organic compounds
Ethyl 2-(tert-butoxycarbonylamino)-1,3-benzothiazole-6-carboxylate
aCollege of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China, and bFujian Institute of Research on the Structure of Matter, State Key Laboratory of Structural Chemistry, Chinese Academy of Sciences, Fuzhou 350108, People's Republic of China
*Correspondence e-mail: wangjd@fzu.edu.cn
In the crystal of the title compound, C15H18N2O4S, inversion dimers are formed by intermolecular N—H⋯N hydrogen bonds and weak C—H⋯O contacts. These dimers stack up along [100] through inversion-related π–π interactions between thiazole rings [centroid–centroid distance = 3.790 (2) Å] and the thiazole and benzene rings [centroid–centroid distance = 3.845 (2) Å] and C—H⋯π contacts.
Related literature
For benzothiazole derivatives with anti-tumor activity, see: Brantley et al. (2004); Ćaleta et al. (2009); Mortimer et al. (2006) and for anti-tuberculous benzothiazolines, see: Palmer et al. (1971). For related benzothiazole structures, see: Lynch et al. (2002); Matković-Čalogović et al. (2003).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2007); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S160053681001024X/si2244sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681001024X/si2244Isup2.hkl
Di-tert-butyl dicarbonate (4.92 g, 22.5 mmol) and 4-dimethylamino pyridine (2.06 g, 16.9 mmol) were added to a solution of ethyl 2-aminebenzothiazole-6-carboxylate (the starting compound) (2.5 g, 11.3 mmol) in dry THF (300 ml), and stirred for 22 hours at room temperature. Then the solvent THF was evaporated, and the residue was extracted with 1 liter of dichloromethane. The dichloromethane washed with 1 N aq HCl, water, and brine, sequentially, and dried with Na2SO4. Further filtration and concentration yielded the dried compound as a yellow solid [2.61 g, yield: 72%]. The solid was dissolved in DMF and filtered. The DMF was evaporated slowly at room temperature for a week, giving colorless needle crystals.
All H atoms bound to C and N atoms were refined as riding, with C—H distances in the range of 0.93 to 0.97 Å and N—H distances of 0.86 Å, with Uiso(H) = 1.2Ueq(C, N); 1.5Ueq(Cmethyl).
Data collection: CrystalClear (Rigaku, 2007); cell
CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C15H18N2O4S | Z = 2 |
Mr = 322.37 | F(000) = 340 |
Triclinic, P1 | Dx = 1.355 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.3026 (13) Å | Cell parameters from 2354 reflections |
b = 10.791 (2) Å | θ = 12–18° |
c = 11.909 (2) Å | µ = 0.22 mm−1 |
α = 80.58 (3)° | T = 293 K |
β = 86.61 (3)° | Needle, colorless |
γ = 81.57 (3)° | 0.70 × 0.05 × 0.02 mm |
V = 789.9 (3) Å3 |
Rigaku Saturn 724 CCD area-detector diffractometer | 3469 independent reflections |
Radiation source: fine-focus sealed tube | 2412 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.049 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 27.5°, θmin = 3.3° |
dtprofit.ref scans | h = −7→8 |
Absorption correction: numerical (NUMABS; Higashi, 2000) | k = −13→11 |
Tmin = 0.987, Tmax = 0.995 | l = −15→15 |
6644 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.088 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.203 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0613P)2 + 0.839P] where P = (Fo2 + 2Fc2)/3 |
3469 reflections | (Δ/σ)max < 0.001 |
199 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
C15H18N2O4S | γ = 81.57 (3)° |
Mr = 322.37 | V = 789.9 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.3026 (13) Å | Mo Kα radiation |
b = 10.791 (2) Å | µ = 0.22 mm−1 |
c = 11.909 (2) Å | T = 293 K |
α = 80.58 (3)° | 0.70 × 0.05 × 0.02 mm |
β = 86.61 (3)° |
Rigaku Saturn 724 CCD area-detector diffractometer | 3469 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 2000) | 2412 reflections with I > 2σ(I) |
Tmin = 0.987, Tmax = 0.995 | Rint = 0.049 |
6644 measured reflections |
R[F2 > 2σ(F2)] = 0.088 | 0 restraints |
wR(F2) = 0.203 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.26 e Å−3 |
3469 reflections | Δρmin = −0.30 e Å−3 |
199 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | −0.00627 (16) | 0.75048 (10) | 0.94306 (9) | 0.0535 (3) | |
O1 | −0.5534 (4) | 0.6760 (2) | 1.1764 (2) | 0.0535 (7) | |
N1 | −0.4017 (5) | 0.8086 (3) | 1.0445 (3) | 0.0463 (7) | |
H1 | −0.5187 | 0.8593 | 1.0515 | 0.056* | |
O4 | 0.6440 (4) | 0.9028 (3) | 0.6602 (2) | 0.0544 (7) | |
N2 | −0.2502 (5) | 0.9692 (3) | 0.9263 (2) | 0.0425 (7) | |
O2 | −0.2352 (5) | 0.6079 (3) | 1.0923 (3) | 0.0736 (10) | |
O3 | 0.5621 (5) | 1.1131 (3) | 0.6102 (3) | 0.0702 (9) | |
C1 | −0.6011 (11) | 0.4579 (5) | 1.1729 (5) | 0.101 (2) | |
H1A | −0.6143 | 0.3772 | 1.2185 | 0.151* | |
H1B | −0.4776 | 0.4496 | 1.1221 | 0.151* | |
H1C | −0.7275 | 0.4866 | 1.1295 | 0.151* | |
C2 | −0.3890 (9) | 0.5131 (6) | 1.3253 (5) | 0.113 (2) | |
H2A | −0.4042 | 0.4330 | 1.3717 | 0.169* | |
H2B | −0.3848 | 0.5759 | 1.3733 | 0.169* | |
H2C | −0.2583 | 0.5050 | 1.2798 | 0.169* | |
C3 | −0.7806 (8) | 0.5823 (5) | 1.3176 (5) | 0.0844 (17) | |
H3A | −0.8094 | 0.5075 | 1.3685 | 0.127* | |
H3B | −0.8973 | 0.6104 | 1.2671 | 0.127* | |
H3C | −0.7654 | 0.6480 | 1.3608 | 0.127* | |
C4 | −0.5758 (7) | 0.5525 (4) | 1.2490 (4) | 0.0599 (11) | |
C5 | −0.3848 (6) | 0.6882 (4) | 1.1045 (3) | 0.0497 (9) | |
C6 | −0.2382 (6) | 0.8519 (4) | 0.9732 (3) | 0.0426 (8) | |
C7 | −0.0652 (5) | 0.9890 (3) | 0.8612 (3) | 0.0410 (8) | |
C8 | −0.0223 (6) | 1.1047 (4) | 0.7995 (3) | 0.0483 (9) | |
H8 | −0.1213 | 1.1775 | 0.8004 | 0.058* | |
C9 | 0.1687 (6) | 1.1096 (4) | 0.7373 (3) | 0.0506 (9) | |
H9 | 0.1980 | 1.1866 | 0.6962 | 0.061* | |
C10 | 0.3196 (5) | 1.0007 (4) | 0.7350 (3) | 0.0448 (9) | |
C11 | 0.2781 (6) | 0.8856 (4) | 0.7956 (3) | 0.0479 (9) | |
H11 | 0.3769 | 0.8129 | 0.7938 | 0.057* | |
C12 | 0.0869 (6) | 0.8803 (3) | 0.8590 (3) | 0.0438 (8) | |
C13 | 0.5180 (6) | 1.0144 (4) | 0.6628 (3) | 0.0500 (9) | |
C14 | 0.8351 (6) | 0.9081 (4) | 0.5871 (3) | 0.0554 (10) | |
H14A | 0.9345 | 0.9534 | 0.6178 | 0.066* | |
H14B | 0.7982 | 0.9520 | 0.5116 | 0.066* | |
C15 | 0.9356 (9) | 0.7748 (5) | 0.5812 (5) | 0.0817 (15) | |
H15A | 1.0624 | 0.7757 | 0.5324 | 0.123* | |
H15B | 0.8357 | 0.7307 | 0.5512 | 0.123* | |
H15C | 0.9734 | 0.7326 | 0.6561 | 0.123* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0453 (6) | 0.0497 (6) | 0.0608 (6) | −0.0027 (4) | 0.0103 (4) | −0.0027 (5) |
O1 | 0.0468 (15) | 0.0474 (15) | 0.0610 (17) | −0.0030 (12) | 0.0131 (13) | −0.0014 (13) |
N1 | 0.0382 (16) | 0.0485 (18) | 0.0490 (18) | −0.0047 (13) | 0.0040 (14) | −0.0009 (14) |
O4 | 0.0382 (14) | 0.0655 (18) | 0.0594 (17) | −0.0122 (13) | 0.0127 (12) | −0.0099 (14) |
N2 | 0.0373 (16) | 0.0482 (18) | 0.0424 (16) | −0.0074 (13) | −0.0003 (13) | −0.0073 (14) |
O2 | 0.0594 (19) | 0.0573 (18) | 0.090 (2) | 0.0079 (15) | 0.0272 (17) | 0.0049 (16) |
O3 | 0.0549 (18) | 0.065 (2) | 0.085 (2) | −0.0168 (15) | 0.0138 (16) | 0.0076 (17) |
C1 | 0.128 (5) | 0.060 (3) | 0.113 (5) | −0.028 (3) | 0.036 (4) | −0.013 (3) |
C2 | 0.071 (4) | 0.144 (6) | 0.099 (4) | −0.015 (4) | −0.011 (3) | 0.057 (4) |
C3 | 0.072 (3) | 0.070 (3) | 0.097 (4) | −0.010 (2) | 0.040 (3) | 0.013 (3) |
C4 | 0.054 (2) | 0.049 (2) | 0.071 (3) | −0.0094 (19) | 0.010 (2) | 0.008 (2) |
C5 | 0.040 (2) | 0.051 (2) | 0.056 (2) | −0.0070 (17) | 0.0093 (18) | −0.0075 (19) |
C6 | 0.0377 (18) | 0.049 (2) | 0.0417 (19) | −0.0057 (15) | −0.0012 (15) | −0.0082 (16) |
C7 | 0.0324 (17) | 0.047 (2) | 0.0438 (19) | −0.0050 (15) | −0.0003 (15) | −0.0094 (16) |
C8 | 0.0395 (19) | 0.046 (2) | 0.059 (2) | −0.0067 (16) | 0.0004 (17) | −0.0060 (18) |
C9 | 0.045 (2) | 0.052 (2) | 0.055 (2) | −0.0145 (17) | 0.0038 (18) | −0.0057 (19) |
C10 | 0.0319 (18) | 0.055 (2) | 0.049 (2) | −0.0094 (16) | 0.0022 (15) | −0.0106 (18) |
C11 | 0.0381 (19) | 0.053 (2) | 0.050 (2) | −0.0017 (16) | 0.0021 (16) | −0.0076 (18) |
C12 | 0.0391 (19) | 0.051 (2) | 0.0417 (19) | −0.0065 (16) | 0.0012 (15) | −0.0077 (16) |
C13 | 0.0357 (19) | 0.063 (3) | 0.051 (2) | −0.0116 (18) | −0.0027 (16) | −0.0047 (19) |
C14 | 0.042 (2) | 0.073 (3) | 0.052 (2) | −0.0156 (19) | 0.0139 (18) | −0.012 (2) |
C15 | 0.078 (3) | 0.081 (3) | 0.084 (4) | −0.008 (3) | 0.027 (3) | −0.020 (3) |
S1—C12 | 1.738 (4) | C3—C4 | 1.509 (6) |
S1—C6 | 1.750 (4) | C3—H3A | 0.9600 |
O1—C5 | 1.332 (4) | C3—H3B | 0.9600 |
O1—C4 | 1.486 (5) | C3—H3C | 0.9600 |
N1—C5 | 1.369 (5) | C7—C8 | 1.396 (5) |
N1—C6 | 1.382 (5) | C7—C12 | 1.404 (5) |
N1—H1 | 0.8600 | C8—C9 | 1.379 (5) |
O4—C13 | 1.345 (5) | C8—H8 | 0.9300 |
O4—C14 | 1.446 (4) | C9—C10 | 1.402 (5) |
N2—C6 | 1.290 (4) | C9—H9 | 0.9300 |
N2—C7 | 1.385 (4) | C10—C11 | 1.382 (5) |
O2—C5 | 1.203 (5) | C10—C13 | 1.487 (5) |
O3—C13 | 1.205 (4) | C11—C12 | 1.388 (5) |
C1—C4 | 1.501 (7) | C11—H11 | 0.9300 |
C1—H1A | 0.9600 | C14—C15 | 1.495 (6) |
C1—H1B | 0.9600 | C14—H14A | 0.9700 |
C1—H1C | 0.9600 | C14—H14B | 0.9700 |
C2—C4 | 1.499 (7) | C15—H15A | 0.9600 |
C2—H2A | 0.9600 | C15—H15B | 0.9600 |
C2—H2B | 0.9600 | C15—H15C | 0.9600 |
C2—H2C | 0.9600 | ||
C12—S1—C6 | 87.89 (18) | N2—C6—S1 | 117.2 (3) |
C5—O1—C4 | 120.7 (3) | N1—C6—S1 | 121.5 (3) |
C5—N1—C6 | 122.6 (3) | N2—C7—C8 | 125.6 (3) |
C5—N1—H1 | 118.7 | N2—C7—C12 | 114.9 (3) |
C6—N1—H1 | 118.7 | C8—C7—C12 | 119.5 (3) |
C13—O4—C14 | 115.5 (3) | C9—C8—C7 | 119.1 (4) |
C6—N2—C7 | 110.1 (3) | C9—C8—H8 | 120.4 |
C4—C1—H1A | 109.5 | C7—C8—H8 | 120.4 |
C4—C1—H1B | 109.5 | C8—C9—C10 | 121.2 (4) |
H1A—C1—H1B | 109.5 | C8—C9—H9 | 119.4 |
C4—C1—H1C | 109.5 | C10—C9—H9 | 119.4 |
H1A—C1—H1C | 109.5 | C11—C10—C9 | 120.1 (3) |
H1B—C1—H1C | 109.5 | C11—C10—C13 | 122.5 (3) |
C4—C2—H2A | 109.5 | C9—C10—C13 | 117.3 (3) |
C4—C2—H2B | 109.5 | C10—C11—C12 | 119.0 (4) |
H2A—C2—H2B | 109.5 | C10—C11—H11 | 120.5 |
C4—C2—H2C | 109.5 | C12—C11—H11 | 120.5 |
H2A—C2—H2C | 109.5 | C11—C12—C7 | 121.2 (3) |
H2B—C2—H2C | 109.5 | C11—C12—S1 | 128.9 (3) |
C4—C3—H3A | 109.5 | C7—C12—S1 | 109.9 (3) |
C4—C3—H3B | 109.5 | O3—C13—O4 | 122.8 (4) |
H3A—C3—H3B | 109.5 | O3—C13—C10 | 124.7 (4) |
C4—C3—H3C | 109.5 | O4—C13—C10 | 112.5 (3) |
H3A—C3—H3C | 109.5 | O4—C14—C15 | 107.8 (3) |
H3B—C3—H3C | 109.5 | O4—C14—H14A | 110.1 |
O1—C4—C2 | 109.9 (4) | C15—C14—H14A | 110.1 |
O1—C4—C1 | 108.4 (4) | O4—C14—H14B | 110.1 |
C2—C4—C1 | 113.7 (5) | C15—C14—H14B | 110.1 |
O1—C4—C3 | 102.9 (3) | H14A—C14—H14B | 108.5 |
C2—C4—C3 | 110.7 (5) | C14—C15—H15A | 109.5 |
C1—C4—C3 | 110.7 (4) | C14—C15—H15B | 109.5 |
O2—C5—O1 | 126.7 (4) | H15A—C15—H15B | 109.5 |
O2—C5—N1 | 123.0 (3) | C14—C15—H15C | 109.5 |
O1—C5—N1 | 110.3 (3) | H15A—C15—H15C | 109.5 |
N2—C6—N1 | 121.3 (3) | H15B—C15—H15C | 109.5 |
Cg2 is the centroid of the C7–C12 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N2i | 0.86 | 2.22 | 3.054 (14) | 162 |
C8—H8···O1i | 0.93 | 2.43 | 3.334 (14) | 164 |
C14—H14A···Cg2ii | 0.97 | 2.66 | 3.523 (18) | 149 |
Symmetry codes: (i) −x−1, −y+2, −z+2; (ii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C15H18N2O4S |
Mr | 322.37 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 6.3026 (13), 10.791 (2), 11.909 (2) |
α, β, γ (°) | 80.58 (3), 86.61 (3), 81.57 (3) |
V (Å3) | 789.9 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.22 |
Crystal size (mm) | 0.70 × 0.05 × 0.02 |
Data collection | |
Diffractometer | Rigaku Saturn 724 CCD area-detector diffractometer |
Absorption correction | Numerical (NUMABS; Higashi, 2000) |
Tmin, Tmax | 0.987, 0.995 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6644, 3469, 2412 |
Rint | 0.049 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.088, 0.203, 1.11 |
No. of reflections | 3469 |
No. of parameters | 199 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.30 |
Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), ORTEX (McArdle, 1995), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg2 is the centroid of the C7–C12 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N2i | 0.86 | 2.22 | 3.054 (14) | 162.4 |
C8—H8···O1i | 0.93 | 2.43 | 3.334 (14) | 163.8 |
C14—H14A···Cg2ii | 0.97 | 2.66 | 3.523 (18) | 148.5 |
Symmetry codes: (i) −x−1, −y+2, −z+2; (ii) x+1, y, z. |
Acknowledgements
The authors gratefully acknowledge the financial support from Fujian Institute of Research on the Structure of Matter, State Key Laboratory of Structural Chemistry, Chinese Academy of Sciences (Nos. SZD08003 and NSFC30811130467). Fujian Natural Science Foundation (No. 2008 J0330) and Fujian Terms of Science and Technology (Nos. 2008 F5033, 2008 J1005 and 2009I0016).
References
Brantley, E., Trapani, V., Alley, M. C., Hose, C. D., Bradshaw, T. D., Stevens, M. F. G., Sausville, E. A. & Stinson, S. F. (2004). Drug Metab. Dispos., 32, 1392–1401. Web of Science CrossRef PubMed CAS Google Scholar
Ćaleta, I., Kralj, M., Marjanović, M., Bertoša, B., Tomić, S., Pavlović, G., Pavelić, K. & Karminski-Zamola, G. (2009). J. Med. Chem. 52, 1744–1756. Web of Science PubMed Google Scholar
Higashi, T. (2000). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Lynch, D. E. (2002). Acta Cryst. E58, o1139–o1141. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Matković-Čalogović, D., Popović, Z., Tralić-Kulenović, V., Racanè, L. & Karminski-Zamola, G. (2003). Acta Cryst. C59, o190–o191. Web of Science CSD CrossRef IUCr Journals Google Scholar
McArdle, P. (1995). J. Appl. Cryst. 28, 65. CrossRef IUCr Journals Google Scholar
Mortimer, C. G., Wells, G., Crochard, J., Stone, E. L., Bradshaw, T. D., Stevens, M. F. G. & Westwell, A. D. (2006). J. Med. Chem. 49, 179–185. Web of Science CrossRef PubMed CAS Google Scholar
Palmer, P. J., Trigg, R. B. & Warrington, J. V. (1971). J. Med. Chem. 14, 248–251. CrossRef CAS PubMed Web of Science Google Scholar
Rigaku (2007). CrystalClear. Rigaku Inc., Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Benzothiazole is an important moiety used in drug development because of its biological activities. A number of benzothiazole derivatives were shown to have anti-tumor (Brantley et al., 2004; Mortimer et al., 2006; Ćaleta et al., 2009) or anti-microbial activities (Palmer et al., 1971). During our development of 2-aminobenzothiazole-based Urokinase-Type Plasminogen Activator (uPA) inhibitors, we synthesized the title compound as an intermediate while its activity was not tested because it is only a fragment of our target molecule.
The molecular structure of the compound is shown in Fig. 1. The benzothiazole moiety in this structure is very similar to other benzothiazole compounds reported before (Lynch, 2002; Matković-Čalogović et al., 2003). The dihedral angle between the carbonylamino group and the planar central 9-membered ring system is 7.59 (6) °, and between the central rings and the ethylcarboxylate group is 7.72 (6) °, respectively.
The packing of molecules is shown in Fig. 2. Molecules form pairs via N—H···N and C—H···O hydrogen bonds over crystallographic inversion symmetry. π—π stacking and C14—H14A···Cg2 hydrogen bonds (Cg2 is the benzene ring centroid) link pairs in a stacking column. In the π—π packing, Cg1···Cg1iii is 3.790 (2) Å (Cg1 is the thiazole ring centroid and symmetry code iii = -x, 2-y, 2-z), the plane to plane distance of the two thiazole rings is 3.382 Å with an offset of 1.711 Å, Cg1···Cg2iii is 3.845 (2) Å, the perpendicular distances of Cg1 to benzene ring is 3.369 Å, and Cg2 to thiazole ring is 3.383 Å. The hydrogen bonds are listed in Table 1, and the stacking geometries calculated with PLATON (Spek, 2009).