C60.0822 (9)0.3234 (4)0.5694 (8)0.0453 (19)
H60.11040.34800.50040.054*
C70.0894 (7)0.4574 (3)0.6711 (7)0.0335 (15)
C80.0422 (8)0.5264 (4)0.6954 (6)0.0356 (15)
C90.0957 (12)0.3450 (6)0.9028 (9)0.065 (3)
H9A0.03170.37470.91960.078*
H9B0.18000.36610.90060.078*
H9C0.11910.31380.96470.078*
N10.0124 (6)0.4153 (3)0.6855 (6)0.0369 (14)
H1N0.095 (5)0.429 (4)0.700 (9)0.044*
O10.2153 (6)0.4451 (3)0.6442 (7)0.0537 (16)
Br10.14164 (9)0.54417 (4)0.68400 (10)0.0519 (3)
Br20.04344 (14)0.54241 (6)0.85827 (9)0.0703 (4)
Br30.17695 (10)0.57952 (5)0.58669 (10)0.0581 (4)
C100.5167 (7)0.4983 (4)0.7302 (7)0.0350 (15)
C110.5752 (9)0.5236 (4)0.8425 (8)0.0464 (19)
C120.5630 (12)0.5873 (6)0.8526 (11)0.068 (3)
H120.60000.60590.92770.082*
C130.4978 (12)0.6242 (5)0.7546 (13)0.069 (3)
H130.49130.66710.76360.082*
C140.4424 (10)0.5969 (5)0.6435 (11)0.059 (3)
H140.39860.62150.57690.070*
C150.4512 (9)0.5338 (4)0.6306 (8)0.0439 (18)
H150.41360.51520.55550.053*
C160.4364 (7)0.3930 (3)0.7382 (7)0.0338 (15)
C170.4640 (7)0.3218 (4)0.7325 (7)0.0354 (16)
C180.6471 (13)0.4835 (7)0.9492 (10)0.075 (3)
H18A0.72430.46160.93410.090*
H18B0.58090.45390.96240.090*
H18C0.68220.50931.01940.090*
N20.5275 (7)0.4317 (3)0.7144 (6)0.0370 (14)
H2N0.591 (8)0.416 (4)0.689 (8)0.044*
O20.3318 (7)0.4088 (3)0.7643 (7)0.0539 (16)
Br40.48061 (16)0.28822 (6)0.88797 (10)0.0740 (4)
Br50.63133 (11)0.30070 (5)0.68942 (12)0.0628 (4)
Br60.30461 (11)0.28588 (5)0.61417 (12)0.0677 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.033 (3)0.036 (4)0.042 (4)0.005 (3)0.016 (3)0.006 (3)
C20.046 (4)0.045 (5)0.044 (4)0.005 (4)0.024 (3)0.004 (3)
C30.070 (6)0.045 (5)0.072 (7)0.013 (5)0.034 (5)0.019 (5)
C40.079 (7)0.028 (5)0.096 (8)0.001 (4)0.046 (6)0.004 (5)
C50.064 (6)0.043 (5)0.079 (7)0.008 (4)0.029 (5)0.022 (5)
C60.049 (4)0.046 (5)0.040 (4)0.006 (4)0.013 (3)0.004 (3)
C70.035 (4)0.027 (4)0.041 (4)0.002 (3)0.015 (3)0.007 (3)
C80.038 (4)0.040 (4)0.032 (3)0.001 (3)0.015 (3)0.000 (3)
C90.069 (6)0.078 (8)0.043 (5)0.004 (6)0.010 (4)0.010 (5)
N10.026 (3)0.039 (4)0.044 (4)0.002 (3)0.008 (2)0.008 (3)
O10.038 (3)0.036 (3)0.087 (5)0.002 (2)0.019 (3)0.004 (3)
Br10.0403 (5)0.0394 (6)0.0790 (7)0.0034 (3)0.0227 (4)0.0118 (4)
Br20.1006 (9)0.0767 (8)0.0412 (6)0.0170 (6)0.0330 (5)0.0102 (5)
Br30.0506 (5)0.0381 (6)0.0706 (7)0.0069 (4)0.0041 (4)0.0126 (4)
C100.032 (3)0.030 (4)0.045 (4)0.005 (3)0.015 (3)0.000 (3)
C110.041 (4)0.045 (5)0.052 (5)0.006 (4)0.011 (3)0.005 (4)
C120.070 (6)0.060 (7)0.071 (7)0.017 (5)0.014 (5)0.035 (5)
C130.068 (6)0.029 (5)0.107 (9)0.008 (4)0.025 (6)0.006 (5)
C140.055 (5)0.037 (5)0.085 (7)0.008 (4)0.023 (5)0.019 (5)
C150.044 (4)0.040 (5)0.047 (4)0.004 (3)0.015 (3)0.001 (3)
C160.033 (3)0.027 (4)0.042 (4)0.009 (3)0.012 (3)0.001 (3)
C170.030 (3)0.027 (4)0.049 (4)0.002 (3)0.012 (3)0.003 (3)
C180.074 (7)0.090 (9)0.046 (5)0.002 (6)0.003 (5)0.006 (5)
N20.041 (3)0.023 (3)0.053 (4)0.005 (3)0.023 (3)0.001 (3)
O20.049 (3)0.031 (3)0.091 (5)0.003 (3)0.036 (3)0.000 (3)
Br40.1248 (11)0.0556 (7)0.0497 (6)0.0301 (6)0.0387 (6)0.0187 (5)
Br50.0549 (6)0.0364 (6)0.1123 (9)0.0086 (4)0.0482 (6)0.0001 (5)
Br60.0544 (6)0.0506 (7)0.0818 (8)0.0001 (4)0.0036 (5)0.0176 (5)
Geometric parameters (Å, º) top
C1—C61.371 (12)C10—C111.372 (12)
C1—C21.391 (11)C10—C151.375 (12)
C1—N11.423 (11)C10—N21.446 (10)
C2—C31.374 (14)C11—C121.377 (15)
C2—C91.490 (14)C11—C181.503 (14)
C3—C41.389 (17)C12—C131.378 (18)
C3—H30.9300C12—H120.9300
C4—C51.358 (17)C13—C141.374 (17)
C4—H40.9300C13—H130.9300
C5—C61.396 (14)C14—C151.366 (13)
C5—H50.9300C14—H140.9300
C6—H60.9300C15—H150.9300
C7—O11.224 (9)C16—O21.217 (9)
C7—N11.329 (10)C16—N21.320 (10)
C7—C81.552 (11)C16—C171.554 (10)
C8—Br11.912 (7)C17—Br41.910 (8)
C8—Br31.914 (8)C17—Br61.918 (8)
C8—Br21.932 (7)C17—Br51.933 (7)
C9—H9A0.9600C18—H18A0.9600
C9—H9B0.9600C18—H18B0.9600
C9—H9C0.9600C18—H18C0.9600
N1—H1N0.84 (4)N2—H2N0.85 (4)
C6—C1—C2121.8 (8)C11—C10—C15122.7 (8)
C6—C1—N1119.4 (7)C11—C10—N2119.0 (7)
C2—C1—N1118.8 (7)C15—C10—N2118.3 (7)
C3—C2—C1116.8 (8)C10—C11—C12116.8 (9)
C3—C2—C9122.2 (9)C10—C11—C18121.3 (9)
C1—C2—C9121.0 (9)C12—C11—C18121.9 (10)
C2—C3—C4122.5 (9)C11—C12—C13121.9 (10)
C2—C3—H3118.7C11—C12—H12119.0
C4—C3—H3118.7C13—C12—H12119.0
C5—C4—C3119.5 (9)C14—C13—C12119.3 (9)
C5—C4—H4120.3C14—C13—H13120.4
C3—C4—H4120.3C12—C13—H13120.4
C4—C5—C6119.7 (10)C15—C14—C13120.3 (10)
C4—C5—H5120.1C15—C14—H14119.9
C6—C5—H5120.1C13—C14—H14119.9
C1—C6—C5119.7 (9)C14—C15—C10119.0 (9)
C1—C6—H6120.2C14—C15—H15120.5
C5—C6—H6120.2C10—C15—H15120.5
O1—C7—N1124.6 (7)O2—C16—N2124.8 (7)
O1—C7—C8118.8 (7)O2—C16—C17117.4 (7)
N1—C7—C8116.5 (6)N2—C16—C17117.8 (6)
C7—C8—Br1114.8 (5)C16—C17—Br4107.1 (5)
C7—C8—Br3109.5 (5)C16—C17—Br6107.8 (5)
Br1—C8—Br3109.2 (4)Br4—C17—Br6110.2 (4)
C7—C8—Br2104.8 (5)C16—C17—Br5114.7 (5)
Br1—C8—Br2109.0 (4)Br4—C17—Br5109.0 (4)
Br3—C8—Br2109.4 (4)Br6—C17—Br5108.0 (4)
C2—C9—H9A109.5C11—C18—H18A109.5
C2—C9—H9B109.5C11—C18—H18B109.5
H9A—C9—H9B109.5H18A—C18—H18B109.5
C2—C9—H9C109.5C11—C18—H18C109.5
H9A—C9—H9C109.5H18A—C18—H18C109.5
H9B—C9—H9C109.5H18B—C18—H18C109.5
C7—N1—C1122.2 (6)C16—N2—C10120.8 (6)
C7—N1—H1N117 (7)C16—N2—H2N117 (7)
C1—N1—H1N120 (7)C10—N2—H2N122 (7)
C6—C1—C2—C30.6 (12)C15—C10—C11—C121.4 (12)
N1—C1—C2—C3178.8 (7)N2—C10—C11—C12179.5 (8)
C6—C1—C2—C9177.9 (8)C15—C10—C11—C18179.4 (9)
N1—C1—C2—C92.7 (11)N2—C10—C11—C181.3 (12)
C1—C2—C3—C40.1 (14)C10—C11—C12—C131.2 (15)
C9—C2—C3—C4178.4 (9)C18—C11—C12—C13179.7 (11)
C2—C3—C4—C50.6 (16)C11—C12—C13—C140.3 (17)
C3—C4—C5—C60.8 (15)C12—C13—C14—C150.4 (16)
C2—C1—C6—C50.4 (12)C13—C14—C15—C100.2 (14)
N1—C1—C6—C5179.0 (8)C11—C10—C15—C140.7 (12)
C4—C5—C6—C10.3 (14)N2—C10—C15—C14178.9 (7)
O1—C7—C8—Br1160.3 (6)O2—C16—C17—Br459.3 (8)
N1—C7—C8—Br121.9 (8)N2—C16—C17—Br4120.7 (6)
O1—C7—C8—Br337.2 (9)O2—C16—C17—Br659.3 (8)
N1—C7—C8—Br3145.1 (6)N2—C16—C17—Br6120.7 (6)
O1—C7—C8—Br280.1 (8)O2—C16—C17—Br5179.6 (6)
N1—C7—C8—Br297.6 (6)N2—C16—C17—Br50.3 (9)
O1—C7—N1—C14.5 (12)O2—C16—N2—C106.5 (12)
C8—C7—N1—C1173.0 (6)C17—C16—N2—C10173.5 (7)
C6—C1—N1—C771.7 (10)C11—C10—N2—C1683.9 (9)
C2—C1—N1—C7108.9 (8)C15—C10—N2—C1697.9 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.84 (4)2.28 (6)3.031 (8)149 (9)
N1—H1N···Br10.84 (4)2.53 (9)3.048 (7)120 (8)
N2—H2N···O1i0.85 (4)2.23 (7)2.928 (9)139 (9)
N2—H2N···Br50.85 (4)2.50 (9)3.036 (6)122 (8)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC9H8Br3NO
Mr385.89
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)9.949 (2), 21.429 (4), 11.653 (2)
β (°) 107.69 (1)
V3)2366.9 (8)
Z8
Radiation typeCu Kα
µ (mm1)12.40
Crystal size (mm)0.55 × 0.28 × 0.28
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.056, 0.129
No. of measured, independent and
observed [I > 2σ(I)] reflections
5721, 4204, 3666
Rint0.149
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.212, 1.05
No. of reflections4204
No. of parameters260
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.1206P)2 + 14.5272P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.77, 1.34

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O20.84 (4)2.28 (6)3.031 (8)149 (9)
N1—H1N···Br10.84 (4)2.53 (9)3.048 (7)120 (8)
N2—H2N···O1i0.85 (4)2.23 (7)2.928 (9)139 (9)
N2—H2N···Br50.85 (4)2.50 (9)3.036 (6)122 (8)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

References

First citationBrown, C. J. (1966). Acta Cryst. 21, 442–445.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o3242.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o386.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds