metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(aceto­nitrile-κN)(1,10-phenanthroline-κ2N,N′)platinum(II) bis­­(perchlorate)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 22 February 2010; accepted 4 March 2010; online 10 March 2010)

The asymmetric unit of the title compound, [Pt(CH3CN)2(C12H8N2)](ClO4)2, contains one half of a cationic PtII complex and pair of half perchlorate anions, one of which is disordered over two sites in a 0.53 (3):0.47 (3) ratio. The complex and anions are disposed about a crystallographic mirror plane parallel to the ac plane passing through the Pt and Cl atoms. In the complex, the PtII ion lies in a distorted square-planar environment defined by four N atoms of the chelating 1,10-phenanthroline ligand and two distinct acetonitrile mol­ecules. The component ions inter­act by means of inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the synthesis of [PtCl2(phen)] (phen = 1,10-phenanthroline), see: Hodges & Rund (1975[Hodges, K. D. & Rund, J. V. (1975). Inorg. Chem. 14, 525-528.]). For the crystal structure of [Pd(phen)(CH3CN)2](O3SCF3)2, see: Adrian et al. (2008[Adrian, R. A., Broker, G. A., Tiekink, E. R. T. & Walmsley, J. A. (2008). Inorg. Chim. Acta, 361, 1261-1266.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(C2H3N)2(C12H8N2)](ClO4)2

  • Mr = 656.30

  • Orthorhombic, P n m a

  • a = 9.1407 (5) Å

  • b = 11.7822 (7) Å

  • c = 18.3215 (11) Å

  • V = 1973.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.44 mm−1

  • T = 200 K

  • 0.28 × 0.12 × 0.04 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.763, Tmax = 1.000

  • 11860 measured reflections

  • 2043 independent reflections

  • 1540 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.100

  • S = 1.02

  • 2043 reflections

  • 176 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 2.23 e Å−3

  • Δρmin = −1.82 e Å−3

Table 1
Selected bond angles (°)

N2i—Pt1—N2 87.9 (3)
N1—Pt1—N1i 81.9 (3)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O6ii 0.95 2.60 3.48 (2) 155
C3—H3⋯O2iii 0.95 2.54 3.210 (8) 127
C3—H3⋯O3iv 0.95 2.54 3.486 (11) 178
C7—H7A⋯O6ii 0.98 2.39 3.066 (18) 126
C7—H7B⋯O3v 0.98 2.41 3.143 (11) 131
Symmetry codes: (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z]; (iv) -x+1, -y, -z; (v) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The asymmetric unit of the title compound, [Pt(phen)(CH3CN)2](ClO4)2 (where phen is 1,10-phenanthroline, C12H8N2), contains one half of a cationic PtII complex and half a perchlorate anion (Fig. 1). The complex and anions are disposed about a crystallographic mirror plane parallel to the ac plane passing through the Pt and Cl atoms (Fig. 2). In the complex, the PtII ion lies in a distorted square-planar environment defined by four N atoms of the chelating 1,10-phenanthroline ligand and two distinct acetonitrile molecules. The main contribution to the distortion is the tight N1—Pt1—N1i [symmetry code: (i) x,-y+1/2,z] chelate angle [81.9 (3)°], which results in non-linear trans arrangement [<N1—Pt1—N2i = 177.0 (2)°]. The Pt—N bond lengths are almost equal [Pt1—N(phen): 2.001 (6) Å; Pt1—N(CH3CN): 1.994 (7) Å] (Table 1). The component ions interact by means of intermolecular C—H···O hydrogen bonds (Fig. 2 and Table 2).

Related literature top

For the synthesis of [PtCl2(phen)] (phen = 1,10-phenanthroline), see: Hodges & Rund (1975). For the crystal structure of [Pd(phen)(CH3CN)2]2+, see: Adrian et al. (2008).

Experimental top

To a solution of AgClO4.H2O (0.1006 g, 0.446 mmol) in CH3CN (70 ml) was added [PtCl2(phen)] (0.0996 g, 0.223 mmol) and refluxed for 7 h. The mixture was filtered to remove AgCl and then the resulting solution was dried under vacuum. The residue was washed with CH2Cl2 and dried at 50 °C, to give a pale gray powder (0.1401 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 (aromatic) or 0.98 Å (CH3) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)]. The highest peak (2.23 e Å-3) and the deepest hole (-1.82 e Å-3) in the difference Fourier map are located 0.86 and 0.96 Å, respectively, from the atom Pt1. The O atoms (O4, O5 and O6) of the ClO4 anion displayed relatively large displacement factors so that the anion appears to be partially disordered. The anion was modelled as disordered over two sites with a major site occupancy factor of 0.53 (3). A total of 18 restraints were used in the refinement using the following SHELXL97 (Sheldrick, 2008) commands: SAME 0.020 Cl2' > O6' and DELU 0.010 Cl2 > O6'. In addition, the displacement parameters of the major and minor component atoms Cl2 Cl2' were constrained using the EADP command.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 50% probability level for non-H atoms. Unlabelled atoms are related to labelled atoms by the symmetry operation and the bonds of the minor components of the disordered ClO4 anion are shown with dashed lines.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
Bis(acetonitrile-κN)(1,10-phenanthroline- κ2N,N')platinum(II) bis(perchlorate) top
Crystal data top
[Pt(C2H3N)2(C12H8N2)](ClO4)2F(000) = 1256
Mr = 656.30Dx = 2.209 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 3403 reflections
a = 9.1407 (5) Åθ = 2.2–25.0°
b = 11.7822 (7) ŵ = 7.44 mm1
c = 18.3215 (11) ÅT = 200 K
V = 1973.2 (2) Å3Rod, colorless
Z = 40.28 × 0.12 × 0.04 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2043 independent reflections
Radiation source: fine-focus sealed tube1540 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 117
Tmin = 0.763, Tmax = 1.000k = 1414
11860 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0514P)2]
where P = (Fo2 + 2Fc2)/3
2043 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 2.23 e Å3
18 restraintsΔρmin = 1.82 e Å3
Crystal data top
[Pt(C2H3N)2(C12H8N2)](ClO4)2V = 1973.2 (2) Å3
Mr = 656.30Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 9.1407 (5) ŵ = 7.44 mm1
b = 11.7822 (7) ÅT = 200 K
c = 18.3215 (11) Å0.28 × 0.12 × 0.04 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
2043 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1540 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 1.000Rint = 0.087
11860 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04218 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.02Δρmax = 2.23 e Å3
2043 reflectionsΔρmin = 1.82 e Å3
176 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.96551 (5)0.25000.10603 (2)0.02158 (17)
N10.8473 (6)0.1387 (5)0.0483 (3)0.0219 (14)
N21.0774 (7)0.1326 (5)0.1611 (4)0.0278 (16)
C10.8490 (8)0.0253 (6)0.0516 (4)0.0264 (18)
H10.91410.01110.08450.032*
C20.7580 (9)0.0405 (7)0.0081 (5)0.034 (2)
H20.76280.12090.01100.041*
C30.6622 (9)0.0097 (7)0.0387 (5)0.031 (2)
H30.59990.03550.06820.038*
C40.6557 (8)0.1302 (7)0.0431 (5)0.0304 (19)
C50.7512 (7)0.1902 (6)0.0018 (4)0.0229 (17)
C60.5587 (9)0.1932 (8)0.0901 (4)0.034 (2)
H60.49370.15350.12150.041*
C71.2397 (10)0.0000 (8)0.2375 (5)0.040 (2)
H7A1.21700.07910.22540.061*
H7B1.22170.01290.28960.061*
H7C1.34270.01540.22640.061*
C81.1474 (8)0.0750 (6)0.1947 (4)0.0255 (18)
Cl10.4808 (3)0.25000.14861 (16)0.0273 (6)
O10.3890 (9)0.25000.2122 (5)0.040 (2)
O20.3939 (10)0.25000.0837 (4)0.040 (2)
O30.5699 (7)0.1506 (6)0.1490 (4)0.0515 (19)
Cl20.430 (2)0.75000.341 (4)0.033 (2)0.53 (3)
O40.272 (2)0.75000.340 (2)0.080 (10)0.53 (3)
O50.468 (3)0.75000.4176 (11)0.088 (10)0.53 (3)
O60.4825 (19)0.6495 (12)0.3106 (12)0.077 (8)0.53 (3)
Cl2'0.461 (3)0.75000.340 (4)0.033 (2)0.47 (3)
O4'0.312 (3)0.75000.365 (2)0.068 (10)0.47 (3)
O5'0.453 (3)0.75000.2625 (11)0.111 (15)0.47 (3)
O6'0.5367 (19)0.6564 (15)0.3651 (15)0.073 (8)0.47 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0226 (3)0.0172 (2)0.0250 (3)0.0000.00007 (19)0.000
N10.027 (4)0.014 (3)0.025 (4)0.002 (2)0.003 (3)0.003 (3)
N20.032 (4)0.020 (3)0.031 (4)0.005 (3)0.005 (3)0.003 (3)
C10.026 (4)0.022 (4)0.031 (5)0.004 (3)0.001 (3)0.005 (3)
C20.038 (5)0.020 (4)0.044 (6)0.006 (4)0.006 (4)0.006 (4)
C30.031 (5)0.030 (5)0.034 (5)0.012 (4)0.003 (4)0.010 (4)
C40.028 (5)0.033 (5)0.030 (5)0.001 (3)0.004 (4)0.006 (4)
C50.019 (4)0.027 (4)0.022 (4)0.000 (3)0.003 (3)0.002 (3)
C60.037 (5)0.057 (6)0.008 (4)0.011 (4)0.000 (3)0.005 (3)
C70.047 (6)0.038 (5)0.036 (6)0.012 (4)0.012 (4)0.002 (4)
C80.025 (4)0.020 (4)0.032 (5)0.001 (3)0.002 (4)0.000 (4)
Cl10.0272 (14)0.0256 (14)0.0292 (17)0.0000.0033 (12)0.000
O10.038 (5)0.039 (5)0.042 (6)0.0000.004 (4)0.000
O20.055 (6)0.031 (5)0.035 (5)0.0000.014 (4)0.000
O30.058 (4)0.055 (4)0.041 (4)0.033 (3)0.003 (3)0.003 (3)
Cl20.030 (7)0.0226 (15)0.047 (3)0.0000.003 (11)0.000
O40.031 (9)0.077 (18)0.13 (3)0.0000.017 (11)0.000
O50.11 (2)0.09 (2)0.063 (10)0.0000.040 (13)0.000
O60.072 (11)0.034 (8)0.124 (19)0.002 (8)0.025 (12)0.031 (10)
Cl2'0.030 (7)0.0226 (15)0.047 (3)0.0000.003 (11)0.000
O4'0.023 (11)0.09 (2)0.09 (2)0.0000.005 (13)0.000
O5'0.09 (2)0.21 (4)0.034 (9)0.0000.016 (11)0.000
O6'0.057 (11)0.037 (10)0.12 (2)0.013 (8)0.007 (11)0.028 (12)
Geometric parameters (Å, º) top
Pt1—N2i1.994 (7)C6—H60.9500
Pt1—N21.994 (7)C7—C81.452 (11)
Pt1—N12.001 (6)C7—H7A0.9800
Pt1—N1i2.001 (6)C7—H7B0.9800
N1—C11.337 (9)C7—H7C0.9800
N1—C51.366 (9)Cl1—O3i1.427 (6)
N2—C81.118 (9)Cl1—O31.427 (6)
C1—C21.388 (11)Cl1—O21.430 (9)
C1—H10.9500Cl1—O11.436 (9)
C2—C31.360 (12)Cl2—O6ii1.40 (3)
C2—H20.9500Cl2—O61.40 (3)
C3—C41.424 (11)Cl2—O51.44 (7)
C3—H30.9500Cl2—O41.44 (2)
C4—C51.392 (10)Cl2'—O6'ii1.38 (3)
C4—C61.442 (11)Cl2'—O6'1.38 (3)
C5—C5i1.410 (14)Cl2'—O5'1.42 (8)
C6—C6i1.338 (19)Cl2'—O4'1.44 (2)
N2i—Pt1—N287.9 (3)C4—C6—H6119.5
N2i—Pt1—N1177.0 (2)C8—C7—H7A109.5
N2—Pt1—N195.1 (2)C8—C7—H7B109.5
N2i—Pt1—N1i95.1 (2)H7A—C7—H7B109.5
N2—Pt1—N1i177.0 (2)C8—C7—H7C109.5
N1—Pt1—N1i81.9 (3)H7A—C7—H7C109.5
C1—N1—C5118.6 (6)H7B—C7—H7C109.5
C1—N1—Pt1128.7 (5)N2—C8—C7179.2 (9)
C5—N1—Pt1112.7 (5)O3i—Cl1—O3110.4 (6)
C8—N2—Pt1173.4 (6)O3i—Cl1—O2108.7 (3)
N1—C1—C2121.7 (7)O3—Cl1—O2108.7 (3)
N1—C1—H1119.1O3i—Cl1—O1109.3 (3)
C2—C1—H1119.1O3—Cl1—O1109.3 (3)
C3—C2—C1120.3 (8)O2—Cl1—O1110.5 (6)
C3—C2—H2119.9O6ii—Cl2—O6116 (4)
C1—C2—H2119.9O6ii—Cl2—O5108 (3)
C2—C3—C4119.7 (7)O6—Cl2—O5108 (3)
C2—C3—H3120.1O6ii—Cl2—O4110 (2)
C4—C3—H3120.1O6—Cl2—O4110 (2)
C5—C4—C3116.5 (7)O5—Cl2—O4105 (3)
C5—C4—C6118.5 (7)O6'ii—Cl2'—O6'106 (4)
C3—C4—C6125.0 (8)O6'ii—Cl2'—O5'111 (3)
N1—C5—C4123.1 (7)O6'—Cl2'—O5'111 (3)
N1—C5—C5i116.3 (4)O6'ii—Cl2'—O4'111 (3)
C4—C5—C5i120.5 (5)O6'—Cl2'—O4'111 (3)
C6i—C6—C4121.0 (5)O5'—Cl2'—O4'106 (4)
C6i—C6—H6119.5
N2—Pt1—N1—C11.5 (7)C1—N1—C5—C40.7 (11)
N1i—Pt1—N1—C1178.3 (5)Pt1—N1—C5—C4179.0 (6)
N2—Pt1—N1—C5179.6 (5)C1—N1—C5—C5i178.5 (5)
N1i—Pt1—N1—C50.2 (6)Pt1—N1—C5—C5i0.2 (5)
C5—N1—C1—C21.2 (11)C3—C4—C5—N10.1 (11)
Pt1—N1—C1—C2179.2 (6)C6—C4—C5—N1179.9 (7)
N1—C1—C2—C31.0 (12)C3—C4—C5—C5i179.2 (5)
C1—C2—C3—C40.2 (12)C6—C4—C5—C5i0.8 (9)
C2—C3—C4—C50.3 (12)C5—C4—C6—C6i0.8 (9)
C2—C3—C4—C6179.7 (8)C3—C4—C6—C6i179.2 (6)
Symmetry codes: (i) x, y+1/2, z; (ii) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O6iii0.952.603.48 (2)155
C3—H3···O2iv0.952.543.210 (8)127
C3—H3···O3v0.952.543.486 (11)178
C7—H7A···O6iii0.982.393.066 (18)126
C7—H7B···O3vi0.982.413.143 (11)131
Symmetry codes: (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y1/2, z; (v) x+1, y, z; (vi) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Pt(C2H3N)2(C12H8N2)](ClO4)2
Mr656.30
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)200
a, b, c (Å)9.1407 (5), 11.7822 (7), 18.3215 (11)
V3)1973.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)7.44
Crystal size (mm)0.28 × 0.12 × 0.04
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.763, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11860, 2043, 1540
Rint0.087
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.100, 1.02
No. of reflections2043
No. of parameters176
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.23, 1.82

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond angles (º) top
N2i—Pt1—N287.9 (3)N1—Pt1—N1i81.9 (3)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O6ii0.952.603.48 (2)154.8
C3—H3···O2iii0.952.543.210 (8)127.4
C3—H3···O3iv0.952.543.486 (11)178.2
C7—H7A···O6ii0.982.393.066 (18)125.6
C7—H7B···O3v0.982.413.143 (11)130.9
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y1/2, z; (iv) x+1, y, z; (v) x+1/2, y, z+1/2.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0094056).

References

First citationAdrian, R. A., Broker, G. A., Tiekink, E. R. T. & Walmsley, J. A. (2008). Inorg. Chim. Acta, 361, 1261–1266.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHodges, K. D. & Rund, J. V. (1975). Inorg. Chem. 14, 525–528.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds