organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Benzyl-6-bromo-2-(4-meth­oxy­phen­yl)-4H-imidazo[4,5-b]pyridine monohydrate

aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fés, Morocco, bLaboratoire d'Electrochimie et de Physicochimie des Matériaux et des Interfaces, A313 Domaine Universitaire, 38402 St Martin d'Hères, Grenoble, France, cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 11 March 2010; accepted 19 March 2010; online 27 March 2010)

The imidazopyridine fused ring in the title compound, C20H16BrN3O·H2O, is coplanar with the aromatic ring at the 2-position [dihedral angle = 5.2 (1)°]. In the five-membered imidazo portion, the C—N bond whose C atom is also connected to the pyridine N atom has predominantly double-bond character [1.334 (2) Å] whereas the C—N bond whose atom is connected to the pyridine C atom has predominantly single-bond character [1.371 (2) Å]. The water mol­ecule engages in hydrogen bonding with the latter N atom; it is also connected to a symmetry-related water mol­ecule, generating a linear chain structure.

Related literature

For the crystal structure of 4-benzyl-6-bromo-2-phenyl-4H-imidazo[4,5-b]pyridine, see: Ouzidan et al. (2010[Ouzidan, Y., Kandri Rodi, Y., Obbade, S., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o947.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16BrN3O·H2O

  • Mr = 412.28

  • Monoclinic, P 21 /c

  • a = 10.5924 (2) Å

  • b = 5.4544 (1) Å

  • c = 31.7444 (7) Å

  • β = 100.292 (1)°

  • V = 1804.53 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.30 mm−1

  • T = 293 K

  • 0.29 × 0.13 × 0.09 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.556, Tmax = 0.820

  • 25327 measured reflections

  • 5183 independent reflections

  • 3751 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.02

  • 5183 reflections

  • 244 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯N2 0.85 (1) 2.30 (2) 3.092 (3) 155 (5)
O1w—H12⋯O1Wi 0.85 (1) 2.30 (2) 3.119 (2) 162 (5)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Imidazo[4,5-b]pyridines are a class of sedative drugs. In the previous study, we reacted 6-bromo-2-phenyl-1H-imidazo[4,5-b]pyridine with benzyl chloride in the presence of a catalytic quantity of tetra-n-butylammonium bromide under mild conditions to form 4-benzyl-6-bromo-2-phenyl-4H-imidazo[4,5-b]pyridine (Ouzidan et al., 2010). The study is extended to the synthesis of the 2(4-methoxyphenyl) analog to furnish the title hydrate (Scheme I, Fig. 1). The imidazopyridine fused-ring in the C20H16BrN3O molecule is co-planar with the aromatic ring at the 2-position [dihedral angle 5.2 (1) °]. In the five-membered imidazo portion, the carbon–nitrogen bond whose carbon atom is also connected to the pyridine nitrogen atom is a double bond [1.334 (2) Å] whereas the carbon–nitrogen bond whose atom is connected to the pyridine carbon atom is a single bond [1.371 (2) Å]. The water molecule engages in hydrogen bonding with the latter nitrogen atom; it is also connected to a symmetry-related water molecule to generate a linear chain structure.

Related literature top

For the crystal structure of 4-benzyl-6-bromo-2-phenyl-4H-imidazo[4,5-b]pyridine, see: Ouzidan et al. (2010).

Experimental top

To a solution of the 6-bromo-2-(4-methoxyphenyl)-1H-imidazo[4,5-b]pyridine (0.33 g, 1.21 mmol), potassium carbonate (0.20 g, 1.42 mmol) and tetra-n-butylammonium bromide (0.04 g (0,1 mmol) in DMF (15 ml) was added benzyl chloride (0.15 ml, 1.31 mmol). Stirring was continued at room temperature for 12 hours. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was chromatographed on a column of silica gel with ethyl acetate/hexane (1/1) as eluent. Yellow crystals were isolated when the solvent was allowed to evaporate.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H 0.84 (1) Å.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C20H16BrN3O.H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-Benzyl-6-bromo-2-(4-methoxyphenyl)-4H-imidazo[4,5-b]pyridine monohydrate top
Crystal data top
C20H16BrN3O·H2OF(000) = 840
Mr = 412.28Dx = 1.518 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6654 reflections
a = 10.5924 (2) Åθ = 3.0–28.2°
b = 5.4544 (1) ŵ = 2.30 mm1
c = 31.7444 (7) ÅT = 293 K
β = 100.292 (1)°Prism, yellow
V = 1804.53 (6) Å30.29 × 0.13 × 0.09 mm
Z = 4
Data collection top
Bruker X8 APEXII
diffractometer
5183 independent reflections
Radiation source: fine-focus sealed tube3751 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 29.8°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.556, Tmax = 0.820k = 77
25327 measured reflectionsl = 4044
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.4879P]
where P = (Fo2 + 2Fc2)/3
5183 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.32 e Å3
2 restraintsΔρmin = 0.38 e Å3
Crystal data top
C20H16BrN3O·H2OV = 1804.53 (6) Å3
Mr = 412.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5924 (2) ŵ = 2.30 mm1
b = 5.4544 (1) ÅT = 293 K
c = 31.7444 (7) Å0.29 × 0.13 × 0.09 mm
β = 100.292 (1)°
Data collection top
Bruker X8 APEXII
diffractometer
5183 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3751 reflections with I > 2σ(I)
Tmin = 0.556, Tmax = 0.820Rint = 0.029
25327 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0352 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.32 e Å3
5183 reflectionsΔρmin = 0.38 e Å3
244 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.33516 (2)0.25313 (4)0.229786 (7)0.06505 (10)
O1W0.0347 (2)1.0524 (4)0.27301 (7)0.0809 (5)
H110.091 (3)1.063 (10)0.2955 (9)0.18 (2)*
H120.032 (5)1.199 (4)0.2641 (17)0.16 (2)*
N10.49030 (13)0.4485 (3)0.35254 (4)0.0370 (3)
N20.25772 (13)0.9195 (3)0.34637 (4)0.0397 (3)
N30.43173 (14)0.7798 (2)0.39573 (5)0.0368 (3)
O10.24437 (17)1.6309 (3)0.50907 (5)0.0663 (4)
C10.36408 (17)0.4170 (3)0.28302 (5)0.0437 (4)
C20.28596 (17)0.6138 (4)0.28937 (5)0.0438 (4)
H20.21930.66660.26820.053*
C30.31304 (16)0.7260 (3)0.32892 (6)0.0380 (4)
C40.41915 (15)0.6437 (3)0.36032 (5)0.0351 (3)
C50.46265 (17)0.3344 (3)0.31392 (6)0.0417 (4)
H50.51080.19950.30840.050*
C60.33092 (15)0.9407 (3)0.38565 (5)0.0355 (3)
C70.30567 (16)1.1232 (3)0.41692 (5)0.0374 (3)
C80.20011 (19)1.2782 (3)0.40877 (6)0.0466 (4)
H80.14461.26780.38260.056*
C90.17580 (19)1.4476 (4)0.43868 (6)0.0501 (5)
H90.10411.54850.43270.060*
C100.25837 (19)1.4669 (3)0.47759 (6)0.0462 (4)
C110.3644 (2)1.3137 (4)0.48642 (6)0.0501 (5)
H11A0.41971.32460.51260.060*
C120.38781 (18)1.1462 (4)0.45650 (5)0.0448 (4)
H12A0.45971.04580.46260.054*
C130.1389 (3)1.7962 (4)0.50100 (10)0.0722 (7)
H13A0.14241.90560.52490.108*
H13B0.06011.70540.49710.108*
H13C0.14311.88910.47560.108*
C140.60115 (17)0.3669 (3)0.38527 (6)0.0409 (4)
H14A0.60950.19010.38390.049*
H14B0.58560.40910.41360.049*
C150.72405 (16)0.4858 (3)0.37807 (5)0.0376 (4)
C160.76570 (19)0.7021 (3)0.39913 (6)0.0460 (4)
H160.71940.77030.41850.055*
C170.8757 (2)0.8163 (4)0.39140 (8)0.0592 (5)
H170.90330.96070.40570.071*
C180.9443 (2)0.7187 (5)0.36287 (8)0.0675 (7)
H181.01740.79830.35740.081*
C190.9054 (2)0.5027 (5)0.34216 (7)0.0644 (7)
H190.95290.43560.32300.077*
C200.79559 (18)0.3847 (4)0.34969 (6)0.0495 (5)
H200.76980.23820.33580.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.06531 (16)0.07264 (17)0.05167 (13)0.00232 (11)0.00455 (10)0.02553 (10)
O1W0.0702 (12)0.0877 (14)0.0805 (13)0.0048 (10)0.0017 (10)0.0014 (11)
N10.0327 (7)0.0387 (7)0.0383 (7)0.0010 (6)0.0027 (5)0.0004 (6)
N20.0325 (7)0.0490 (8)0.0361 (7)0.0033 (6)0.0020 (5)0.0001 (6)
N30.0330 (7)0.0413 (8)0.0349 (7)0.0013 (6)0.0024 (5)0.0003 (5)
O10.0887 (11)0.0604 (9)0.0474 (8)0.0241 (9)0.0063 (7)0.0108 (7)
C10.0387 (9)0.0493 (10)0.0411 (8)0.0084 (8)0.0018 (7)0.0091 (7)
C20.0340 (9)0.0543 (11)0.0402 (8)0.0023 (8)0.0016 (7)0.0028 (8)
C30.0296 (8)0.0457 (10)0.0375 (8)0.0033 (7)0.0025 (6)0.0006 (7)
C40.0292 (8)0.0397 (8)0.0357 (8)0.0028 (7)0.0041 (6)0.0022 (6)
C50.0388 (9)0.0396 (9)0.0460 (9)0.0031 (7)0.0061 (7)0.0059 (7)
C60.0307 (8)0.0414 (9)0.0340 (7)0.0010 (7)0.0044 (6)0.0027 (6)
C70.0354 (8)0.0419 (9)0.0343 (8)0.0007 (7)0.0049 (6)0.0026 (7)
C80.0423 (10)0.0532 (11)0.0407 (9)0.0102 (8)0.0019 (7)0.0005 (7)
C90.0486 (11)0.0530 (11)0.0469 (10)0.0175 (9)0.0036 (8)0.0006 (8)
C100.0568 (11)0.0437 (10)0.0382 (8)0.0056 (8)0.0090 (8)0.0002 (7)
C110.0555 (11)0.0559 (11)0.0347 (9)0.0090 (9)0.0035 (8)0.0017 (8)
C120.0424 (10)0.0513 (10)0.0380 (8)0.0099 (8)0.0000 (7)0.0035 (8)
C130.0841 (18)0.0593 (14)0.0763 (17)0.0176 (12)0.0229 (14)0.0141 (12)
C140.0414 (9)0.0387 (9)0.0406 (8)0.0037 (7)0.0015 (7)0.0072 (7)
C150.0337 (8)0.0409 (9)0.0359 (8)0.0094 (7)0.0001 (6)0.0084 (6)
C160.0436 (10)0.0443 (10)0.0477 (10)0.0036 (8)0.0020 (8)0.0036 (7)
C170.0487 (12)0.0578 (12)0.0652 (13)0.0073 (10)0.0060 (10)0.0126 (10)
C180.0383 (11)0.097 (2)0.0640 (14)0.0018 (11)0.0006 (10)0.0325 (13)
C190.0426 (11)0.107 (2)0.0454 (10)0.0293 (12)0.0118 (9)0.0190 (12)
C200.0471 (11)0.0600 (12)0.0386 (9)0.0204 (9)0.0006 (8)0.0025 (8)
Geometric parameters (Å, º) top
Br1—C11.8877 (17)C9—C101.384 (3)
O1w—H110.85 (1)C9—H90.9300
O1w—H120.85 (1)C10—C111.388 (3)
N1—C41.352 (2)C11—C121.372 (3)
N1—C51.359 (2)C11—H11A0.9300
N1—C141.490 (2)C12—H12A0.9300
N2—C61.351 (2)C13—H13A0.9600
N2—C31.371 (2)C13—H13B0.9600
N3—C41.334 (2)C13—H13C0.9600
N3—C61.375 (2)C14—C151.508 (2)
O1—C101.369 (2)C14—H14A0.9700
O1—C131.423 (3)C14—H14B0.9700
C1—C51.374 (3)C15—C161.389 (3)
C1—C21.392 (3)C15—C201.390 (3)
C2—C31.380 (2)C16—C171.381 (3)
C2—H20.9300C16—H160.9300
C3—C41.435 (2)C17—C181.366 (4)
C5—H50.9300C17—H170.9300
C6—C71.464 (2)C18—C191.376 (4)
C7—C81.389 (2)C18—H180.9300
C7—C121.400 (2)C19—C201.387 (3)
C8—C91.382 (3)C19—H190.9300
C8—H80.9300C20—H200.9300
H11—O1W—H12101 (5)C12—C11—C10120.05 (17)
C4—N1—C5119.19 (14)C12—C11—H11A120.0
C4—N1—C14120.23 (14)C10—C11—H11A120.0
C5—N1—C14120.53 (15)C11—C12—C7121.39 (17)
C6—N2—C3102.87 (13)C11—C12—H12A119.3
C4—N3—C6101.69 (13)C7—C12—H12A119.3
C10—O1—C13117.82 (18)O1—C13—H13A109.5
C5—C1—C2123.00 (16)O1—C13—H13B109.5
C5—C1—Br1117.70 (14)H13A—C13—H13B109.5
C2—C1—Br1119.29 (13)O1—C13—H13C109.5
C3—C2—C1116.21 (16)H13A—C13—H13C109.5
C3—C2—H2121.9H13B—C13—H13C109.5
C1—C2—H2121.9N1—C14—C15111.09 (13)
N2—C3—C2132.43 (16)N1—C14—H14A109.4
N2—C3—C4107.37 (14)C15—C14—H14A109.4
C2—C3—C4120.19 (16)N1—C14—H14B109.4
N3—C4—N1128.09 (14)C15—C14—H14B109.4
N3—C4—C3111.05 (15)H14A—C14—H14B108.0
N1—C4—C3120.84 (15)C16—C15—C20119.06 (18)
N1—C5—C1120.50 (17)C16—C15—C14120.06 (16)
N1—C5—H5119.8C20—C15—C14120.86 (17)
C1—C5—H5119.8C17—C16—C15120.2 (2)
N2—C6—N3116.99 (15)C17—C16—H16119.9
N2—C6—C7122.69 (15)C15—C16—H16119.9
N3—C6—C7120.31 (14)C18—C17—C16120.5 (2)
C8—C7—C12117.59 (16)C18—C17—H17119.8
C8—C7—C6121.75 (15)C16—C17—H17119.8
C12—C7—C6120.66 (15)C17—C18—C19120.1 (2)
C9—C8—C7121.45 (17)C17—C18—H18120.0
C9—C8—H8119.3C19—C18—H18120.0
C7—C8—H8119.3C18—C19—C20120.3 (2)
C8—C9—C10119.90 (17)C18—C19—H19119.9
C8—C9—H9120.0C20—C19—H19119.9
C10—C9—H9120.0C19—C20—C15119.9 (2)
O1—C10—C9124.58 (17)C19—C20—H20120.0
O1—C10—C11115.81 (17)C15—C20—H20120.0
C9—C10—C11119.61 (17)
C5—C1—C2—C30.4 (3)N2—C6—C7—C12176.91 (17)
Br1—C1—C2—C3179.58 (13)N3—C6—C7—C123.7 (2)
C6—N2—C3—C2178.68 (19)C12—C7—C8—C90.7 (3)
C6—N2—C3—C40.05 (18)C6—C7—C8—C9179.03 (18)
C1—C2—C3—N2179.63 (18)C7—C8—C9—C100.7 (3)
C1—C2—C3—C41.9 (3)C13—O1—C10—C91.2 (3)
C6—N3—C4—N1177.47 (17)C13—O1—C10—C11178.4 (2)
C6—N3—C4—C31.19 (18)C8—C9—C10—O1178.8 (2)
C5—N1—C4—N3179.48 (17)C8—C9—C10—C110.7 (3)
C14—N1—C4—N32.2 (3)O1—C10—C11—C12178.8 (2)
C5—N1—C4—C32.0 (2)C9—C10—C11—C120.7 (3)
C14—N1—C4—C3179.30 (15)C10—C11—C12—C70.8 (3)
N2—C3—C4—N30.77 (19)C8—C7—C12—C110.7 (3)
C2—C3—C4—N3178.06 (16)C6—C7—C12—C11178.99 (18)
N2—C3—C4—N1178.00 (15)C4—N1—C14—C1592.30 (18)
C2—C3—C4—N13.2 (3)C5—N1—C14—C1584.99 (19)
C4—N1—C5—C10.3 (3)N1—C14—C15—C1693.17 (18)
C14—N1—C5—C1176.98 (16)N1—C14—C15—C2085.35 (19)
C2—C1—C5—N11.6 (3)C20—C15—C16—C170.9 (3)
Br1—C1—C5—N1178.39 (13)C14—C15—C16—C17177.60 (17)
C3—N2—C6—N30.88 (19)C15—C16—C17—C180.3 (3)
C3—N2—C6—C7178.50 (15)C16—C17—C18—C191.2 (3)
C4—N3—C6—N21.33 (19)C17—C18—C19—C200.8 (3)
C4—N3—C6—C7178.06 (15)C18—C19—C20—C150.4 (3)
N2—C6—C7—C83.4 (3)C16—C15—C20—C191.3 (2)
N3—C6—C7—C8175.95 (17)C14—C15—C20—C19177.23 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···N20.85 (1)2.30 (2)3.092 (3)155 (5)
O1w—H12···O1Wi0.85 (1)2.30 (2)3.119 (2)162 (5)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H16BrN3O·H2O
Mr412.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.5924 (2), 5.4544 (1), 31.7444 (7)
β (°) 100.292 (1)
V3)1804.53 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.30
Crystal size (mm)0.29 × 0.13 × 0.09
Data collection
DiffractometerBruker X8 APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.556, 0.820
No. of measured, independent and
observed [I > 2σ(I)] reflections
25327, 5183, 3751
Rint0.029
(sin θ/λ)max1)0.700
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.02
No. of reflections5183
No. of parameters244
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.38

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···N20.85 (1)2.30 (2)3.092 (3)155 (5)
O1w—H12···O1Wi0.85 (1)2.30 (2)3.119 (2)162 (5)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

We thank Université Sidi Mohammed Ben Abdallah, Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Obbade, S., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o947.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds