organic compounds
(2-Chlorobenzo[h]quinolin-3-yl)methanol
aChemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, cDepartment of Chemistry, Bharathiar University, Coimbatore, Tamil Nadu, India, and dDepartment of Chemistry, Quaid-i-Azam University Islamabad, 45320 Pakistan
*Correspondence e-mail: khawar_rauf@hotmail.com
In the title molecule, C14H10ClNO, all non-H atoms are coplanar (r.m.s deviation = 0.0266 Å). In the crystal, symmetry-related molecules are hydrogen bonded via intermolecular O—H⋯O interactions, forming chains along the b axis.
Related literature
The title compound was obtained by the reduction of an aldehyde using Montmorillonite K-10 as catalyst. For background to the use of Montmorillonite clays as catalysts, see: Roopan et al. (2009b). For related structures, see: Khan et al. (2010a,b); Roopan et al. (2009a).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810010767/pv2269sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810010767/pv2269Isup2.hkl
2-Chlorbenzo[h]quinoline-3-carbaldehyde (241 mg, 1 mmol), sodium borohydride (38 mg, 1 mmol) and a catalytic amount of montmorillonite K-10 (100 mg) were placed in a beaker. The contents were irradiated at 500 W for 5 min. The product was dissolved in ethyl acetate and the residue removed by filtration. The filtrate was subjected to
on silica, and ethyl acetate/petroleum ether was used as the eluant. The solvent was evaporated and the residue recrystallized from chloroform to give colorless crystals.Hydrogen atoms were placed in calculated positions (C—H 0.93–0.97 Å, O—H 0.82 Å)and were included in the
in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C,O).Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. Molecular structure of (I) showing atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. |
C14H10ClNO | F(000) = 504 |
Mr = 243.68 | Dx = 1.449 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 11643 reflections |
a = 16.6953 (4) Å | θ = 2.5–26.0° |
b = 4.61459 (11) Å | µ = 0.32 mm−1 |
c = 14.5588 (3) Å | T = 295 K |
β = 95.123 (2)° | Block, colourless |
V = 1117.16 (5) Å3 | 0.35 × 0.30 × 0.28 mm |
Z = 4 |
Oxford Diffraction Xcalibur diffractometer | 2200 independent reflections |
Radiation source: fine-focus sealed tube | 1717 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ω scans | θmax = 26.0°, θmin = 2.5° |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | h = −20→20 |
Tmin = 0.896, Tmax = 0.915 | k = −5→5 |
11643 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0447P)2 + 0.1644P] where P = (Fo2 + 2Fc2)/3 |
2200 reflections | (Δ/σ)max = 0.001 |
155 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C14H10ClNO | V = 1117.16 (5) Å3 |
Mr = 243.68 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 16.6953 (4) Å | µ = 0.32 mm−1 |
b = 4.61459 (11) Å | T = 295 K |
c = 14.5588 (3) Å | 0.35 × 0.30 × 0.28 mm |
β = 95.123 (2)° |
Oxford Diffraction Xcalibur diffractometer | 2200 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 1717 reflections with I > 2σ(I) |
Tmin = 0.896, Tmax = 0.915 | Rint = 0.028 |
11643 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.19 e Å−3 |
2200 reflections | Δρmin = −0.22 e Å−3 |
155 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.38036 (3) | 0.30225 (12) | 0.55246 (3) | 0.05783 (19) | |
N1 | 0.28031 (8) | 0.6236 (3) | 0.45110 (8) | 0.0350 (3) | |
O1 | 0.47139 (8) | 0.0886 (3) | 0.28368 (8) | 0.0497 (3) | |
H1 | 0.4911 | 0.2355 | 0.2633 | 0.074* | |
C2 | 0.37487 (9) | 0.3556 (3) | 0.36689 (10) | 0.0315 (3) | |
C1 | 0.33981 (9) | 0.4434 (3) | 0.44662 (10) | 0.0331 (4) | |
C7 | 0.18191 (9) | 0.9418 (4) | 0.37325 (11) | 0.0366 (4) | |
C9 | 0.27796 (9) | 0.6741 (3) | 0.28570 (10) | 0.0333 (4) | |
C3 | 0.34176 (9) | 0.4759 (3) | 0.28642 (10) | 0.0339 (4) | |
H3 | 0.3619 | 0.4254 | 0.2311 | 0.041* | |
C4 | 0.24384 (10) | 0.8084 (4) | 0.20323 (11) | 0.0426 (4) | |
H4 | 0.2637 | 0.7635 | 0.1472 | 0.051* | |
C8 | 0.24801 (9) | 0.7420 (3) | 0.37074 (10) | 0.0309 (3) | |
C6 | 0.14987 (10) | 1.0709 (4) | 0.28978 (12) | 0.0417 (4) | |
C13 | 0.14771 (10) | 1.0095 (4) | 0.45516 (12) | 0.0478 (4) | |
H13 | 0.1685 | 0.9266 | 0.5105 | 0.057* | |
C5 | 0.18321 (11) | 0.9994 (4) | 0.20550 (12) | 0.0477 (5) | |
H5 | 0.1625 | 1.0872 | 0.1510 | 0.057* | |
C14 | 0.44481 (9) | 0.1482 (4) | 0.37137 (11) | 0.0395 (4) | |
H14A | 0.4891 | 0.2296 | 0.4108 | 0.047* | |
H14B | 0.4291 | −0.0321 | 0.3990 | 0.047* | |
C10 | 0.08499 (11) | 1.2661 (4) | 0.29225 (15) | 0.0551 (5) | |
H10 | 0.0639 | 1.3552 | 0.2381 | 0.066* | |
C11 | 0.05304 (11) | 1.3253 (5) | 0.37239 (16) | 0.0638 (6) | |
H11 | 0.0100 | 1.4531 | 0.3726 | 0.077* | |
C12 | 0.08390 (12) | 1.1971 (5) | 0.45434 (15) | 0.0609 (6) | |
H12 | 0.0612 | 1.2386 | 0.5089 | 0.073* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0679 (3) | 0.0734 (4) | 0.0331 (2) | 0.0227 (3) | 0.0093 (2) | 0.0130 (2) |
N1 | 0.0384 (7) | 0.0381 (8) | 0.0294 (7) | 0.0009 (6) | 0.0085 (5) | −0.0015 (6) |
O1 | 0.0613 (8) | 0.0343 (7) | 0.0590 (8) | 0.0033 (6) | 0.0365 (6) | −0.0016 (6) |
C2 | 0.0339 (8) | 0.0279 (8) | 0.0340 (8) | −0.0049 (7) | 0.0095 (6) | −0.0023 (6) |
C1 | 0.0390 (8) | 0.0338 (9) | 0.0274 (8) | −0.0005 (7) | 0.0076 (6) | 0.0018 (7) |
C7 | 0.0335 (8) | 0.0339 (9) | 0.0424 (9) | −0.0040 (7) | 0.0040 (7) | −0.0054 (7) |
C9 | 0.0355 (8) | 0.0351 (9) | 0.0297 (8) | −0.0068 (7) | 0.0049 (6) | −0.0011 (7) |
C3 | 0.0388 (8) | 0.0368 (9) | 0.0277 (8) | −0.0058 (7) | 0.0122 (6) | −0.0062 (7) |
C4 | 0.0469 (10) | 0.0511 (11) | 0.0299 (8) | −0.0052 (9) | 0.0047 (7) | −0.0014 (8) |
C8 | 0.0316 (8) | 0.0321 (8) | 0.0293 (7) | −0.0040 (6) | 0.0051 (6) | −0.0030 (6) |
C6 | 0.0380 (9) | 0.0358 (9) | 0.0500 (10) | −0.0046 (7) | −0.0034 (7) | −0.0026 (8) |
C13 | 0.0440 (10) | 0.0516 (11) | 0.0484 (10) | 0.0057 (9) | 0.0075 (8) | −0.0106 (8) |
C5 | 0.0511 (10) | 0.0491 (11) | 0.0410 (9) | −0.0024 (9) | −0.0062 (8) | 0.0071 (8) |
C14 | 0.0422 (9) | 0.0354 (10) | 0.0429 (9) | 0.0008 (7) | 0.0145 (7) | 0.0001 (7) |
C10 | 0.0465 (11) | 0.0458 (11) | 0.0697 (13) | 0.0043 (9) | −0.0130 (9) | −0.0032 (10) |
C11 | 0.0427 (11) | 0.0594 (13) | 0.0874 (16) | 0.0163 (10) | −0.0053 (10) | −0.0185 (12) |
C12 | 0.0467 (11) | 0.0668 (14) | 0.0698 (13) | 0.0104 (10) | 0.0094 (9) | −0.0210 (11) |
Cl1—C1 | 1.7525 (15) | C4—C5 | 1.345 (2) |
N1—C1 | 1.3014 (19) | C4—H4 | 0.9300 |
N1—C8 | 1.3585 (19) | C6—C10 | 1.412 (2) |
O1—C14 | 1.4155 (19) | C6—C5 | 1.430 (2) |
O1—H1 | 0.8200 | C13—C12 | 1.372 (2) |
C2—C3 | 1.368 (2) | C13—H13 | 0.9300 |
C2—C1 | 1.405 (2) | C5—H5 | 0.9300 |
C2—C14 | 1.507 (2) | C14—H14A | 0.9700 |
C7—C13 | 1.402 (2) | C14—H14B | 0.9700 |
C7—C6 | 1.415 (2) | C10—C11 | 1.353 (3) |
C7—C8 | 1.441 (2) | C10—H10 | 0.9300 |
C9—C3 | 1.403 (2) | C11—C12 | 1.389 (3) |
C9—C8 | 1.411 (2) | C11—H11 | 0.9300 |
C9—C4 | 1.424 (2) | C12—H12 | 0.9300 |
C3—H3 | 0.9300 | ||
C1—N1—C8 | 117.39 (13) | C10—C6—C5 | 121.83 (17) |
C14—O1—H1 | 109.5 | C7—C6—C5 | 119.57 (16) |
C3—C2—C1 | 115.09 (14) | C12—C13—C7 | 120.52 (18) |
C3—C2—C14 | 123.18 (14) | C12—C13—H13 | 119.7 |
C1—C2—C14 | 121.71 (14) | C7—C13—H13 | 119.7 |
N1—C1—C2 | 126.98 (14) | C4—C5—C6 | 121.58 (16) |
N1—C1—Cl1 | 115.47 (11) | C4—C5—H5 | 119.2 |
C2—C1—Cl1 | 117.54 (12) | C6—C5—H5 | 119.2 |
C13—C7—C6 | 119.02 (16) | O1—C14—C2 | 112.85 (13) |
C13—C7—C8 | 122.33 (15) | O1—C14—H14A | 109.0 |
C6—C7—C8 | 118.64 (15) | C2—C14—H14A | 109.0 |
C3—C9—C8 | 117.80 (13) | O1—C14—H14B | 109.0 |
C3—C9—C4 | 122.41 (14) | C2—C14—H14B | 109.0 |
C8—C9—C4 | 119.78 (15) | H14A—C14—H14B | 107.8 |
C2—C3—C9 | 121.29 (14) | C11—C10—C6 | 120.88 (18) |
C2—C3—H3 | 119.4 | C11—C10—H10 | 119.6 |
C9—C3—H3 | 119.4 | C6—C10—H10 | 119.6 |
C5—C4—C9 | 120.65 (16) | C10—C11—C12 | 120.66 (18) |
C5—C4—H4 | 119.7 | C10—C11—H11 | 119.7 |
C9—C4—H4 | 119.7 | C12—C11—H11 | 119.7 |
N1—C8—C9 | 121.44 (14) | C13—C12—C11 | 120.30 (19) |
N1—C8—C7 | 118.79 (13) | C13—C12—H12 | 119.8 |
C9—C8—C7 | 119.77 (13) | C11—C12—H12 | 119.8 |
C10—C6—C7 | 118.61 (17) | ||
C8—N1—C1—C2 | −0.2 (2) | C6—C7—C8—N1 | 178.27 (14) |
C8—N1—C1—Cl1 | 178.89 (11) | C13—C7—C8—C9 | 177.63 (15) |
C3—C2—C1—N1 | 0.1 (2) | C6—C7—C8—C9 | −1.5 (2) |
C14—C2—C1—N1 | 178.96 (15) | C13—C7—C6—C10 | 0.7 (2) |
C3—C2—C1—Cl1 | −178.97 (11) | C8—C7—C6—C10 | 179.84 (15) |
C14—C2—C1—Cl1 | −0.1 (2) | C13—C7—C6—C5 | −178.81 (16) |
C1—C2—C3—C9 | 0.6 (2) | C8—C7—C6—C5 | 0.4 (2) |
C14—C2—C3—C9 | −178.32 (14) | C6—C7—C13—C12 | 0.3 (3) |
C8—C9—C3—C2 | −1.0 (2) | C8—C7—C13—C12 | −178.85 (16) |
C4—C9—C3—C2 | 178.28 (15) | C9—C4—C5—C6 | −1.2 (3) |
C3—C9—C4—C5 | −179.35 (15) | C10—C6—C5—C4 | −178.47 (16) |
C8—C9—C4—C5 | 0.0 (2) | C7—C6—C5—C4 | 1.0 (3) |
C1—N1—C8—C9 | −0.4 (2) | C3—C2—C14—O1 | −0.9 (2) |
C1—N1—C8—C7 | 179.86 (14) | C1—C2—C14—O1 | −179.73 (13) |
C3—C9—C8—N1 | 0.9 (2) | C7—C6—C10—C11 | −1.1 (3) |
C4—C9—C8—N1 | −178.40 (14) | C5—C6—C10—C11 | 178.35 (18) |
C3—C9—C8—C7 | −179.28 (13) | C6—C10—C11—C12 | 0.6 (3) |
C4—C9—C8—C7 | 1.4 (2) | C7—C13—C12—C11 | −0.8 (3) |
C13—C7—C8—N1 | −2.6 (2) | C10—C11—C12—C13 | 0.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O1i | 0.82 | 1.90 | 2.7154 (12) | 175 |
C3—H3···O1 | 0.93 | 2.47 | 2.809 (2) | 102 |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H10ClNO |
Mr | 243.68 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 16.6953 (4), 4.61459 (11), 14.5588 (3) |
β (°) | 95.123 (2) |
V (Å3) | 1117.16 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.32 |
Crystal size (mm) | 0.35 × 0.30 × 0.28 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.896, 0.915 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11643, 2200, 1717 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.093, 1.08 |
No. of reflections | 2200 |
No. of parameters | 155 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.22 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O1i | 0.82 | 1.90 | 2.7154 (12) | 175 |
C3—H3···O1 | 0.93 | 2.47 | 2.809 (2) | 102 |
Symmetry code: (i) −x+1, y+1/2, −z+1/2. |
Acknowledgements
We thank the Department of Science and Technology, India, for use of the CCD facility set up under the FIST–DST program at SSCU, IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.
References
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010a). Acta Cryst. E66, o200. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010b). Acta Cryst. E66, o201. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Roopan, S. M., Khan, F. N., Subashini, R., Hathwar, V. R. & Ng, S. W. (2009a). Acta Cryst. E65, o2711. Web of Science CrossRef IUCr Journals Google Scholar
Roopan, S. M., Reddy, B. R., Kumar, A. S. & Khan, F. N. (2009b). Indian J. Heterocycl. Chem. 19, 81–82. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Montmorillonite clays have been found to effectively catalyze a broad range of chemical reactions (Roopan et al., 2009b). In continuation of our green chemical approach on the structural chemistry of disubstituted quinolines (Khan et al., 2010a,b; Roopan et al., 2009a), we have demonstarted the reduction of an aldehyde using Montmorillonite K-10 as a catalyst, to obtain the title alcohol. In this article, the crystal structure of the title molecule is presented.
In the title molecule (Fig. 1) all non-hydrogen atoms are coplanar (r.m.s deviation = 0.0266 Å); the C—C—C—O torsion angles are -0.9 (2) and -179.73 (13)°. The crystal structure is composed of discrete molecules with bond lengths and angles quite typical for compounds of this class and agree well with the corresponding bond lengths and angles reported for some related compounds (Khan et al., 2010a & 2010b; Roopan et al., 2009). In the crystal, symmetry related molecules are hydrogen bonded via intermolecular O—H···O type interactions forming one dimensional chains along the b-axis. In addition, an intramolecular interaction, C3—H3···O1 further consolidated the crystal structure.