metal-organic compounds
Bis(acetonitrile-κN)(1,10-phenanthroline-κ2N,N′)platinum(II) bis(perchlorate)
aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr
The 3CN)2(C12H8N2)](ClO4)2, contains one half of a cationic PtII complex and pair of half perchlorate anions, one of which is disordered over two sites in a 0.53 (3):0.47 (3) ratio. The complex and anions are disposed about a crystallographic mirror plane parallel to the ac plane passing through the Pt and Cl atoms. In the complex, the PtII ion lies in a distorted square-planar environment defined by four N atoms of the chelating 1,10-phenanthroline ligand and two distinct acetonitrile molecules. The component ions interact by means of intermolecular C—H⋯O hydrogen bonds.
of the title compound, [Pt(CHRelated literature
For the synthesis of [PtCl2(phen)] (phen = 1,10-phenanthroline), see: Hodges & Rund (1975). For the of [Pd(phen)(CH3CN)2](O3SCF3)2, see: Adrian et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810008299/pk2230sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810008299/pk2230Isup2.hkl
To a solution of AgClO4.H2O (0.1006 g, 0.446 mmol) in CH3CN (70 ml) was added [PtCl2(phen)] (0.0996 g, 0.223 mmol) and refluxed for 7 h. The mixture was filtered to remove AgCl and then the resulting solution was dried under vacuum. The residue was washed with CH2Cl2 and dried at 50 °C, to give a pale gray powder (0.1401 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.
H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 (aromatic) or 0.98 Å (CH3) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)]. The highest peak (2.23 e Å-3) and the deepest hole (-1.82 e Å-3) in the difference Fourier map are located 0.86 and 0.96 Å, respectively, from the atom Pt1. The O atoms (O4, O5 and O6) of the ClO4 anion displayed relatively large displacement factors so that the anion appears to be partially disordered. The anion was modelled as disordered over two sites with a major site occupancy factor of 0.53 (3). A total of 18 restraints were used in the
using the following SHELXL97 (Sheldrick, 2008) commands: SAME 0.020 Cl2' > O6' and DELU 0.010 Cl2 > O6'. In addition, the displacement parameters of the major and minor component atoms Cl2 Cl2' were constrained using the EADP command.Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Pt(C2H3N)2(C12H8N2)](ClO4)2 | F(000) = 1256 |
Mr = 656.30 | Dx = 2.209 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 3403 reflections |
a = 9.1407 (5) Å | θ = 2.2–25.0° |
b = 11.7822 (7) Å | µ = 7.44 mm−1 |
c = 18.3215 (11) Å | T = 200 K |
V = 1973.2 (2) Å3 | Rod, colorless |
Z = 4 | 0.28 × 0.12 × 0.04 mm |
Bruker SMART 1000 CCD diffractometer | 2043 independent reflections |
Radiation source: fine-focus sealed tube | 1540 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.087 |
ϕ and ω scans | θmax = 26.0°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | h = −11→7 |
Tmin = 0.763, Tmax = 1.000 | k = −14→14 |
11860 measured reflections | l = −22→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0514P)2] where P = (Fo2 + 2Fc2)/3 |
2043 reflections | (Δ/σ)max < 0.001 |
176 parameters | Δρmax = 2.23 e Å−3 |
18 restraints | Δρmin = −1.82 e Å−3 |
[Pt(C2H3N)2(C12H8N2)](ClO4)2 | V = 1973.2 (2) Å3 |
Mr = 656.30 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 9.1407 (5) Å | µ = 7.44 mm−1 |
b = 11.7822 (7) Å | T = 200 K |
c = 18.3215 (11) Å | 0.28 × 0.12 × 0.04 mm |
Bruker SMART 1000 CCD diffractometer | 2043 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 1540 reflections with I > 2σ(I) |
Tmin = 0.763, Tmax = 1.000 | Rint = 0.087 |
11860 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 18 restraints |
wR(F2) = 0.100 | H-atom parameters constrained |
S = 1.02 | Δρmax = 2.23 e Å−3 |
2043 reflections | Δρmin = −1.82 e Å−3 |
176 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Pt1 | 0.96551 (5) | 0.2500 | 0.10603 (2) | 0.02158 (17) | |
N1 | 0.8473 (6) | 0.1387 (5) | 0.0483 (3) | 0.0219 (14) | |
N2 | 1.0774 (7) | 0.1326 (5) | 0.1611 (4) | 0.0278 (16) | |
C1 | 0.8490 (8) | 0.0253 (6) | 0.0516 (4) | 0.0264 (18) | |
H1 | 0.9141 | −0.0111 | 0.0845 | 0.032* | |
C2 | 0.7580 (9) | −0.0405 (7) | 0.0081 (5) | 0.034 (2) | |
H2 | 0.7628 | −0.1209 | 0.0110 | 0.041* | |
C3 | 0.6622 (9) | 0.0097 (7) | −0.0387 (5) | 0.031 (2) | |
H3 | 0.5999 | −0.0355 | −0.0682 | 0.038* | |
C4 | 0.6557 (8) | 0.1302 (7) | −0.0431 (5) | 0.0304 (19) | |
C5 | 0.7512 (7) | 0.1902 (6) | 0.0018 (4) | 0.0229 (17) | |
C6 | 0.5587 (9) | 0.1932 (8) | −0.0901 (4) | 0.034 (2) | |
H6 | 0.4937 | 0.1535 | −0.1215 | 0.041* | |
C7 | 1.2397 (10) | 0.0000 (8) | 0.2375 (5) | 0.040 (2) | |
H7A | 1.2170 | −0.0791 | 0.2254 | 0.061* | |
H7B | 1.2217 | 0.0129 | 0.2896 | 0.061* | |
H7C | 1.3427 | 0.0154 | 0.2264 | 0.061* | |
C8 | 1.1474 (8) | 0.0750 (6) | 0.1947 (4) | 0.0255 (18) | |
Cl1 | 0.4808 (3) | 0.2500 | 0.14861 (16) | 0.0273 (6) | |
O1 | 0.3890 (9) | 0.2500 | 0.2122 (5) | 0.040 (2) | |
O2 | 0.3939 (10) | 0.2500 | 0.0837 (4) | 0.040 (2) | |
O3 | 0.5699 (7) | 0.1506 (6) | 0.1490 (4) | 0.0515 (19) | |
Cl2 | 0.430 (2) | 0.7500 | 0.341 (4) | 0.033 (2) | 0.53 (3) |
O4 | 0.272 (2) | 0.7500 | 0.340 (2) | 0.080 (10) | 0.53 (3) |
O5 | 0.468 (3) | 0.7500 | 0.4176 (11) | 0.088 (10) | 0.53 (3) |
O6 | 0.4825 (19) | 0.6495 (12) | 0.3106 (12) | 0.077 (8) | 0.53 (3) |
Cl2' | 0.461 (3) | 0.7500 | 0.340 (4) | 0.033 (2) | 0.47 (3) |
O4' | 0.312 (3) | 0.7500 | 0.365 (2) | 0.068 (10) | 0.47 (3) |
O5' | 0.453 (3) | 0.7500 | 0.2625 (11) | 0.111 (15) | 0.47 (3) |
O6' | 0.5367 (19) | 0.6564 (15) | 0.3651 (15) | 0.073 (8) | 0.47 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt1 | 0.0226 (3) | 0.0172 (2) | 0.0250 (3) | 0.000 | −0.00007 (19) | 0.000 |
N1 | 0.027 (4) | 0.014 (3) | 0.025 (4) | −0.002 (2) | 0.003 (3) | −0.003 (3) |
N2 | 0.032 (4) | 0.020 (3) | 0.031 (4) | −0.005 (3) | −0.005 (3) | −0.003 (3) |
C1 | 0.026 (4) | 0.022 (4) | 0.031 (5) | 0.004 (3) | 0.001 (3) | −0.005 (3) |
C2 | 0.038 (5) | 0.020 (4) | 0.044 (6) | −0.006 (4) | 0.006 (4) | −0.006 (4) |
C3 | 0.031 (5) | 0.030 (5) | 0.034 (5) | −0.012 (4) | 0.003 (4) | −0.010 (4) |
C4 | 0.028 (5) | 0.033 (5) | 0.030 (5) | 0.001 (3) | −0.004 (4) | −0.006 (4) |
C5 | 0.019 (4) | 0.027 (4) | 0.022 (4) | 0.000 (3) | 0.003 (3) | 0.002 (3) |
C6 | 0.037 (5) | 0.057 (6) | 0.008 (4) | −0.011 (4) | 0.000 (3) | −0.005 (3) |
C7 | 0.047 (6) | 0.038 (5) | 0.036 (6) | 0.012 (4) | −0.012 (4) | 0.002 (4) |
C8 | 0.025 (4) | 0.020 (4) | 0.032 (5) | −0.001 (3) | −0.002 (4) | 0.000 (4) |
Cl1 | 0.0272 (14) | 0.0256 (14) | 0.0292 (17) | 0.000 | −0.0033 (12) | 0.000 |
O1 | 0.038 (5) | 0.039 (5) | 0.042 (6) | 0.000 | 0.004 (4) | 0.000 |
O2 | 0.055 (6) | 0.031 (5) | 0.035 (5) | 0.000 | −0.014 (4) | 0.000 |
O3 | 0.058 (4) | 0.055 (4) | 0.041 (4) | 0.033 (3) | −0.003 (3) | −0.003 (3) |
Cl2 | 0.030 (7) | 0.0226 (15) | 0.047 (3) | 0.000 | −0.003 (11) | 0.000 |
O4 | 0.031 (9) | 0.077 (18) | 0.13 (3) | 0.000 | −0.017 (11) | 0.000 |
O5 | 0.11 (2) | 0.09 (2) | 0.063 (10) | 0.000 | −0.040 (13) | 0.000 |
O6 | 0.072 (11) | 0.034 (8) | 0.124 (19) | 0.002 (8) | 0.025 (12) | −0.031 (10) |
Cl2' | 0.030 (7) | 0.0226 (15) | 0.047 (3) | 0.000 | −0.003 (11) | 0.000 |
O4' | 0.023 (11) | 0.09 (2) | 0.09 (2) | 0.000 | 0.005 (13) | 0.000 |
O5' | 0.09 (2) | 0.21 (4) | 0.034 (9) | 0.000 | −0.016 (11) | 0.000 |
O6' | 0.057 (11) | 0.037 (10) | 0.12 (2) | 0.013 (8) | 0.007 (11) | 0.028 (12) |
Pt1—N2i | 1.994 (7) | C6—H6 | 0.9500 |
Pt1—N2 | 1.994 (7) | C7—C8 | 1.452 (11) |
Pt1—N1 | 2.001 (6) | C7—H7A | 0.9800 |
Pt1—N1i | 2.001 (6) | C7—H7B | 0.9800 |
N1—C1 | 1.337 (9) | C7—H7C | 0.9800 |
N1—C5 | 1.366 (9) | Cl1—O3i | 1.427 (6) |
N2—C8 | 1.118 (9) | Cl1—O3 | 1.427 (6) |
C1—C2 | 1.388 (11) | Cl1—O2 | 1.430 (9) |
C1—H1 | 0.9500 | Cl1—O1 | 1.436 (9) |
C2—C3 | 1.360 (12) | Cl2—O6ii | 1.40 (3) |
C2—H2 | 0.9500 | Cl2—O6 | 1.40 (3) |
C3—C4 | 1.424 (11) | Cl2—O5 | 1.44 (7) |
C3—H3 | 0.9500 | Cl2—O4 | 1.44 (2) |
C4—C5 | 1.392 (10) | Cl2'—O6'ii | 1.38 (3) |
C4—C6 | 1.442 (11) | Cl2'—O6' | 1.38 (3) |
C5—C5i | 1.410 (14) | Cl2'—O5' | 1.42 (8) |
C6—C6i | 1.338 (19) | Cl2'—O4' | 1.44 (2) |
N2i—Pt1—N2 | 87.9 (3) | C4—C6—H6 | 119.5 |
N2i—Pt1—N1 | 177.0 (2) | C8—C7—H7A | 109.5 |
N2—Pt1—N1 | 95.1 (2) | C8—C7—H7B | 109.5 |
N2i—Pt1—N1i | 95.1 (2) | H7A—C7—H7B | 109.5 |
N2—Pt1—N1i | 177.0 (2) | C8—C7—H7C | 109.5 |
N1—Pt1—N1i | 81.9 (3) | H7A—C7—H7C | 109.5 |
C1—N1—C5 | 118.6 (6) | H7B—C7—H7C | 109.5 |
C1—N1—Pt1 | 128.7 (5) | N2—C8—C7 | 179.2 (9) |
C5—N1—Pt1 | 112.7 (5) | O3i—Cl1—O3 | 110.4 (6) |
C8—N2—Pt1 | 173.4 (6) | O3i—Cl1—O2 | 108.7 (3) |
N1—C1—C2 | 121.7 (7) | O3—Cl1—O2 | 108.7 (3) |
N1—C1—H1 | 119.1 | O3i—Cl1—O1 | 109.3 (3) |
C2—C1—H1 | 119.1 | O3—Cl1—O1 | 109.3 (3) |
C3—C2—C1 | 120.3 (8) | O2—Cl1—O1 | 110.5 (6) |
C3—C2—H2 | 119.9 | O6ii—Cl2—O6 | 116 (4) |
C1—C2—H2 | 119.9 | O6ii—Cl2—O5 | 108 (3) |
C2—C3—C4 | 119.7 (7) | O6—Cl2—O5 | 108 (3) |
C2—C3—H3 | 120.1 | O6ii—Cl2—O4 | 110 (2) |
C4—C3—H3 | 120.1 | O6—Cl2—O4 | 110 (2) |
C5—C4—C3 | 116.5 (7) | O5—Cl2—O4 | 105 (3) |
C5—C4—C6 | 118.5 (7) | O6'ii—Cl2'—O6' | 106 (4) |
C3—C4—C6 | 125.0 (8) | O6'ii—Cl2'—O5' | 111 (3) |
N1—C5—C4 | 123.1 (7) | O6'—Cl2'—O5' | 111 (3) |
N1—C5—C5i | 116.3 (4) | O6'ii—Cl2'—O4' | 111 (3) |
C4—C5—C5i | 120.5 (5) | O6'—Cl2'—O4' | 111 (3) |
C6i—C6—C4 | 121.0 (5) | O5'—Cl2'—O4' | 106 (4) |
C6i—C6—H6 | 119.5 | ||
N2—Pt1—N1—C1 | 1.5 (7) | C1—N1—C5—C4 | −0.7 (11) |
N1i—Pt1—N1—C1 | −178.3 (5) | Pt1—N1—C5—C4 | −179.0 (6) |
N2—Pt1—N1—C5 | 179.6 (5) | C1—N1—C5—C5i | 178.5 (5) |
N1i—Pt1—N1—C5 | −0.2 (6) | Pt1—N1—C5—C5i | 0.2 (5) |
C5—N1—C1—C2 | 1.2 (11) | C3—C4—C5—N1 | −0.1 (11) |
Pt1—N1—C1—C2 | 179.2 (6) | C6—C4—C5—N1 | 179.9 (7) |
N1—C1—C2—C3 | −1.0 (12) | C3—C4—C5—C5i | −179.2 (5) |
C1—C2—C3—C4 | 0.2 (12) | C6—C4—C5—C5i | 0.8 (9) |
C2—C3—C4—C5 | 0.3 (12) | C5—C4—C6—C6i | −0.8 (9) |
C2—C3—C4—C6 | −179.7 (8) | C3—C4—C6—C6i | 179.2 (6) |
Symmetry codes: (i) x, −y+1/2, z; (ii) x, −y+3/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O6iii | 0.95 | 2.60 | 3.48 (2) | 155 |
C3—H3···O2iv | 0.95 | 2.54 | 3.210 (8) | 127 |
C3—H3···O3v | 0.95 | 2.54 | 3.486 (11) | 178 |
C7—H7A···O6iii | 0.98 | 2.39 | 3.066 (18) | 126 |
C7—H7B···O3vi | 0.98 | 2.41 | 3.143 (11) | 131 |
Symmetry codes: (iii) x+1/2, −y+1/2, −z+1/2; (iv) −x+1, y−1/2, −z; (v) −x+1, −y, −z; (vi) x+1/2, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Pt(C2H3N)2(C12H8N2)](ClO4)2 |
Mr | 656.30 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 200 |
a, b, c (Å) | 9.1407 (5), 11.7822 (7), 18.3215 (11) |
V (Å3) | 1973.2 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.44 |
Crystal size (mm) | 0.28 × 0.12 × 0.04 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.763, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11860, 2043, 1540 |
Rint | 0.087 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.100, 1.02 |
No. of reflections | 2043 |
No. of parameters | 176 |
No. of restraints | 18 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 2.23, −1.82 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O6ii | 0.95 | 2.60 | 3.48 (2) | 154.8 |
C3—H3···O2iii | 0.95 | 2.54 | 3.210 (8) | 127.4 |
C3—H3···O3iv | 0.95 | 2.54 | 3.486 (11) | 178.2 |
C7—H7A···O6ii | 0.98 | 2.39 | 3.066 (18) | 125.6 |
C7—H7B···O3v | 0.98 | 2.41 | 3.143 (11) | 130.9 |
Symmetry codes: (ii) x+1/2, −y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z; (iv) −x+1, −y, −z; (v) x+1/2, y, −z+1/2. |
Acknowledgements
This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0094056).
References
Adrian, R. A., Broker, G. A., Tiekink, E. R. T. & Walmsley, J. A. (2008). Inorg. Chim. Acta, 361, 1261–1266. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hodges, K. D. & Rund, J. V. (1975). Inorg. Chem. 14, 525–528. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The asymmetric unit of the title compound, [Pt(phen)(CH3CN)2](ClO4)2 (where phen is 1,10-phenanthroline, C12H8N2), contains one half of a cationic PtII complex and half a perchlorate anion (Fig. 1). The complex and anions are disposed about a crystallographic mirror plane parallel to the ac plane passing through the Pt and Cl atoms (Fig. 2). In the complex, the PtII ion lies in a distorted square-planar environment defined by four N atoms of the chelating 1,10-phenanthroline ligand and two distinct acetonitrile molecules. The main contribution to the distortion is the tight N1—Pt1—N1i [symmetry code: (i) x,-y+1/2,z] chelate angle [81.9 (3)°], which results in non-linear trans arrangement [<N1—Pt1—N2i = 177.0 (2)°]. The Pt—N bond lengths are almost equal [Pt1—N(phen): 2.001 (6) Å; Pt1—N(CH3CN): 1.994 (7) Å] (Table 1). The component ions interact by means of intermolecular C—H···O hydrogen bonds (Fig. 2 and Table 2).