metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m370-m371

Bis(4,4′-bipyrid­yl)bis­{2-[4,6-bis­­(carb­oxy­methyl­sulfan­yl)-1,3,5-triazin-2-ylsulfan­yl]acetato}zinc(II)

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: wangsuna@lcu.edu.cn

(Received 3 December 2009; accepted 26 February 2010; online 6 March 2010)

In the title compound, [Zn(C9H8N3O6S3)2(C10H8N2)2], the central ZnII ion, situated on a center of inversion, adopts an octa­hedral geometry coordinated by four O atoms from two carboxyl­ate groups and two carboxylic groups of two symmetry-related TTTA ligands and two N atoms from two bpy mol­ecules {TTTA is 2,2′,2′′-[1,3,5-triazine-2,4,6-triyltris(sulfanedi­yl)]triacetic acid and bpy is 4,4′-bipyridine}. These mononuclear units are connected through complementary O—H⋯X hydrogen bonds, as well as through weak C—H⋯X (X = O and N) inter­actions, resulting in a three-dimensional supra­molecular architecture.

Related literature

For crystal engineering of carboxyl­ates, see: Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]); Rao et al. (2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]); Ferey et al. (2005[Ferey, G., Mellot-Draznieks, C., Serre, C. & Millange, F. (2005). Acc. Chem. Res. 38, 217-225.]). For inter­actions involved in the self-assembly process, see: Braga & Grepioni (2000[Braga, D. & Grepioni, F. (2000). Acc. Chem. Res. 33, 601-608.]); Roesky & Andruh (2003[Roesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91-119.]); Chen et al. (2009[Chen, J. Q., Cai, Y. P., Fang, H. C., Zhou, Z. Y., Zhan, X. L., Zhao, G. & Zhang, Z. (2009). Cryst. Growth Des. 9, 1605-1613.]). For our work on the coordination chemistry of semirigid polycarboxyl­ate ligands with functional groups introduced between the aromatic ring and carboxyl­ate groups, see: Wang et al. (2007[Wang, S. N., Sun, R., Wang, X. S., Li, Y. Z., Pan, Y., Bai, J. F., Scheer, M. & You, X. Z. (2007). CrystEngComm, 9, 1051-1061.]); Hong et al. (2005[Hong, X.-L., Li, Y.-Z. & Bai, J.-F. (2005). Acta Cryst. E61, m1863-m1865.]); Sun et al. (2007[Sun, R., Wang, S. N., Xing, H., Bai, J. F., Li, Y. Z., Pan, Y. & You, X. Z. (2007). Inorg. Chem. 46, 8451-8453.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C9H8N3O6S3)2(C10H8N2)2]

  • Mr = 1078.47

  • Triclinic, [P \overline 1]

  • a = 8.6025 (7) Å

  • b = 8.7606 (7) Å

  • c = 15.3187 (12) Å

  • α = 99.518 (1)°

  • β = 105.802 (2)°

  • γ = 98.805 (1)°

  • V = 1071.41 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 293 K

  • 0.28 × 0.24 × 0.23 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.81, Tmax = 0.84

  • 5465 measured reflections

  • 3745 independent reflections

  • 3103 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.116

  • S = 1.05

  • 3745 reflections

  • 306 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O3 2.1145 (19)
Zn1—N4 2.135 (2)
Zn1—O1 2.189 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4i 0.82 1.64 2.460 (3) 175
O5—H5⋯N5ii 0.82 1.74 2.554 (3) 174
C13—H13⋯O6iii 0.93 2.47 3.335 (4) 156
C19—H19⋯O6iii 0.93 2.34 3.245 (4) 164
C6—H6A⋯N1iv 0.97 2.58 3.533 (4) 168
Symmetry codes: (i) -x+1, -y-1, -z+1; (ii) -x, -y+1, -z+2; (iii) -x+1, -y+1, -z+2; (iv) x+1, y, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recent years have witnessed rapid development of the construction of metal-organic assemblies with fascinating structures and properties in coordination chemistry and crystal engineering. (Moulton & Zaworotko, 2001; Rao et al., 2004; Ferey et al., 2005). Besides metal-ligand coordination bonding, various kinds of intermolecular weak interactions, such as hydrogen bonds, weak C—H···X (X = O, N, π) interactions and π···π stacking, are also vital in the self-assembly process. (Braga & Grepioni, 2000; Roesky & Andruh, 2003; Chen et al., 2009) Our interest is the coordination chemistry of semirigid polycarboxylate ligands by introducing functional groups between the aromatic ring and carboxylate groups (Hong et al., 2005; Wang et al., 2007; Sun et al., 2007).

Herein we report the title compound [Zn(TTTA)2(bpy)2] (TTTA = 2,2',2''-[1,3,5-triazine-2,4,6-triyltris(thio)]tris-acetic acid, bpy = 4,4'-bipyridine), as illustrated in Scheme 1 and Figure 1. The ZnII ion, situated on a center of inversion, adopts octahedral geometry with four oxygen atoms from two carboxylate groups and two carboxylic groups of two different TTTA ligands and two nitrogen atoms from two coordinated bpy molecules. Only one carboxylate group of the TTTA ligand is deprotonated and coordinated to the metal center in a monodentate mode. The atoms in the central triazine ring are almost coplanar with a very small deviation of only 0.0085 Å from the mean plane and the dihedral angle of the carboxylate group with the triazine ring is 75.6 (2)°. The other two -COOH groups, one of which is coordinated and the other uncoordinated, form the dihedral angles of 80.0 (2) and 175.0 (4)° with the triazine ring, respectively.

As shown in Figure 2, significant O—H···N hydrogen bonding interactions are generated between hydroxyl groups (O5-H5) of the carboxylic acid and uncoordinated nitrogen atom (N5) from adjacent molecules. As a result, one-dimensional hinged chains containing M2L2(bpy)2 macrocyclic rings are formed along the b axis. These chains are further linked together in a parallel fashion to form a two-dimensional sheet through O—H···O hydrogen bonds between the carboxylate group (O2) and carboxyl oxygen atom (O4) from adjacent chains. Between neighboring sheets, bpy (C13 and C18) CH groups form weak C—H···O weak interactions with TTTA carboxyl oxygen atoms (O6). Simultaneously, these sheets are consolidated further through weak C—H···N interactions between CH2 groups (C6) and N atoms (N1) of the triazine ring (Figure 3 and Table 2). Thus, the mononuclear units are connected together through the complementary interactions of several kinds of hydrogen bonds, which ultimately extend into a three-dimensional framework.

Related literature top

For crystal engineering of carboxylates, see: Moulton & Zaworotko (2001); Rao et al. (2004); Ferey et al. (2005). For interactions involved in the self-assembly process, see: Braga & Grepioni (2000); Roesky & Andruh (2003); Chen et al. (2009). For our work on the coordination chemistry of semirigid polycarboxylate ligands with functional groups introduced between the aromatic ring and carboxylate groups, see: Wang et al. (2007); Hong et al. (2005); Sun et al. (2007).

Experimental top

A mixture of TTTA (0.025 mmol, 0.010 g), bpy (0.05 mmol, 0.008 g), Zn(NO3)2.6H2O (0.025 mmol, 0.013 g) with H2O (10 ml) was placed in a Parr Teflon-lined stainless steel vessel and heated to 80 °C for 24 h. Then the reaction system was cooled to room temperature slowly and light yellow block crystals were obtained. After filtration, the crystals were washed with water and dried in air. Elemental analysis calculated for C38H32N10O12S6Zn (Mr = 1078.47) : C 42.32, H 2.99, N 12.99%; found: C 42.13, H 2.92, N 13.08%.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H 0.93(pyridine,benzene), C—H 0.97 (methylene) Å [Uiso(H) = 1.2Ueq(C)] and O—H 0.82 Å (hydroxyl) [Uiso(H) = 1.5Ueq(O)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The local coordination environment for the ZnII centers in 1. Hydrogen atoms have been omitted for clarity, and thermal ellipsoids are drawn at the 30% probability level. Selected bonds information is listed in Table 1. Symmetry codes: (i) 1-x, -y, 1-z.
[Figure 2] Fig. 2. View of the two-dimensional layer, constructed by O—H···N and O—H···O hydrogen bonding between the adjacent mononuclears. Only the hydrogen atoms in hydrogen bonds are shown for clarity.
[Figure 3] Fig. 3. View of the C—H···O and C—H···N weak interactions between the layers. Only the hydrogen atoms in hydrogen bonds are shown for clarity.
Bis(4,4'-bipyridyl)bis{2-[4,6-bis(carboxymethylsulfanyl)-1,3,5-triazin-2- ylsulfanyl]acetato}zinc(II) top
Crystal data top
[Zn(C9H8N3O6S3)2(C10H8N2)2]Z = 1
Mr = 1078.47F(000) = 552
Triclinic, P1Dx = 1.671 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6025 (7) ÅCell parameters from 2836 reflections
b = 8.7606 (7) Åθ = 2.5–28.1°
c = 15.3187 (12) ŵ = 0.94 mm1
α = 99.518 (1)°T = 293 K
β = 105.802 (2)°Block, colorless
γ = 98.805 (1)°0.28 × 0.24 × 0.23 mm
V = 1071.41 (15) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
3745 independent reflections
Radiation source: fine-focus sealed tube3103 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 810
Tmin = 0.81, Tmax = 0.84k = 109
5465 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0632P)2]
where P = (Fo2 + 2Fc2)/3
3745 reflections(Δ/σ)max = 0.001
306 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Zn(C9H8N3O6S3)2(C10H8N2)2]γ = 98.805 (1)°
Mr = 1078.47V = 1071.41 (15) Å3
Triclinic, P1Z = 1
a = 8.6025 (7) ÅMo Kα radiation
b = 8.7606 (7) ŵ = 0.94 mm1
c = 15.3187 (12) ÅT = 293 K
α = 99.518 (1)°0.28 × 0.24 × 0.23 mm
β = 105.802 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3745 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3103 reflections with I > 2σ(I)
Tmin = 0.81, Tmax = 0.84Rint = 0.067
5465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.05Δρmax = 0.55 e Å3
3745 reflectionsΔρmin = 0.63 e Å3
306 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.00000.50000.02725 (17)
N10.1818 (3)0.1424 (3)0.74960 (17)0.0324 (6)
N20.4260 (3)0.1972 (3)0.71830 (15)0.0265 (5)
N30.4458 (3)0.0022 (3)0.85212 (16)0.0276 (6)
N40.3822 (3)0.1179 (3)0.58899 (16)0.0260 (5)
N50.0151 (3)0.5510 (3)0.88027 (19)0.0402 (7)
O10.3126 (3)0.2111 (2)0.48345 (15)0.0365 (5)
O20.3316 (3)0.4383 (2)0.40496 (14)0.0368 (5)
H20.33780.52710.41420.044*
O30.6664 (2)0.0338 (2)0.62169 (13)0.0291 (5)
O40.6623 (3)0.2886 (2)0.57706 (14)0.0352 (5)
O50.1025 (3)0.2799 (3)1.01154 (16)0.0456 (6)
H50.07130.33891.04760.055*
O60.3494 (3)0.4151 (3)1.09911 (19)0.0634 (8)
S10.13117 (9)0.35869 (9)0.60274 (5)0.0338 (2)
S20.72472 (9)0.03437 (9)0.82517 (5)0.0308 (2)
S30.17169 (10)0.05612 (10)0.89085 (6)0.0401 (2)
C10.2626 (3)0.2188 (3)0.69989 (19)0.0252 (6)
C20.5103 (3)0.0856 (3)0.79407 (19)0.0247 (6)
C30.2811 (4)0.0367 (3)0.8256 (2)0.0287 (7)
C40.2717 (4)0.4370 (3)0.5489 (2)0.0267 (6)
H4A0.37490.43000.59650.032*
H4B0.22590.54810.52050.032*
C50.3071 (4)0.3530 (3)0.4759 (2)0.0272 (6)
C60.7620 (4)0.1775 (3)0.73879 (19)0.0282 (7)
H6A0.88040.16750.75210.034*
H6B0.71700.28240.74470.034*
C70.6901 (3)0.1647 (3)0.63890 (19)0.0250 (6)
C80.3335 (4)0.2042 (4)0.9770 (2)0.0325 (7)
H8A0.40750.15321.01670.039*
H8B0.39680.26620.94650.039*
C90.2604 (4)0.3118 (4)1.0352 (2)0.0346 (7)
C100.2189 (4)0.1151 (4)0.5617 (2)0.0334 (7)
H100.15550.05620.50310.040*
C110.1411 (4)0.1955 (4)0.6167 (2)0.0329 (7)
H110.02780.18960.59500.039*
C120.2330 (4)0.2856 (3)0.7048 (2)0.0269 (6)
C130.4010 (4)0.2880 (3)0.7317 (2)0.0309 (7)
H130.46810.34700.78960.037*
C140.4687 (4)0.2032 (3)0.6729 (2)0.0297 (7)
H140.58150.20610.69320.036*
C150.1554 (4)0.3774 (3)0.7653 (2)0.0277 (6)
C160.0110 (4)0.3372 (4)0.7560 (2)0.0388 (8)
H160.07840.25030.71100.047*
C170.0762 (4)0.4272 (4)0.8142 (2)0.0447 (9)
H170.18850.39990.80680.054*
C180.1757 (4)0.5904 (4)0.8904 (2)0.0383 (8)
H180.24010.67700.93670.046*
C190.2497 (4)0.5074 (4)0.8345 (2)0.0352 (7)
H190.36220.53820.84310.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0323 (3)0.0258 (3)0.0252 (3)0.0085 (2)0.0130 (2)0.0003 (2)
N10.0275 (14)0.0362 (14)0.0309 (14)0.0065 (11)0.0110 (11)0.0026 (11)
N20.0244 (13)0.0290 (13)0.0244 (13)0.0052 (11)0.0077 (10)0.0012 (11)
N30.0256 (13)0.0322 (13)0.0241 (13)0.0078 (11)0.0089 (10)0.0001 (11)
N40.0286 (13)0.0230 (12)0.0266 (13)0.0066 (10)0.0109 (11)0.0013 (10)
N50.0369 (16)0.0439 (16)0.0404 (16)0.0147 (13)0.0159 (13)0.0018 (13)
O10.0389 (13)0.0255 (12)0.0460 (13)0.0062 (9)0.0162 (10)0.0056 (10)
O20.0511 (14)0.0299 (11)0.0338 (12)0.0098 (11)0.0192 (10)0.0071 (10)
O30.0352 (12)0.0253 (10)0.0276 (11)0.0089 (9)0.0110 (9)0.0028 (9)
O40.0466 (14)0.0284 (11)0.0301 (12)0.0123 (10)0.0124 (10)0.0000 (9)
O50.0359 (14)0.0519 (15)0.0437 (14)0.0148 (11)0.0142 (11)0.0129 (11)
O60.0462 (16)0.0648 (17)0.0614 (18)0.0071 (14)0.0157 (13)0.0295 (14)
S10.0239 (4)0.0386 (5)0.0307 (4)0.0020 (3)0.0090 (3)0.0085 (3)
S20.0220 (4)0.0406 (5)0.0236 (4)0.0047 (3)0.0050 (3)0.0051 (3)
S30.0272 (4)0.0481 (5)0.0387 (5)0.0078 (4)0.0134 (4)0.0135 (4)
C10.0253 (15)0.0254 (15)0.0257 (15)0.0063 (12)0.0099 (12)0.0032 (12)
C20.0250 (15)0.0265 (15)0.0222 (14)0.0062 (12)0.0070 (12)0.0034 (12)
C30.0281 (16)0.0310 (16)0.0275 (16)0.0085 (13)0.0107 (13)0.0022 (13)
C40.0273 (15)0.0241 (14)0.0272 (15)0.0048 (12)0.0096 (12)0.0005 (12)
C50.0266 (16)0.0238 (16)0.0294 (16)0.0050 (12)0.0085 (12)0.0013 (12)
C60.0248 (15)0.0309 (16)0.0289 (16)0.0088 (13)0.0090 (12)0.0023 (13)
C70.0232 (15)0.0267 (15)0.0259 (15)0.0057 (12)0.0113 (12)0.0013 (12)
C80.0281 (16)0.0381 (17)0.0300 (16)0.0106 (14)0.0094 (13)0.0002 (14)
C90.0316 (18)0.0373 (18)0.0320 (17)0.0084 (14)0.0100 (14)0.0018 (14)
C100.0335 (17)0.0319 (16)0.0318 (17)0.0054 (14)0.0117 (14)0.0030 (13)
C110.0290 (16)0.0347 (17)0.0329 (17)0.0068 (13)0.0112 (13)0.0013 (14)
C120.0293 (16)0.0259 (15)0.0274 (15)0.0074 (12)0.0118 (12)0.0044 (12)
C130.0308 (17)0.0325 (16)0.0279 (16)0.0080 (14)0.0098 (13)0.0003 (13)
C140.0293 (16)0.0312 (16)0.0290 (16)0.0094 (13)0.0097 (13)0.0033 (13)
C150.0287 (16)0.0298 (15)0.0258 (15)0.0099 (13)0.0099 (12)0.0034 (12)
C160.0355 (18)0.0409 (19)0.0383 (19)0.0095 (15)0.0137 (15)0.0015 (15)
C170.0361 (19)0.052 (2)0.046 (2)0.0134 (17)0.0169 (16)0.0018 (17)
C180.0390 (19)0.0377 (18)0.0368 (18)0.0103 (15)0.0142 (15)0.0026 (15)
C190.0319 (17)0.0356 (17)0.0378 (18)0.0089 (14)0.0148 (14)0.0018 (14)
Geometric parameters (Å, º) top
Zn1—O3i2.1145 (19)S3—C31.739 (3)
Zn1—O32.1145 (19)S3—C81.800 (3)
Zn1—N4i2.135 (2)C4—C51.507 (4)
Zn1—N42.135 (2)C4—H4A0.9700
Zn1—O12.189 (2)C4—H4B0.9700
Zn1—O1i2.189 (2)C6—C71.516 (4)
N1—C11.331 (4)C6—H6A0.9700
N1—C31.342 (4)C6—H6B0.9700
N2—C11.333 (4)C8—C91.513 (4)
N2—C21.334 (3)C8—H8A0.9700
N3—C31.334 (4)C8—H8B0.9700
N3—C21.346 (4)C10—C111.382 (4)
N4—C141.325 (4)C10—H100.9300
N4—C101.347 (4)C11—C121.394 (4)
N5—C171.327 (4)C11—H110.9300
N5—C181.331 (4)C12—C131.386 (4)
O1—C51.222 (3)C12—C151.486 (4)
O2—C51.299 (3)C13—C141.379 (4)
O2—H20.8200C13—H130.9300
O3—C71.252 (3)C14—H140.9300
O4—C71.261 (3)C15—C161.383 (4)
O5—C91.279 (4)C15—C191.388 (4)
O5—H50.8200C16—C171.380 (4)
O6—C91.204 (4)C16—H160.9300
S1—C11.747 (3)C17—H170.9300
S1—C41.795 (3)C18—C191.379 (4)
S2—C21.740 (3)C18—H180.9300
S2—C61.797 (3)C19—H190.9300
O3i—Zn1—O3180.00 (7)C7—C6—H6A108.4
O3i—Zn1—N4i86.91 (8)S2—C6—H6A108.4
O3—Zn1—N4i93.09 (8)C7—C6—H6B108.4
O3i—Zn1—N493.09 (8)S2—C6—H6B108.4
O3—Zn1—N486.91 (8)H6A—C6—H6B107.4
N4i—Zn1—N4180.00 (9)O3—C7—O4123.7 (3)
O3i—Zn1—O184.73 (8)O3—C7—C6119.5 (2)
O3—Zn1—O195.27 (8)O4—C7—C6116.8 (2)
N4i—Zn1—O194.10 (8)C9—C8—S3110.2 (2)
N4—Zn1—O185.90 (8)C9—C8—H8A109.6
O3i—Zn1—O1i95.27 (8)S3—C8—H8A109.6
O3—Zn1—O1i84.73 (8)C9—C8—H8B109.6
N4i—Zn1—O1i85.90 (8)S3—C8—H8B109.6
N4—Zn1—O1i94.10 (8)H8A—C8—H8B108.1
O1—Zn1—O1i180.00 (7)O6—C9—O5125.3 (3)
C1—N1—C3113.8 (3)O6—C9—C8120.2 (3)
C1—N2—C2113.8 (2)O5—C9—C8114.4 (3)
C3—N3—C2113.4 (2)N4—C10—C11123.2 (3)
C14—N4—C10116.8 (3)N4—C10—H10118.4
C14—N4—Zn1121.0 (2)C11—C10—H10118.4
C10—N4—Zn1122.14 (19)C10—C11—C12119.7 (3)
C17—N5—C18118.6 (3)C10—C11—H11120.1
C5—O1—Zn1136.6 (2)C12—C11—H11120.1
C5—O2—H2109.5C13—C12—C11116.5 (3)
C7—O3—Zn1125.67 (18)C13—C12—C15121.9 (3)
C9—O5—H5109.5C11—C12—C15121.7 (3)
C1—S1—C4103.09 (14)C14—C13—C12120.1 (3)
C2—S2—C6100.14 (13)C14—C13—H13119.9
C3—S3—C8101.90 (14)C12—C13—H13119.9
N1—C1—N2126.4 (3)N4—C14—C13123.7 (3)
N1—C1—S1113.1 (2)N4—C14—H14118.1
N2—C1—S1120.6 (2)C13—C14—H14118.1
N2—C2—N3126.3 (3)C16—C15—C19117.5 (3)
N2—C2—S2120.1 (2)C16—C15—C12122.0 (3)
N3—C2—S2113.6 (2)C19—C15—C12120.5 (3)
N3—C3—N1126.3 (3)C17—C16—C15119.4 (3)
N3—C3—S3121.1 (2)C17—C16—H16120.3
N1—C3—S3112.6 (2)C15—C16—H16120.3
C5—C4—S1113.8 (2)N5—C17—C16122.6 (3)
C5—C4—H4A108.8N5—C17—H17118.7
S1—C4—H4A108.8C16—C17—H17118.7
C5—C4—H4B108.8N5—C18—C19122.3 (3)
S1—C4—H4B108.8N5—C18—H18118.9
H4A—C4—H4B107.7C19—C18—H18118.9
O1—C5—O2121.7 (3)C18—C19—C15119.6 (3)
O1—C5—C4121.3 (3)C18—C19—H19120.2
O2—C5—C4116.9 (2)C15—C19—H19120.2
C7—C6—S2115.7 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4ii0.821.642.460 (3)175
O5—H5···N5iii0.821.742.554 (3)174
C13—H13···O6iv0.932.473.335 (4)156
C19—H19···O6iv0.932.343.245 (4)164
C6—H6A···N1v0.972.583.533 (4)168
Symmetry codes: (ii) x+1, y1, z+1; (iii) x, y+1, z+2; (iv) x+1, y+1, z+2; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C9H8N3O6S3)2(C10H8N2)2]
Mr1078.47
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.6025 (7), 8.7606 (7), 15.3187 (12)
α, β, γ (°)99.518 (1), 105.802 (2), 98.805 (1)
V3)1071.41 (15)
Z1
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.28 × 0.24 × 0.23
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.81, 0.84
No. of measured, independent and
observed [I > 2σ(I)] reflections
5465, 3745, 3103
Rint0.067
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.05
No. of reflections3745
No. of parameters306
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.63

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O32.1145 (19)Zn1—O12.189 (2)
Zn1—N42.135 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4i0.821.642.460 (3)174.6
O5—H5···N5ii0.821.742.554 (3)173.8
C13—H13···O6iii0.932.473.335 (4)155.6
C19—H19···O6iii0.932.343.245 (4)164.0
C6—H6A···N1iv0.972.583.533 (4)167.6
Symmetry codes: (i) x+1, y1, z+1; (ii) x, y+1, z+2; (iii) x+1, y+1, z+2; (iv) x+1, y, z.
 

Acknowledgements

We acknowledge the National Natural Science Foundation of China (grant No. 20801025 and 20671048) for financial support.

References

First citationBraga, D. & Grepioni, F. (2000). Acc. Chem. Res. 33, 601–608.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, J. Q., Cai, Y. P., Fang, H. C., Zhou, Z. Y., Zhan, X. L., Zhao, G. & Zhang, Z. (2009). Cryst. Growth Des. 9, 1605–1613.  Web of Science CSD CrossRef CAS Google Scholar
First citationFerey, G., Mellot-Draznieks, C., Serre, C. & Millange, F. (2005). Acc. Chem. Res. 38, 217–225.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHong, X.-L., Li, Y.-Z. & Bai, J.-F. (2005). Acta Cryst. E61, m1863–m1865.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationRoesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91–119.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, R., Wang, S. N., Xing, H., Bai, J. F., Li, Y. Z., Pan, Y. & You, X. Z. (2007). Inorg. Chem. 46, 8451–8453.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, S. N., Sun, R., Wang, X. S., Li, Y. Z., Pan, Y., Bai, J. F., Scheer, M. & You, X. Z. (2007). CrystEngComm, 9, 1051–1061.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m370-m371
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds