organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-Chloro­benzo[h]quinolin-3-yl)methanol

aChemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, cDepartment of Chemistry, Bharathiar University, Coimbatore, Tamil Nadu, India, and dDepartment of Chemistry, Quaid-i-Azam University Islamabad, 45320 Pakistan
*Correspondence e-mail: khawar_rauf@hotmail.com

(Received 21 March 2010; accepted 22 March 2010; online 27 March 2010)

In the title mol­ecule, C14H10ClNO, all non-H atoms are coplanar (r.m.s deviation = 0.0266 Å). In the crystal, symmetry-related mol­ecules are hydrogen bonded via inter­molecular O—H⋯O inter­actions, forming chains along the b axis.

Related literature

The title compound was obtained by the reduction of an aldehyde using Montmorillonite K-10 as catalyst. For background to the use of Montmorillonite clays as catalysts, see: Roopan et al. (2009b[Roopan, S. M., Reddy, B. R., Kumar, A. S. & Khan, F. N. (2009b). Indian J. Heterocycl. Chem. 19, 81-82.]). For related structures, see: Khan et al. (2010a[Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010a). Acta Cryst. E66, o200.],b[Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010b). Acta Cryst. E66, o201.]); Roopan et al. (2009a[Roopan, S. M., Khan, F. N., Subashini, R., Hathwar, V. R. & Ng, S. W. (2009a). Acta Cryst. E65, o2711.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10ClNO

  • Mr = 243.68

  • Monoclinic, P 21 /c

  • a = 16.6953 (4) Å

  • b = 4.61459 (11) Å

  • c = 14.5588 (3) Å

  • β = 95.123 (2)°

  • V = 1117.16 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 295 K

  • 0.35 × 0.30 × 0.28 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.896, Tmax = 0.915

  • 11643 measured reflections

  • 2200 independent reflections

  • 1717 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.08

  • 2200 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O1i 0.82 1.90 2.7154 (12) 175
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Montmorillonite clays have been found to effectively catalyze a broad range of chemical reactions (Roopan et al., 2009b). In continuation of our green chemical approach on the structural chemistry of disubstituted quinolines (Khan et al., 2010a,b; Roopan et al., 2009a), we have demonstarted the reduction of an aldehyde using Montmorillonite K-10 as a catalyst, to obtain the title alcohol. In this article, the crystal structure of the title molecule is presented.

In the title molecule (Fig. 1) all non-hydrogen atoms are coplanar (r.m.s deviation = 0.0266 Å); the C—C—C—O torsion angles are -0.9 (2) and -179.73 (13)°. The crystal structure is composed of discrete molecules with bond lengths and angles quite typical for compounds of this class and agree well with the corresponding bond lengths and angles reported for some related compounds (Khan et al., 2010a & 2010b; Roopan et al., 2009). In the crystal, symmetry related molecules are hydrogen bonded via intermolecular O—H···O type interactions forming one dimensional chains along the b-axis. In addition, an intramolecular interaction, C3—H3···O1 further consolidated the crystal structure.

Related literature top

For background to the use of Montmorillonite clays as catalysts, see: Roopan et al. (2009b). For related crystal structures, see: Khan et al. (2010a,b); Roopan et al. (2009a).

Experimental top

2-Chlorbenzo[h]quinoline-3-carbaldehyde (241 mg, 1 mmol), sodium borohydride (38 mg, 1 mmol) and a catalytic amount of montmorillonite K-10 (100 mg) were placed in a beaker. The contents were irradiated at 500 W for 5 min. The product was dissolved in ethyl acetate and the residue removed by filtration. The filtrate was subjected to column chromatography on silica, and ethyl acetate/petroleum ether was used as the eluant. The solvent was evaporated and the residue recrystallized from chloroform to give colorless crystals.

Refinement top

Hydrogen atoms were placed in calculated positions (C—H 0.93–0.97 Å, O—H 0.82 Å)and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C,O).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
(2-Chlorobenzo[h]quinolin-3-yl)methanol top
Crystal data top
C14H10ClNOF(000) = 504
Mr = 243.68Dx = 1.449 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11643 reflections
a = 16.6953 (4) Åθ = 2.5–26.0°
b = 4.61459 (11) ŵ = 0.32 mm1
c = 14.5588 (3) ÅT = 295 K
β = 95.123 (2)°Block, colourless
V = 1117.16 (5) Å30.35 × 0.30 × 0.28 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2200 independent reflections
Radiation source: fine-focus sealed tube1717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 2020
Tmin = 0.896, Tmax = 0.915k = 55
11643 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.1644P]
where P = (Fo2 + 2Fc2)/3
2200 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H10ClNOV = 1117.16 (5) Å3
Mr = 243.68Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.6953 (4) ŵ = 0.32 mm1
b = 4.61459 (11) ÅT = 295 K
c = 14.5588 (3) Å0.35 × 0.30 × 0.28 mm
β = 95.123 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2200 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1717 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.915Rint = 0.028
11643 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.08Δρmax = 0.19 e Å3
2200 reflectionsΔρmin = 0.22 e Å3
155 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.38036 (3)0.30225 (12)0.55246 (3)0.05783 (19)
N10.28031 (8)0.6236 (3)0.45110 (8)0.0350 (3)
O10.47139 (8)0.0886 (3)0.28368 (8)0.0497 (3)
H10.49110.23550.26330.074*
C20.37487 (9)0.3556 (3)0.36689 (10)0.0315 (3)
C10.33981 (9)0.4434 (3)0.44662 (10)0.0331 (4)
C70.18191 (9)0.9418 (4)0.37325 (11)0.0366 (4)
C90.27796 (9)0.6741 (3)0.28570 (10)0.0333 (4)
C30.34176 (9)0.4759 (3)0.28642 (10)0.0339 (4)
H30.36190.42540.23110.041*
C40.24384 (10)0.8084 (4)0.20323 (11)0.0426 (4)
H40.26370.76350.14720.051*
C80.24801 (9)0.7420 (3)0.37074 (10)0.0309 (3)
C60.14987 (10)1.0709 (4)0.28978 (12)0.0417 (4)
C130.14771 (10)1.0095 (4)0.45516 (12)0.0478 (4)
H130.16850.92660.51050.057*
C50.18321 (11)0.9994 (4)0.20550 (12)0.0477 (5)
H50.16251.08720.15100.057*
C140.44481 (9)0.1482 (4)0.37137 (11)0.0395 (4)
H14A0.48910.22960.41080.047*
H14B0.42910.03210.39900.047*
C100.08499 (11)1.2661 (4)0.29225 (15)0.0551 (5)
H100.06391.35520.23810.066*
C110.05304 (11)1.3253 (5)0.37239 (16)0.0638 (6)
H110.01001.45310.37260.077*
C120.08390 (12)1.1971 (5)0.45434 (15)0.0609 (6)
H120.06121.23860.50890.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0679 (3)0.0734 (4)0.0331 (2)0.0227 (3)0.0093 (2)0.0130 (2)
N10.0384 (7)0.0381 (8)0.0294 (7)0.0009 (6)0.0085 (5)0.0015 (6)
O10.0613 (8)0.0343 (7)0.0590 (8)0.0033 (6)0.0365 (6)0.0016 (6)
C20.0339 (8)0.0279 (8)0.0340 (8)0.0049 (7)0.0095 (6)0.0023 (6)
C10.0390 (8)0.0338 (9)0.0274 (8)0.0005 (7)0.0076 (6)0.0018 (7)
C70.0335 (8)0.0339 (9)0.0424 (9)0.0040 (7)0.0040 (7)0.0054 (7)
C90.0355 (8)0.0351 (9)0.0297 (8)0.0068 (7)0.0049 (6)0.0011 (7)
C30.0388 (8)0.0368 (9)0.0277 (8)0.0058 (7)0.0122 (6)0.0062 (7)
C40.0469 (10)0.0511 (11)0.0299 (8)0.0052 (9)0.0047 (7)0.0014 (8)
C80.0316 (8)0.0321 (8)0.0293 (7)0.0040 (6)0.0051 (6)0.0030 (6)
C60.0380 (9)0.0358 (9)0.0500 (10)0.0046 (7)0.0034 (7)0.0026 (8)
C130.0440 (10)0.0516 (11)0.0484 (10)0.0057 (9)0.0075 (8)0.0106 (8)
C50.0511 (10)0.0491 (11)0.0410 (9)0.0024 (9)0.0062 (8)0.0071 (8)
C140.0422 (9)0.0354 (10)0.0429 (9)0.0008 (7)0.0145 (7)0.0001 (7)
C100.0465 (11)0.0458 (11)0.0697 (13)0.0043 (9)0.0130 (9)0.0032 (10)
C110.0427 (11)0.0594 (13)0.0874 (16)0.0163 (10)0.0053 (10)0.0185 (12)
C120.0467 (11)0.0668 (14)0.0698 (13)0.0104 (10)0.0094 (9)0.0210 (11)
Geometric parameters (Å, º) top
Cl1—C11.7525 (15)C4—C51.345 (2)
N1—C11.3014 (19)C4—H40.9300
N1—C81.3585 (19)C6—C101.412 (2)
O1—C141.4155 (19)C6—C51.430 (2)
O1—H10.8200C13—C121.372 (2)
C2—C31.368 (2)C13—H130.9300
C2—C11.405 (2)C5—H50.9300
C2—C141.507 (2)C14—H14A0.9700
C7—C131.402 (2)C14—H14B0.9700
C7—C61.415 (2)C10—C111.353 (3)
C7—C81.441 (2)C10—H100.9300
C9—C31.403 (2)C11—C121.389 (3)
C9—C81.411 (2)C11—H110.9300
C9—C41.424 (2)C12—H120.9300
C3—H30.9300
C1—N1—C8117.39 (13)C10—C6—C5121.83 (17)
C14—O1—H1109.5C7—C6—C5119.57 (16)
C3—C2—C1115.09 (14)C12—C13—C7120.52 (18)
C3—C2—C14123.18 (14)C12—C13—H13119.7
C1—C2—C14121.71 (14)C7—C13—H13119.7
N1—C1—C2126.98 (14)C4—C5—C6121.58 (16)
N1—C1—Cl1115.47 (11)C4—C5—H5119.2
C2—C1—Cl1117.54 (12)C6—C5—H5119.2
C13—C7—C6119.02 (16)O1—C14—C2112.85 (13)
C13—C7—C8122.33 (15)O1—C14—H14A109.0
C6—C7—C8118.64 (15)C2—C14—H14A109.0
C3—C9—C8117.80 (13)O1—C14—H14B109.0
C3—C9—C4122.41 (14)C2—C14—H14B109.0
C8—C9—C4119.78 (15)H14A—C14—H14B107.8
C2—C3—C9121.29 (14)C11—C10—C6120.88 (18)
C2—C3—H3119.4C11—C10—H10119.6
C9—C3—H3119.4C6—C10—H10119.6
C5—C4—C9120.65 (16)C10—C11—C12120.66 (18)
C5—C4—H4119.7C10—C11—H11119.7
C9—C4—H4119.7C12—C11—H11119.7
N1—C8—C9121.44 (14)C13—C12—C11120.30 (19)
N1—C8—C7118.79 (13)C13—C12—H12119.8
C9—C8—C7119.77 (13)C11—C12—H12119.8
C10—C6—C7118.61 (17)
C8—N1—C1—C20.2 (2)C6—C7—C8—N1178.27 (14)
C8—N1—C1—Cl1178.89 (11)C13—C7—C8—C9177.63 (15)
C3—C2—C1—N10.1 (2)C6—C7—C8—C91.5 (2)
C14—C2—C1—N1178.96 (15)C13—C7—C6—C100.7 (2)
C3—C2—C1—Cl1178.97 (11)C8—C7—C6—C10179.84 (15)
C14—C2—C1—Cl10.1 (2)C13—C7—C6—C5178.81 (16)
C1—C2—C3—C90.6 (2)C8—C7—C6—C50.4 (2)
C14—C2—C3—C9178.32 (14)C6—C7—C13—C120.3 (3)
C8—C9—C3—C21.0 (2)C8—C7—C13—C12178.85 (16)
C4—C9—C3—C2178.28 (15)C9—C4—C5—C61.2 (3)
C3—C9—C4—C5179.35 (15)C10—C6—C5—C4178.47 (16)
C8—C9—C4—C50.0 (2)C7—C6—C5—C41.0 (3)
C1—N1—C8—C90.4 (2)C3—C2—C14—O10.9 (2)
C1—N1—C8—C7179.86 (14)C1—C2—C14—O1179.73 (13)
C3—C9—C8—N10.9 (2)C7—C6—C10—C111.1 (3)
C4—C9—C8—N1178.40 (14)C5—C6—C10—C11178.35 (18)
C3—C9—C8—C7179.28 (13)C6—C10—C11—C120.6 (3)
C4—C9—C8—C71.4 (2)C7—C13—C12—C110.8 (3)
C13—C7—C8—N12.6 (2)C10—C11—C12—C130.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.821.902.7154 (12)175
C3—H3···O10.932.472.809 (2)102
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H10ClNO
Mr243.68
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)16.6953 (4), 4.61459 (11), 14.5588 (3)
β (°) 95.123 (2)
V3)1117.16 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.35 × 0.30 × 0.28
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.896, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
11643, 2200, 1717
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.08
No. of reflections2200
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1i0.821.902.7154 (12)175
C3—H3···O10.932.472.809 (2)102
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Acknowledgements

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the FIST–DST program at SSCU, IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010a). Acta Cryst. E66, o200.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010b). Acta Cryst. E66, o201.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRoopan, S. M., Khan, F. N., Subashini, R., Hathwar, V. R. & Ng, S. W. (2009a). Acta Cryst. E65, o2711.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRoopan, S. M., Reddy, B. R., Kumar, A. S. & Khan, F. N. (2009b). Indian J. Heterocycl. Chem. 19, 81–82.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds