metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-Ferrocenyl-3-(2-fur­yl)prop-2-en-1-one

aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China
*Correspondence e-mail: guorong@yzu.edu.cn

(Received 11 March 2010; accepted 24 March 2010; online 31 March 2010)

The title compound, [Fe(C5H5)(C12H9O2)], exhibits an E configuration. In the ferrocene unit, the two cyclo­penta­dienyl rings are almost parallel [dihedral angle = 0.76 (12)°] and the C atoms are in an eclipsed conformation. An intra­molecular C—H⋯O hydrogen bond generates an S(5) ring. In the crystal, the mol­ecules are linking into zigzag chains via two C—H⋯O hydrogen-bonding inter­actions along the c axis and neighbouring chains are stabilized by electrostatic inter­action forces.

Related literature

For the biological activity of chalcones and chalcone derivatives, see: Liu et al. (2003[Liu, M., Wilairat, P., Croft, S. L., Tan, A. L. C. & Go, M.-L. (2003). Bioorg. Med. Chem. 11, 2729-2738.]). For the ability of some chalcones to block voltage-dependent potassium channels, see: Yarishkin et al. (2008[Yarishkin, O. V., Ryu, H. W., Park, J. Y., Yang, M. S., Hong, S. G. & Park, K. H. (2008). Bioorg. Med. Chem. Lett. 18, 137-140.]). Replacement of the aromatic group of penicillins and cephalosporins by a ferrocenyl group could improve their anti­biotic activity, see: Edwards et al. (1975[Edwards, E. I., Epton, R. & Marr, G. (1975). J. Organomet. Chem. 85, C23-C25.]). For our ongoing research in this area, see: Shi et al. (2004[Shi, Y. C., Yang, H.-M., Song, H.-B. & Liu, Y.-H. (2004). Polyhedron, 23, 1541-1546.]); Liu, Liu et al. (2008[Liu, Y.-H., Liu, J.-F., Jian, P.-M. & Liu, X.-L. (2008). Acta Cryst. E64, m1001-m1002.]). For the synthesis, see: Huang et al. (1998[Huang, G.-S., Chen, B.-H., Liu, C.-M., Ma, Y.-X. & Liu, Y.-H. (1998). Transition Met. Chem. 23, 589-592.]). For a related structure, see: Liu, Ye et al. (2008[Liu, Y.-H., Ye, J., Liu, X.-L., Liu, W.-L. & Shi, Y.-C. (2008). Acta Cryst. E64, m1241.]) For graph-set notations of ring systems, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew Chem. Int. Ed. Engl. 34, 1555-1573.]). For related literature, see: Zhai et al. (1999[Zhai, L., Chen, M., Blom, J., Theander, T. G., Christensen, S. B. & Kharazmi, A. (1999). Antimicrob. Agents Chemother. 43, 793-803.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C12H9O2)]

  • Mr = 306.13

  • Orthorhombic, P c a 21

  • a = 9.0677 (13) Å

  • b = 14.222 (2) Å

  • c = 10.4846 (15) Å

  • V = 1352.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 296 K

  • 0.28 × 0.25 × 0.22 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.746, Tmax = 0.792

  • 11058 measured reflections

  • 3012 independent reflections

  • 2772 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.058

  • S = 1.00

  • 3012 reflections

  • 182 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1340 Friedel pairs

  • Flack parameter: 0.012 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O1 0.93 2.45 2.797 (3) 102
C6—H6⋯O1i 0.93 2.56 3.473 (3) 166
C12—H12⋯O1i 0.93 2.71 3.576 (4) 155
Symmetry code: (i) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Chalcone and its derivatives, as a natural produce, have shown strong antibacterial, antifungal, antitumor and anti-inflammatory properties (Liu et al., 2003). Some chalcones demonstrated the ability to block voltage-dependent potassium channels (Yarishkin et al., 2008). It has been demonstrated that the replacement of the aromatic group by the ferrocenyl moiety in penicillins and cephalosporins could improve their antibiotic activity (Edwards et al., 1975). As on going research (Liu & Liu et al., 2008; Shi et al., 2004), we report herein the structure of the title compound.

The molecule of the title compound exists in the most stable configuration of (E)-isomer (Fig. 1). All of the C and O atoms are sp2-hybrid resulting in two large conjugated systems: one is formed by C1-C5 atoms and the other by the rest of the atoms. There is an intra-molecular hydrogen-bond C13–H13···O1 resulting in a five membered ring, S(5) in graph set notation (Bernstein et al., 1995). The atoms O1/C11/C12/C13 are essentially planar and their mean-plane lies at 3.10 (14) and 16.35 (13) °, respectively, with the mean-planes of the furyl ring and the substituted cyclopentadienyl ring. In the ferrocene moiety, the Cps plane and Cp (the unsubstituted cyclopentadienyl ring) plane are almost parallel and the C atoms of Cp and Cps are in the eclipsed conformation. The Fe atom is slightly near the Cps palne as the distances Fe–Cgs and Fe–Cg are 1.6464 (9) and 1.6574 (10) Å, respectively, where Cgs and Cg are the centroids of Cps and Cp, respectively. The Cgs—Fe—Cg angle is 179.02 (5)°. The molecular dimensions agree very well with the corresponding dimensions reparted for the crystal structure of a similar compound (Liu & Ye et al., 2008).

In the crystal structure, inter-molecular hydrogen-bonds of the type C—H···O, along the c axis, generate a R21(7) motif (Bernstein et al., 1995), linking the adjacent molecules into a zig-zag chain (Fig. 2, Tab. 1). Further more, the chain and its neighboring inverse parallel chains are stablilized by electrostatic interaction forces.

Related literature top

For the biological activity of chalcones and chalcone derivatives, see: Liu et al. (2003). For the ability of some chalcones to block voltage-dependent potassium channels, see: Yarishkin et al. (2008). Replacement of the aromatic group of penicillins and cephalosporins by a ferrocenyl group could improve their antibiotic activity, see: Edwards et al. (1975). For our ongoing research in this area, see: Shi et al. (2004); Liu, Liu et al. (2008). For the synthesis, see: Huang et al. (1998). For a related structure, see: Liu, Ye et al. (2008) For graph-set notations of ring systems, see: Bernstein et al. (1995). For related literature [on what subject?], see: Zhai et al. (1999).

Experimental top

The title compound was synthesized according to the literature procedure (Huang et al., 1998). An aqueous solution of potassium hydroxide (5%, 5 ml) was added slowly with stirring to a mixture of 2-furanylaldehyde (4.0 g, 0.043 mol) and acetoylferrocene (0.98 g, 0.043 mol) in ethanol (20 ml) in ice bath. The resulting mixture was stirred at room temperature for 4 h. The dark-red precipitated solid was filtered off, washed with water, dried and recrystallized from 95% ethanol (yield, 83%; M.P. 429.5-430.8 K. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid in dichloromethane/ ether (4:1 v/v) at room temperature over a period of 6 d.

Refinement top

After their location in a difference map, all H atoms were fixed geometrically at ideal positions and allowed to ride on the parent C atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). An absolute structure was determined using anomalous dispersion effects employing 1353 Friedel pairs which were not merged.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability ellipsoids. The C–H···O intra-molecular hydrogen bond is shown as dashed lines.
[Figure 2] Fig. 2. Unit cell packing of the title compound, showing the inter-molecular hydrogen bonds C–H···O as dashed lines. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted.
(E)-1-Ferrocenyl-3-(2-furyl)prop-2-en-1-one top
Crystal data top
[Fe(C5H5)(C12H9O2)]Dx = 1.504 Mg m3
Mr = 306.13Melting point: 429.5 K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 6056 reflections
a = 9.0677 (13) Åθ = 2.7–27.4°
b = 14.222 (2) ŵ = 1.11 mm1
c = 10.4846 (15) ÅT = 296 K
V = 1352.1 (3) Å3Prism, orange
Z = 40.28 × 0.25 × 0.22 mm
F(000) = 632
Data collection top
Bruker SMART 1000 CCD
diffractometer
3012 independent reflections
Radiation source: fine-focus sealed tube2772 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 27.7°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1111
Tmin = 0.746, Tmax = 0.792k = 1816
11058 measured reflectionsl = 1313
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023 w = 1/[σ2(Fo2) + (0.0253P)2 + 0.1177P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.20 e Å3
3012 reflectionsΔρmin = 0.19 e Å3
182 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0184 (11)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1340 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.012 (14)
Crystal data top
[Fe(C5H5)(C12H9O2)]V = 1352.1 (3) Å3
Mr = 306.13Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 9.0677 (13) ŵ = 1.11 mm1
b = 14.222 (2) ÅT = 296 K
c = 10.4846 (15) Å0.28 × 0.25 × 0.22 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3012 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2772 reflections with I > 2σ(I)
Tmin = 0.746, Tmax = 0.792Rint = 0.035
11058 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.058Δρmax = 0.20 e Å3
S = 1.00Δρmin = 0.19 e Å3
3012 reflectionsAbsolute structure: Flack (1983), 1340 Friedel pairs
182 parametersAbsolute structure parameter: 0.012 (14)
1 restraint
Special details top

Experimental. Analysis found (calculated) for C17H14FeO2 (%): C 66.61 (66.70), H 4.56 (4.61).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.04553 (2)0.652980 (14)0.19388 (4)0.03343 (8)
O10.35975 (15)0.71855 (11)0.24502 (15)0.0524 (4)
O20.28635 (15)0.93776 (10)0.13390 (15)0.0525 (3)
C10.1739 (2)0.76594 (14)0.1431 (2)0.0523 (5)
H10.17890.79340.06270.063*
C20.26341 (18)0.69146 (14)0.1893 (3)0.0522 (4)
H20.33810.66150.14400.063*
C30.2206 (2)0.67061 (16)0.3142 (2)0.0550 (6)
H30.26130.62430.36610.066*
C40.1041 (2)0.73260 (17)0.3481 (2)0.0582 (6)
H40.05540.73440.42610.070*
C50.0756 (2)0.79058 (15)0.2428 (3)0.0555 (6)
H50.00420.83740.23900.067*
C60.0731 (2)0.61272 (14)0.03780 (19)0.0430 (4)
H60.07220.64170.04170.052*
C70.0200 (2)0.53753 (14)0.0779 (2)0.0484 (5)
H70.09240.50870.02870.058*
C80.0167 (2)0.51418 (13)0.2055 (3)0.0493 (5)
H80.02780.46750.25430.059*
C90.13284 (19)0.57416 (13)0.2463 (2)0.0455 (4)
H90.17760.57360.32610.055*
C100.16853 (19)0.63550 (13)0.14257 (19)0.0385 (4)
C110.27507 (18)0.71373 (13)0.15362 (18)0.0386 (4)
C120.2747 (2)0.78616 (13)0.05229 (18)0.0398 (4)
H120.21320.77930.01810.048*
C130.3620 (2)0.86111 (13)0.06132 (19)0.0418 (4)
H130.42310.86380.13250.050*
C140.3723 (2)0.93831 (14)0.02664 (19)0.0436 (4)
C150.4527 (2)1.01887 (16)0.0245 (2)0.0568 (6)
H150.52061.03630.03760.068*
C170.3148 (3)1.02013 (17)0.1960 (3)0.0614 (6)
H160.27041.03830.27200.074*
C160.4146 (3)1.07107 (16)0.1333 (3)0.0630 (6)
H170.45161.12950.15690.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03501 (11)0.03456 (13)0.03073 (12)0.00320 (8)0.00069 (13)0.00016 (13)
O10.0483 (7)0.0608 (9)0.0481 (8)0.0051 (6)0.0080 (6)0.0125 (7)
O20.0544 (8)0.0487 (8)0.0545 (9)0.0015 (6)0.0052 (7)0.0061 (7)
C10.0495 (11)0.0416 (11)0.0659 (14)0.0076 (8)0.0004 (9)0.0000 (9)
C20.0351 (7)0.0549 (10)0.0666 (13)0.0006 (7)0.0031 (11)0.0056 (15)
C30.0449 (10)0.0650 (14)0.0551 (14)0.0073 (9)0.0148 (9)0.0063 (11)
C40.0514 (11)0.0724 (15)0.0507 (13)0.0033 (10)0.0060 (9)0.0240 (12)
C50.0476 (10)0.0414 (11)0.0775 (17)0.0027 (8)0.0095 (10)0.0170 (10)
C60.0554 (10)0.0400 (10)0.0336 (10)0.0012 (8)0.0074 (8)0.0022 (8)
C70.0596 (11)0.0368 (10)0.0487 (12)0.0034 (9)0.0028 (9)0.0078 (9)
C80.0535 (9)0.0335 (8)0.0611 (14)0.0005 (7)0.0061 (12)0.0097 (12)
C90.0433 (9)0.0439 (11)0.0493 (11)0.0046 (8)0.0006 (8)0.0142 (8)
C100.0380 (8)0.0394 (9)0.0380 (9)0.0069 (7)0.0059 (7)0.0036 (7)
C110.0328 (8)0.0436 (10)0.0394 (10)0.0044 (7)0.0058 (7)0.0046 (7)
C120.0391 (9)0.0454 (10)0.0348 (10)0.0003 (8)0.0023 (7)0.0036 (8)
C130.0436 (9)0.0451 (10)0.0365 (10)0.0010 (8)0.0045 (7)0.0005 (8)
C140.0460 (10)0.0441 (11)0.0408 (10)0.0008 (8)0.0072 (8)0.0030 (8)
C150.0697 (14)0.0522 (13)0.0486 (13)0.0186 (10)0.0019 (9)0.0009 (10)
C170.0744 (14)0.0521 (13)0.0578 (15)0.0124 (11)0.0043 (12)0.0136 (10)
C160.0848 (16)0.0428 (12)0.0614 (15)0.0070 (12)0.0217 (13)0.0049 (11)
Geometric parameters (Å, º) top
Fe1—C102.0295 (18)C5—H50.9300
Fe1—C62.0404 (19)C6—C71.426 (3)
Fe1—C52.041 (2)C6—C101.435 (3)
Fe1—C92.0431 (18)C6—H60.9300
Fe1—C32.044 (2)C7—C81.418 (4)
Fe1—C42.044 (2)C7—H70.9300
Fe1—C22.0506 (17)C8—C91.421 (3)
Fe1—C12.054 (2)C8—H80.9300
Fe1—C72.056 (2)C9—C101.431 (3)
Fe1—C82.0566 (18)C9—H90.9300
O1—C111.230 (2)C10—C111.478 (3)
O2—C171.365 (3)C11—C121.480 (3)
O2—C141.369 (2)C12—C131.331 (3)
C1—C51.418 (3)C12—H120.9300
C1—C21.419 (3)C13—C141.437 (3)
C1—H10.9300C13—H130.9300
C2—C31.398 (4)C14—C151.358 (3)
C2—H20.9300C15—C161.404 (4)
C3—C41.421 (3)C15—H150.9300
C3—H30.9300C17—C161.332 (4)
C4—C51.402 (4)C17—H160.9300
C4—H40.9300C16—H170.9300
C10—Fe1—C641.30 (8)C5—C4—C3107.8 (2)
C10—Fe1—C5108.18 (8)C5—C4—Fe169.82 (13)
C6—Fe1—C5122.75 (9)C3—C4—Fe169.63 (12)
C10—Fe1—C941.14 (7)C5—C4—H4126.1
C6—Fe1—C969.16 (9)C3—C4—H4126.1
C5—Fe1—C9124.36 (9)Fe1—C4—H4126.0
C10—Fe1—C3157.20 (9)C4—C5—C1108.63 (19)
C6—Fe1—C3159.93 (9)C4—C5—Fe170.04 (12)
C5—Fe1—C367.88 (9)C1—C5—Fe170.24 (12)
C9—Fe1—C3121.09 (9)C4—C5—H5125.7
C10—Fe1—C4121.74 (9)C1—C5—H5125.7
C6—Fe1—C4157.94 (9)Fe1—C5—H5125.6
C5—Fe1—C440.14 (11)C7—C6—C10107.50 (18)
C9—Fe1—C4107.27 (10)C7—C6—Fe170.23 (11)
C3—Fe1—C440.70 (9)C10—C6—Fe168.95 (11)
C10—Fe1—C2161.43 (10)C7—C6—H6126.3
C6—Fe1—C2124.34 (11)C10—C6—H6126.3
C5—Fe1—C267.74 (8)Fe1—C6—H6126.1
C9—Fe1—C2156.26 (9)C8—C7—C6108.35 (18)
C3—Fe1—C239.92 (11)C8—C7—Fe169.85 (12)
C4—Fe1—C267.69 (10)C6—C7—Fe169.03 (11)
C10—Fe1—C1124.69 (8)C8—C7—H7125.8
C6—Fe1—C1108.09 (9)C6—C7—H7125.8
C5—Fe1—C140.50 (9)Fe1—C7—H7126.9
C9—Fe1—C1161.34 (8)C7—C8—C9108.49 (18)
C3—Fe1—C167.89 (10)C7—C8—Fe169.82 (11)
C4—Fe1—C167.95 (10)C9—C8—Fe169.21 (10)
C2—Fe1—C140.46 (8)C7—C8—H8125.8
C10—Fe1—C768.76 (8)C9—C8—H8125.8
C6—Fe1—C740.74 (8)Fe1—C8—H8126.8
C5—Fe1—C7158.29 (10)C8—C9—C10107.7 (2)
C9—Fe1—C768.39 (9)C8—C9—Fe170.23 (10)
C3—Fe1—C7123.40 (9)C10—C9—Fe168.92 (10)
C4—Fe1—C7159.94 (10)C8—C9—H9126.1
C2—Fe1—C7107.92 (9)C10—C9—H9126.1
C1—Fe1—C7122.34 (9)Fe1—C9—H9126.3
C10—Fe1—C868.64 (8)C9—C10—C6107.91 (16)
C6—Fe1—C868.50 (10)C9—C10—C11123.17 (18)
C5—Fe1—C8160.39 (11)C6—C10—C11128.60 (17)
C9—Fe1—C840.57 (8)C9—C10—Fe169.94 (10)
C3—Fe1—C8107.12 (10)C6—C10—Fe169.76 (10)
C4—Fe1—C8123.79 (12)C11—C10—Fe1120.80 (13)
C2—Fe1—C8121.45 (8)O1—C11—C10120.74 (17)
C1—Fe1—C8157.13 (10)O1—C11—C12121.46 (17)
C7—Fe1—C840.33 (11)C10—C11—C12117.79 (16)
C17—O2—C14106.22 (17)C13—C12—C11120.34 (18)
C5—C1—C2107.0 (2)C13—C12—H12119.8
C5—C1—Fe169.26 (12)C11—C12—H12119.8
C2—C1—Fe169.63 (11)C12—C13—C14127.24 (19)
C5—C1—H1126.5C12—C13—H13116.4
C2—C1—H1126.5C14—C13—H13116.4
Fe1—C1—H1126.2C15—C14—O2108.90 (19)
C3—C2—C1108.6 (2)C15—C14—C13132.0 (2)
C3—C2—Fe169.77 (11)O2—C14—C13119.06 (17)
C1—C2—Fe169.91 (10)C14—C15—C16107.5 (2)
C3—C2—H2125.7C14—C15—H15126.3
C1—C2—H2125.7C16—C15—H15126.3
Fe1—C2—H2126.2C16—C17—O2111.1 (2)
C2—C3—C4108.0 (2)C16—C17—H16124.4
C2—C3—Fe170.31 (12)O2—C17—H16124.4
C4—C3—Fe169.67 (12)C17—C16—C15106.3 (2)
C2—C3—H3126.0C17—C16—H17126.9
C4—C3—H3126.0C15—C16—H17126.9
Fe1—C3—H3125.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O10.932.452.797 (3)102
C6—H6···O1i0.932.563.473 (3)166
C12—H12···O1i0.932.713.576 (4)155
Symmetry code: (i) x+1/2, y, z1/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C12H9O2)]
Mr306.13
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)296
a, b, c (Å)9.0677 (13), 14.222 (2), 10.4846 (15)
V3)1352.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.28 × 0.25 × 0.22
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.746, 0.792
No. of measured, independent and
observed [I > 2σ(I)] reflections
11058, 3012, 2772
Rint0.035
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.058, 1.00
No. of reflections3012
No. of parameters182
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.19
Absolute structureFlack (1983), 1340 Friedel pairs
Absolute structure parameter0.012 (14)

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O10.932.452.797 (3)102
C6—H6···O1i0.932.563.473 (3)166
C12—H12···O1i0.932.713.576 (4)155
Symmetry code: (i) x+1/2, y, z1/2.
 

Acknowledgements

The authors thank the National Nautral Science Foundation of China (No. 20773106) and the Natural Science Foundation of Yangzhou University (No. 2006XJJ03) for financial support of this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEdwards, E. I., Epton, R. & Marr, G. (1975). J. Organomet. Chem. 85, C23–C25.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuang, G.-S., Chen, B.-H., Liu, C.-M., Ma, Y.-X. & Liu, Y.-H. (1998). Transition Met. Chem. 23, 589–592.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Y.-H., Liu, J.-F., Jian, P.-M. & Liu, X.-L. (2008). Acta Cryst. E64, m1001–m1002.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLiu, M., Wilairat, P., Croft, S. L., Tan, A. L. C. & Go, M.-L. (2003). Bioorg. Med. Chem. 11, 2729–2738.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, Y.-H., Ye, J., Liu, X.-L., Liu, W.-L. & Shi, Y.-C. (2008). Acta Cryst. E64, m1241.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y. C., Yang, H.-M., Song, H.-B. & Liu, Y.-H. (2004). Polyhedron, 23, 1541–1546.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYarishkin, O. V., Ryu, H. W., Park, J. Y., Yang, M. S., Hong, S. G. & Park, K. H. (2008). Bioorg. Med. Chem. Lett. 18, 137–140.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhai, L., Chen, M., Blom, J., Theander, T. G., Christensen, S. B. & Kharazmi, A. (1999). Antimicrob. Agents Chemother. 43, 793–803.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds