metal-organic compounds
(2R)-2-Methylpiperazinediium tetrachloridocuprate(II)
aSchool of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: clz1977@sina.com
In the title compound, (C5H14N2)[CuCl4], the copper(II) ion has a slightly tetrahedrally distorted square-planar coordination geometry and the diprotonated piperazine ring adopts a chair conformation. In the cations and anions are linked by intermolecular N—H⋯Cl hydrogen bonds, forming a three-dimensional network.
Related literature
For the ferroelectric and non-linear optical properties of chiral organic ligands, see: Fu et al. (2007); Qu et al. (2003). For transition metal complexes of 2-methylpiperazine, see: Ye et al. (2009). For puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810007877/rz2412sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810007877/rz2412Isup2.hkl
A mixture of (R)-2-methylpiperazine (1 mmol, 0.1 g ), CuCl2 (1 mmol, 0.136 g) and 10% aqueous HCl (6 ml) were mixed and dissolved in 30 ml water by heating to 353 K (10 minute) forming a clear solution. The reaction mixture was then cooled slowly to room temperature. Single crystals of the title compound suitable for X-ray analysis were formed after 12 days on slow evaporation of the solvent.
All H atoms were placed in calculated positions with C—H = 0.93-0.98 Å, N—H = 0.90 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C, N) or 1.5 Ueq(C) for methyl H atoms.
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).(C5H14N2)[CuCl4] | F(000) = 620 |
Mr = 307.53 | Dx = 1.785 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 2469 reflections |
a = 6.0169 (12) Å | θ = 3.1–27.5° |
b = 12.985 (3) Å | µ = 2.80 mm−1 |
c = 14.644 (3) Å | T = 293 K |
V = 1144.1 (4) Å3 | Block, yellow |
Z = 4 | 0.30 × 0.25 × 0.22 mm |
Rigaku SCXmini diffractometer | 2627 independent reflections |
Radiation source: fine-focus sealed tube | 2469 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −16→16 |
Tmin = 0.87, Tmax = 0.90 | l = −18→18 |
11992 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.025 | w = 1/[σ2(Fo2) + (0.0239P)2 + 0.0175P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.060 | (Δ/σ)max < 0.001 |
S = 1.10 | Δρmax = 0.30 e Å−3 |
2627 reflections | Δρmin = −0.53 e Å−3 |
111 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.193 (9) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1091 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.00 (3) |
(C5H14N2)[CuCl4] | V = 1144.1 (4) Å3 |
Mr = 307.53 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 6.0169 (12) Å | µ = 2.80 mm−1 |
b = 12.985 (3) Å | T = 293 K |
c = 14.644 (3) Å | 0.30 × 0.25 × 0.22 mm |
Rigaku SCXmini diffractometer | 2627 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 2469 reflections with I > 2σ(I) |
Tmin = 0.87, Tmax = 0.90 | Rint = 0.051 |
11992 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.060 | Δρmax = 0.30 e Å−3 |
S = 1.10 | Δρmin = −0.53 e Å−3 |
2627 reflections | Absolute structure: Flack (1983), 1091 Friedel pairs |
111 parameters | Absolute structure parameter: 0.00 (3) |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.82482 (13) | 1.34903 (5) | 0.01022 (5) | 0.0237 (3) | |
Cl4 | 0.8203 (3) | 1.32659 (11) | 0.17172 (9) | 0.0251 (4) | |
Cl3 | 0.8247 (3) | 1.17476 (11) | −0.00811 (9) | 0.0256 (4) | |
Cl2 | 0.8317 (3) | 1.52141 (11) | 0.02454 (12) | 0.0365 (4) | |
Cl1 | 0.8196 (3) | 1.36387 (11) | −0.14937 (10) | 0.0250 (4) | |
N1 | 0.8224 (9) | 1.0679 (4) | 0.1788 (3) | 0.0289 (11) | |
H1A | 0.9338 | 1.1063 | 0.1559 | 0.035* | |
H1B | 0.6932 | 1.0976 | 0.1626 | 0.035* | |
N2 | 0.6773 (9) | 0.8919 (4) | 0.2799 (3) | 0.0263 (11) | |
H2A | 0.8089 | 0.8638 | 0.2951 | 0.032* | |
H2B | 0.5692 | 0.8523 | 0.3038 | 0.032* | |
C5 | 0.6696 (17) | 0.7855 (5) | 0.1398 (5) | 0.055 (2) | |
H5C | 0.5702 | 0.7410 | 0.1725 | 0.083* | |
H5B | 0.8190 | 0.7603 | 0.1458 | 0.083* | |
H5A | 0.6288 | 0.7867 | 0.0764 | 0.083* | |
C2 | 0.6553 (12) | 0.8933 (5) | 0.1786 (4) | 0.0300 (14) | |
H2C | 0.5097 | 0.9221 | 0.1630 | 0.036* | |
C4 | 0.8395 (11) | 1.0661 (5) | 0.2797 (4) | 0.0309 (14) | |
H4B | 0.8227 | 1.1354 | 0.3035 | 0.037* | |
H4A | 0.9850 | 1.0408 | 0.2975 | 0.037* | |
C3 | 0.6623 (12) | 0.9975 (5) | 0.3195 (4) | 0.0304 (13) | |
H3B | 0.6801 | 0.9939 | 0.3853 | 0.036* | |
H3A | 0.5170 | 1.0264 | 0.3067 | 0.036* | |
C1 | 0.8335 (12) | 0.9624 (5) | 0.1390 (4) | 0.0323 (14) | |
H1D | 0.9786 | 0.9329 | 0.1512 | 0.039* | |
H1C | 0.8150 | 0.9666 | 0.0733 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0339 (4) | 0.0198 (4) | 0.0174 (4) | −0.0001 (3) | −0.0003 (3) | 0.0000 (3) |
Cl4 | 0.0236 (7) | 0.0309 (8) | 0.0209 (7) | −0.0006 (7) | −0.0001 (7) | −0.0035 (6) |
Cl3 | 0.0392 (8) | 0.0197 (7) | 0.0178 (7) | −0.0004 (7) | 0.0001 (7) | 0.0001 (5) |
Cl2 | 0.0540 (10) | 0.0222 (8) | 0.0333 (9) | −0.0006 (8) | −0.0017 (10) | −0.0016 (6) |
Cl1 | 0.0238 (7) | 0.0308 (8) | 0.0205 (7) | −0.0010 (7) | −0.0001 (7) | 0.0047 (6) |
N1 | 0.025 (2) | 0.034 (3) | 0.028 (3) | −0.004 (3) | 0.000 (3) | 0.013 (2) |
N2 | 0.026 (2) | 0.028 (3) | 0.024 (3) | −0.004 (3) | 0.002 (3) | 0.011 (2) |
C5 | 0.090 (6) | 0.035 (4) | 0.041 (5) | −0.005 (5) | −0.005 (6) | 0.000 (3) |
C2 | 0.033 (3) | 0.031 (3) | 0.026 (3) | −0.001 (3) | −0.003 (3) | 0.007 (3) |
C4 | 0.037 (3) | 0.031 (3) | 0.025 (3) | −0.004 (3) | −0.003 (3) | 0.009 (3) |
C3 | 0.037 (3) | 0.032 (3) | 0.023 (3) | 0.001 (3) | 0.005 (3) | 0.006 (3) |
C1 | 0.037 (3) | 0.039 (4) | 0.022 (3) | 0.000 (3) | 0.005 (3) | 0.007 (3) |
Cu1—Cl2 | 2.2485 (16) | C5—H5C | 0.9600 |
Cu1—Cl3 | 2.2788 (16) | C5—H5B | 0.9600 |
Cu1—Cl1 | 2.3451 (15) | C5—H5A | 0.9600 |
Cu1—Cl4 | 2.3831 (15) | C2—C1 | 1.514 (9) |
N1—C4 | 1.482 (8) | C2—H2C | 0.9800 |
N1—C1 | 1.490 (8) | C4—C3 | 1.506 (9) |
N1—H1A | 0.9000 | C4—H4B | 0.9700 |
N1—H1B | 0.9000 | C4—H4A | 0.9700 |
N2—C2 | 1.489 (8) | C3—H3B | 0.9700 |
N2—C3 | 1.492 (7) | C3—H3A | 0.9700 |
N2—H2A | 0.9000 | C1—H1D | 0.9700 |
N2—H2B | 0.9000 | C1—H1C | 0.9700 |
C5—C2 | 1.513 (9) | ||
Cl2—Cu1—Cl3 | 178.25 (7) | N2—C2—C5 | 111.0 (5) |
Cl2—Cu1—Cl1 | 90.66 (6) | N2—C2—C1 | 109.0 (5) |
Cl3—Cu1—Cl1 | 87.95 (5) | C5—C2—C1 | 111.4 (6) |
Cl2—Cu1—Cl4 | 91.68 (6) | N2—C2—H2C | 108.5 |
Cl3—Cu1—Cl4 | 89.74 (5) | C5—C2—H2C | 108.5 |
Cl1—Cu1—Cl4 | 177.28 (6) | C1—C2—H2C | 108.5 |
C4—N1—C1 | 111.9 (4) | N1—C4—C3 | 110.3 (6) |
C4—N1—H1A | 109.2 | N1—C4—H4B | 109.6 |
C1—N1—H1A | 109.2 | C3—C4—H4B | 109.6 |
C4—N1—H1B | 109.2 | N1—C4—H4A | 109.6 |
C1—N1—H1B | 109.2 | C3—C4—H4A | 109.6 |
H1A—N1—H1B | 107.9 | H4B—C4—H4A | 108.1 |
C2—N2—C3 | 111.8 (4) | N2—C3—C4 | 110.5 (5) |
C2—N2—H2A | 109.3 | N2—C3—H3B | 109.6 |
C3—N2—H2A | 109.3 | C4—C3—H3B | 109.6 |
C2—N2—H2B | 109.3 | N2—C3—H3A | 109.6 |
C3—N2—H2B | 109.3 | C4—C3—H3A | 109.6 |
H2A—N2—H2B | 107.9 | H3B—C3—H3A | 108.1 |
C2—C5—H5C | 109.5 | N1—C1—C2 | 111.3 (5) |
C2—C5—H5B | 109.5 | N1—C1—H1D | 109.4 |
H5C—C5—H5B | 109.5 | C2—C1—H1D | 109.4 |
C2—C5—H5A | 109.5 | N1—C1—H1C | 109.4 |
H5C—C5—H5A | 109.5 | C2—C1—H1C | 109.4 |
H5B—C5—H5A | 109.5 | H1D—C1—H1C | 108.0 |
C3—N2—C2—C5 | −179.7 (7) | N1—C4—C3—N2 | 56.1 (7) |
C3—N2—C2—C1 | 57.3 (7) | C4—N1—C1—C2 | 56.4 (7) |
C1—N1—C4—C3 | −55.8 (7) | N2—C2—C1—N1 | −56.0 (7) |
C2—N2—C3—C4 | −58.1 (7) | C5—C2—C1—N1 | −178.8 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1i | 0.90 | 2.36 | 3.149 (6) | 147 |
N1—H1B···Cl1ii | 0.90 | 2.31 | 3.182 (6) | 163 |
N2—H2A···Cl4iii | 0.90 | 2.33 | 3.218 (6) | 168 |
N2—H2B···Cl4iv | 0.90 | 2.39 | 3.192 (6) | 148 |
Symmetry codes: (i) x+1/2, −y+5/2, −z; (ii) x−1/2, −y+5/2, −z; (iii) −x+2, y−1/2, −z+1/2; (iv) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | (C5H14N2)[CuCl4] |
Mr | 307.53 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 6.0169 (12), 12.985 (3), 14.644 (3) |
V (Å3) | 1144.1 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.80 |
Crystal size (mm) | 0.30 × 0.25 × 0.22 |
Data collection | |
Diffractometer | Rigaku SCXmini diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.87, 0.90 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11992, 2627, 2469 |
Rint | 0.051 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.060, 1.10 |
No. of reflections | 2627 |
No. of parameters | 111 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.53 |
Absolute structure | Flack (1983), 1091 Friedel pairs |
Absolute structure parameter | 0.00 (3) |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1i | 0.90 | 2.36 | 3.149 (6) | 147.1 |
N1—H1B···Cl1ii | 0.90 | 2.31 | 3.182 (6) | 162.9 |
N2—H2A···Cl4iii | 0.90 | 2.33 | 3.218 (6) | 167.6 |
N2—H2B···Cl4iv | 0.90 | 2.39 | 3.192 (6) | 147.7 |
Symmetry codes: (i) x+1/2, −y+5/2, −z; (ii) x−1/2, −y+5/2, −z; (iii) −x+2, y−1/2, −z+1/2; (iv) −x+1, y−1/2, −z+1/2. |
Acknowledgements
This work was supported by a start-up grant from Jiangsu University of Science and Technology
References
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347. Web of Science CSD CrossRef PubMed CAS Google Scholar
Qu, Z.-R., Zhao, H., Wang, X.-S., Li, Y.-H., Song, Y.-M., Lui, Y.-J., Ye, Q., Xiong, R.-G., Abrahams, B. F., Xue, Z.-L. & You, X.-Z. (2003). Inorg. Chem. 42, 7710–7712. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42–43. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The existence of a chiral centre in an organic ligand is very important for the construction noncentrosymmetric or chiral coordination polymers that exhibit desirable physical properties such as ferroelectricity (Fu et al., 2007) and nonlinear optical second harmonic generation (Qu et al., 2003). Chiral (R)-2-methylpiperazine has a chiral centre which have shown tremendous scope in the synthesis of transition metal complexes (Ye et al., 2009). The construction of new members of this family of ligands is an important direction in the development of modern coordination chemistry. We report here the crystal structure of the title compound
The asymmetric unit of the title compound consists of a diprotonated (R)-2-methylpiperazine cation and a tetrachlorocuprate anion (Fig. 1). The copper(II) metal centre is in a slightly tetrahedrally distorted square-planar coordination geometry (maximum displacement 0.0252 (18) Å for atom Cl1). The 6-membered piperazine ring adopts a chair conformation, with puckering parameters (Cremer & Pople, 1975) Q = 0.570 (6) Å, θ = 178.6 (6)° and ϕ = -127.3 (3)°. The crystal structure is stabilized by inter-ion N—H···Cl hydrogen interactions (Table 1) forming a three-dimensional network (Fig. 2).