metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m438-m439

(μ-1,4,7,10-Tetra­oxa­cyclo­dodeca­ne)bis­­[(1,4,7,10-tetra­oxa­cyclo­dodeca­ne)lithium] bis­­(perchlorate)

aDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA, bSmall Molecule Process & Product Development, AMGEN, One Amgen Center Drive, Thousand Oaks, CA 91320, USA, and cSchool of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA
*Correspondence e-mail: iguzei@chem.wisc.edu

(Received 4 March 2010; accepted 12 March 2010; online 24 March 2010)

12-Crown-4 ether (12C4) and LiClO4 combine to form the ionic title compound, [Li2(C8H16O4)3](ClO4)2, which is com­posed of discrete Li/12C4 cations and perchlorate anions. In the [Li2(12C4)3]2+ cation there are two peripheral 12C4 ligands, which each form four Li—O bonds with only one Li+ atom. Additionally there is a central 12C4 in which diagonal O atoms form one Li—O bond each with both Li+ atoms. Therefore each Li+ atom is penta­coordinated in a distorted square-pyramidal geometry, forming four longer bonds to the O atoms on the peripheral 12C4 and one shorter bond to an O atom of the central 12C4. The cation occupies a crystallographic inversion centre located at the center of the ring of the central 12C4 ligand. The Li+ atom lies above the cavity of the peripheral 12C4 by 0.815 (2) Å because it is too large to fit in the cavity.

Related literature

For applications of crown ethers, see: Jagannadh & Sarma (1999[Jagannadh, B. & Sarma, J. A. R. P. (1999). J. Phys. Chem. A, 103, 10993-10997.]); Lehn (1973[Lehn, J. M. (1973). Structure Bonding, 16, 1-69.], 1995[Lehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspectives. Weinheim: VCH.]); Doyle & McCord (1998[Doyle, J. M. & McCord, B. R. (1998). J. Chromatogr. B, 714, 105-111.]); Blasius et al. (1982[Blasius, E., Janzen, K. P., Klotz, H. & Toussaint, A. (1982). Makromol. Chem. 183, 1401-1411.]); Blasius & Janzen (1982[Blasius, E. & Janzen, K. P. (1982). Pure Appl. Chem. 54, 2115-2128.]); Hayashita et al. (1992[Hayashita, T., Lee, J. H., Hankins, M. G., Lee, J. C., Kim, J. S., Knobeloch, J. M. & Bartsch, R. A. (1992). Anal. Chem. 64, 815-819.]); Frühauf & Zeller (1991[Frühauf, S. & Zeller, W. J. (1991). Cancer Res. 51, 2943-2948.]). For 12-crown-4 ether geometry, see: Raithby et al. (1997[Raithby, P. R., Shields, G. P. & Allen, F. H. (1997). Acta Cryst. B53, 241-251.]); Jones et al. (1997[Jones, P. G., Moers, O. & Blaschette, A. (1997). Acta Cryst. C53, 1809-1811.]). For the size of the crown ether cavity and lithium ion, see: Shoham et al. (1983[Shoham, G., Lipscomb, W. N. & Olsher, U. (1983). J. Chem. Soc. Chem. Commun. pp. 208-209.]); Dalley (1978[Dalley, N. D. (1978). Synthetic Multidentate Macrocyclic Compounds, edited by R. M. Izatt & J. J. Christensen, pp. 207-243. New York: Academic Press.]); Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). For tris­(1,4,7,10-tetra­oxa­cyclo­dodeca­ne)dilithium bis­[tetra­hydrido­aluminate(III)], see: Bollmann & Olbrich (2004[Bollmann, M. & Olbrich, F. (2004). Private communication.]). Bond distances and angles were confirmed to be typical by a Mogul structural check (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]). For a description of 1,4,7,10-tetra­oxacyclo­dodecane-trideuteroacetonitrile-lithium perchlorate, synthesized simultaneously with the title compound, see: Guzei et al. (2010[Guzei, I. A., Spencer, L. C., Xiao, L. & Burnette, R. R. (2010). Acta Cryst. E66, m440-m441.]). The outlier reflections were omitted based on the statistics test described by Prince & Nicholson (1983[Prince, E. & Nicholson, W. L. (1983). Acta Cryst. A39, 407-410.]); Rollett (1988[Rollett, J. S. (1988). Crystallographic Computing, Vol. 4, pp. 149-166. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • [Li2(C8H16O4)3](ClO4)2

  • Mr = 741.40

  • Monoclinic, P 21 /c

  • a = 7.7395 (7) Å

  • b = 14.1924 (13) Å

  • c = 15.2801 (14) Å

  • β = 95.962 (2)°

  • V = 1669.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker CCD-1000 area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.897, Tmax = 0.947

  • 13593 measured reflections

  • 3412 independent reflections

  • 3139 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.04

  • 3412 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

O1—Li1 2.094 (3)
O2—Li1 2.079 (3)
O3—Li1 2.074 (3)
O4—Li1 2.061 (3)
O5—Li1 1.936 (3)

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL and FCF_filter (Guzei, 2007[Guzei, I. A. (2007). FCF_filter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]) and modiCIFer (Guzei, 2007[Guzei, I. A. (2007). FCF_filter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]).

Supporting information


Comment top

Crown ethers complex with metal ions through the oxygen atoms with remarkable selectivity. They have high conformational flexibility, act as host molecules for various guests (Jagannadh et al., 1999), and have a broad range of applications. Their importance has been studied in numerous fields such as molecular design (Lehn, 1973), supramolecular chemistry (Lehn, 1995), analytical chemistry (Doyle & McCord, 1998; Blasius et al., 1982; Blasius & Janzen, 1982; Hayashita et al., 1992) and medicine (Fruhauf & Zeller, 1991). In this study, the goal was to understand the nature of crown ether/Li+ complexes, and to extend its application to facilitate the characterization of host-guest type drug delivery systems. Thus, we are developing a systematic methodology based on experimental X-ray crystallography. As a result several novel complexes including the title compound (I) were synthesized.

12-crown-4 ether (12C4) and LiClO4 combine to form an ionic compound composed of discrete cations and anions. The cation is formed by two Li+ metals and three 12C4 ligands interacting to form a complex while the anion is uncomplexed perchlorate. In the cation, two of the 12C4 ligands are peripheral, each interacting with only one Li+. The third 12C4 lies between the two Li+ atoms and two opposite oxygen atoms each interact with one of the Li+ atoms. The cation occupies an inversion center located at the center of the ring of the central 12C4. Each Li+ is pentacoordinate with a distorted square pyramidal geometry forming four bonds to the oxygen atoms of a peripheral 12C4 and one bond to an oxygen atom belonging to the center 12C4. The Li—O bond to the central 12C4 is significantly shorter (1.936 (3) Å) than those to the oxygen atoms on the peripheral 12C4 (av. 2.077 (14) Å). The peripheral 12C4 has approximate C4 symmetry and is in the common [3333] conformation (Raithby et al., 1997; Jones et al., 1997) with the oxygen atoms being coplanar within of 0.013 Å . The central 12C4 is in the [66] conformation (Raithby et al., 1997). The Li+ atom resides above the cavity of the peripheral 12C4 by 0.815 (2) Å. The average diagonal length measured between atom pairs O1/O3 and O2/O4 of the peripheral 12C4 is 3.8211 (15) Å resulting in an adjusted diameter of the cavity of 1.0211 Å (Shoham et al., 1983; Dalley, 1978) . The Li+ has an ionic diameter between 1.18 Å and 1.52 Å; thus it is to large to fit in the cavity (Shannon, 1976).

The angles and distances involving the lithium atoms are similar to those in tris(1,4,7,10-tetraoxacyclododecane)-di-lithium bis(tetrahydridoaluminate(III)) (Bollmann & Olbrich, 2004) which contains the same cationic lithium complex as (I) with a different anion . A Mogul structural check confirmed that (I) exhibits typical geometrical parameters (Bruno et al., 2002).

The Li+ cation complexes form sheets in the ac plane which stack along the b axis. The anions are positioned between adjacent sheets of cations.

Related literature top

For applications of crown ethers, see: Jagannadh et al. (1999); Lehn (1973, (1995); Doyle & McCord (1998); Blasius et al. (1982); Blasius & Janzen (1982); Hayashita et al. (1992); Frühauf & Zeller (1991). For 12-crown-4 ether geometry, see: Raithby et al. (1997); Jones et al. (1997). For the size of the crown ether cavity and lithium ion, see: Shoham et al. (1983); Dalley (1978); Shannon (1976). For the related compund tris(1,4,7,10-tetraoxacyclododecane)-di-lithium bis[tetrahydridoaluminate(III)], see: Bollmann & Olbrich (2004). Bond distances and angles were confirmed to be typical by a Mogul structural check (Bruno et al., 2002). For a description of 1,4,7,10-tetraoxacyclododecane-trideuteroacetonitrile-lithium perchlorate synthesized simultaneously with the title compound, see: Guzei et al. (2010). The outlier reflections were omitted based on the statistics test described by Prince & Nicholson (1983); Rollett (1988).

Experimental top

All chemicals were purchased from the Aldrich Chemical Co. Inc. and were used as received. 12-crown-4 (12C4, C8H16O4, 98% pure) and lithium perchlorate (LiClO4, 99% pure) were separately dissolved in acetonitrile-d3 (CD3CN, 99% pure). These two solutions were then mixed together according to a 1:1 molar ratio of 12C4/LiClO4.The final solution was kept in a desiccator and the solvent was allowed to evaporate gradually in order to produce a supersaturated solution. The supersaturated solution was stored at –20 °C refrigerator, until crystals formed after 48 hours. Two types of colorless crystals suitable for X-ray diffraction were obtained and separated from the solution, one of which was compound (I) the other being 1,4,7,10-tetraoxacyclododecane-trideuteroacetonitrile-lithium perchlorate (Guzei et al., 2010).

Refinement top

All H atoms were placed in idealized locations and refined as riding, with C—H=0.99 Å and Uiso(H) = 1.2Ueq(C).

The outlier reflections were omitted based on the statistics test described in Prince, E. and Nicholson, W. L. (1983) Acta Cryst. A39, 407-410 and Rollett J. S. (1988) Crystallographic Computing 4, 149-166. Oxford University Press, and implemented in program FCF_filter (Guzei, 2007). The number of omitted outliers is 2..

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL and FCF_filter (Guzei, 2007); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). The thermal ellipsoids are shown at 50% probability level. All hydrogen atoms were omitted for clarity. Symmetry transformations used to generate equivalent atoms: i -x, -y, -z+2.
(µ-1,4,7,10-Tetraoxacyclododecane)bis[(1,4,7,10-tetraoxacyclododecane)lithium] bis(perchlorate) top
Crystal data top
[Li2(C8H16O4)3](ClO4)2F(000) = 784
Mr = 741.40Dx = 1.475 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 999 reflections
a = 7.7395 (7) Åθ = 2.7–26.4°
b = 14.1924 (13) ŵ = 0.28 mm1
c = 15.2801 (14) ÅT = 100 K
β = 95.962 (2)°Block, colourless
V = 1669.3 (3) Å30.40 × 0.30 × 0.20 mm
Z = 2
Data collection top
Bruker CCD-1000 area-detector
diffractometer
3412 independent reflections
Radiation source: fine-focus sealed tube3139 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
0.30° ω and 0.4 ° ϕ scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 99
Tmin = 0.897, Tmax = 0.947k = 1717
13593 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0467P)2 + 1.027P]
where P = (Fo2 + 2Fc2)/3
3412 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Li2(C8H16O4)3](ClO4)2V = 1669.3 (3) Å3
Mr = 741.40Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.7395 (7) ŵ = 0.28 mm1
b = 14.1924 (13) ÅT = 100 K
c = 15.2801 (14) Å0.40 × 0.30 × 0.20 mm
β = 95.962 (2)°
Data collection top
Bruker CCD-1000 area-detector
diffractometer
3412 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3139 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.947Rint = 0.027
13593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.04Δρmax = 0.51 e Å3
3412 reflectionsΔρmin = 0.36 e Å3
217 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37224 (13)0.00939 (8)0.79331 (7)0.0253 (2)
O20.14456 (14)0.11875 (7)0.68986 (7)0.0228 (2)
O30.10708 (13)0.00835 (7)0.70392 (6)0.0206 (2)
O40.11574 (14)0.11599 (7)0.80927 (7)0.0223 (2)
O50.01430 (12)0.10039 (7)0.88536 (6)0.0188 (2)
O60.20229 (14)0.05033 (7)0.94017 (7)0.0233 (2)
Li10.1036 (3)0.02805 (17)0.79255 (15)0.0201 (5)
C10.4243 (2)0.04051 (12)0.71080 (10)0.0279 (3)
H1A0.55160.04980.71510.033*
H1B0.39090.00630.66410.033*
C20.3315 (2)0.13188 (12)0.69088 (11)0.0303 (4)
H2A0.35850.15570.63290.036*
H2B0.37190.17920.73600.036*
C30.0620 (2)0.08202 (11)0.60923 (10)0.0261 (3)
H3A0.05640.13040.56240.031*
H3B0.12610.02670.59000.031*
C40.1181 (2)0.05422 (12)0.62882 (10)0.0261 (3)
H4A0.17940.02230.57700.031*
H4B0.18490.11120.64140.031*
C50.0971 (2)0.10586 (11)0.68153 (10)0.0243 (3)
H5A0.21130.12910.65500.029*
H5B0.01030.11580.63920.029*
C60.0433 (2)0.15582 (11)0.76647 (10)0.0255 (3)
H6A0.02560.22360.75480.031*
H6B0.13660.15030.80580.031*
C70.2697 (2)0.15160 (11)0.77685 (10)0.0251 (3)
H7A0.29190.21730.79660.030*
H7B0.25860.15010.71170.030*
C80.4132 (2)0.08828 (12)0.81403 (10)0.0277 (3)
H8A0.52220.10580.78950.033*
H8B0.43150.09630.87870.033*
C90.1074 (2)0.16375 (11)0.94693 (10)0.0236 (3)
H9A0.14990.21820.91480.028*
H9B0.02800.18780.98860.028*
C100.17131 (18)0.10405 (11)0.88613 (9)0.0211 (3)
H10A0.20750.17030.89300.025*
H10B0.22750.08080.82900.025*
C110.23197 (18)0.04594 (11)0.95912 (10)0.0219 (3)
H11A0.35720.05690.96320.026*
H11B0.16700.06361.01600.026*
C120.2582 (2)0.11475 (11)1.00296 (10)0.0248 (3)
H12A0.32480.08021.04470.030*
H12B0.33630.16220.97230.030*
Cl10.42590 (4)0.18127 (2)0.53628 (2)0.01772 (11)
O70.49851 (14)0.23355 (8)0.61216 (7)0.0266 (3)
O80.38979 (16)0.24318 (8)0.46246 (8)0.0325 (3)
O90.26490 (16)0.13825 (9)0.55554 (7)0.0334 (3)
O100.54620 (18)0.11021 (10)0.51571 (9)0.0421 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0200 (5)0.0360 (6)0.0202 (5)0.0012 (4)0.0035 (4)0.0050 (4)
O20.0284 (6)0.0210 (5)0.0197 (5)0.0002 (4)0.0064 (4)0.0007 (4)
O30.0213 (5)0.0225 (5)0.0179 (5)0.0017 (4)0.0012 (4)0.0025 (4)
O40.0266 (5)0.0227 (5)0.0177 (5)0.0050 (4)0.0026 (4)0.0001 (4)
O50.0162 (5)0.0221 (5)0.0183 (5)0.0005 (4)0.0026 (4)0.0035 (4)
O60.0276 (5)0.0241 (5)0.0191 (5)0.0013 (4)0.0060 (4)0.0004 (4)
Li10.0201 (11)0.0215 (12)0.0188 (11)0.0005 (9)0.0028 (9)0.0021 (9)
C10.0204 (7)0.0401 (9)0.0240 (8)0.0036 (6)0.0065 (6)0.0031 (7)
C20.0344 (9)0.0293 (8)0.0295 (8)0.0115 (7)0.0138 (7)0.0026 (7)
C30.0332 (8)0.0269 (8)0.0181 (7)0.0032 (6)0.0033 (6)0.0031 (6)
C40.0287 (8)0.0304 (8)0.0183 (7)0.0091 (6)0.0015 (6)0.0031 (6)
C50.0217 (7)0.0234 (7)0.0273 (8)0.0013 (6)0.0001 (6)0.0063 (6)
C60.0266 (8)0.0219 (7)0.0290 (8)0.0054 (6)0.0075 (6)0.0020 (6)
C70.0283 (8)0.0264 (8)0.0211 (7)0.0099 (6)0.0043 (6)0.0009 (6)
C80.0229 (7)0.0377 (9)0.0220 (7)0.0124 (6)0.0006 (6)0.0002 (6)
C90.0288 (8)0.0193 (7)0.0226 (7)0.0045 (6)0.0020 (6)0.0022 (6)
C100.0167 (7)0.0260 (7)0.0207 (7)0.0057 (5)0.0019 (5)0.0007 (6)
C110.0186 (7)0.0269 (8)0.0206 (7)0.0004 (6)0.0050 (5)0.0031 (6)
C120.0228 (7)0.0292 (8)0.0223 (7)0.0086 (6)0.0012 (6)0.0023 (6)
Cl10.01952 (18)0.01895 (18)0.01472 (18)0.00176 (12)0.00186 (12)0.00107 (11)
O70.0229 (5)0.0326 (6)0.0233 (5)0.0044 (4)0.0018 (4)0.0071 (5)
O80.0369 (6)0.0321 (6)0.0267 (6)0.0082 (5)0.0056 (5)0.0132 (5)
O90.0339 (6)0.0468 (7)0.0197 (5)0.0226 (5)0.0043 (5)0.0008 (5)
O100.0496 (8)0.0424 (8)0.0346 (7)0.0217 (6)0.0055 (6)0.0075 (6)
Geometric parameters (Å, º) top
O1—C11.4326 (18)C4—H4B0.9900
O1—C81.450 (2)C5—C61.499 (2)
O1—Li12.094 (3)C5—H5A0.9900
O2—C31.4264 (18)C5—H5B0.9900
O2—C21.4573 (19)C6—H6A0.9900
O2—Li12.079 (3)C6—H6B0.9900
O3—C51.4296 (18)C7—C81.494 (2)
O3—C41.4466 (18)C7—H7A0.9900
O3—Li12.074 (3)C7—H7B0.9900
O4—C71.4295 (18)C8—H8A0.9900
O4—C61.4473 (18)C8—H8B0.9900
O4—Li12.061 (3)C9—C12i1.499 (2)
O5—C101.4388 (16)C9—H9A0.9900
O5—C91.4394 (17)C9—H9B0.9900
O5—Li11.936 (3)C10—C111.501 (2)
O6—C111.4203 (18)C10—H10A0.9900
O6—C121.4247 (18)C10—H10B0.9900
C1—C21.498 (2)C11—H11A0.9900
C1—H1A0.9900C11—H11B0.9900
C1—H1B0.9900C12—C9i1.499 (2)
C2—H2A0.9900C12—H12A0.9900
C2—H2B0.9900C12—H12B0.9900
C3—C41.508 (2)Cl1—O101.4294 (12)
C3—H3A0.9900Cl1—O81.4343 (11)
C3—H3B0.9900Cl1—O71.4407 (11)
C4—H4A0.9900Cl1—O91.4451 (11)
C1—O1—C8114.32 (12)C6—C5—H5A110.6
C1—O1—Li1109.00 (11)O3—C5—H5B110.6
C8—O1—Li1108.46 (11)C6—C5—H5B110.6
C3—O2—C2114.29 (11)H5A—C5—H5B108.8
C3—O2—Li1109.63 (11)O4—C6—C5110.67 (12)
C2—O2—Li1107.45 (11)O4—C6—H6A109.5
C5—O3—C4113.86 (11)C5—C6—H6A109.5
C5—O3—Li1109.81 (11)O4—C6—H6B109.5
C4—O3—Li1110.02 (11)C5—C6—H6B109.5
C7—O4—C6113.93 (11)H6A—C6—H6B108.1
C7—O4—Li1109.66 (11)O4—C7—C8105.61 (12)
C6—O4—Li1107.81 (11)O4—C7—H7A110.6
C10—O5—C9113.85 (11)C8—C7—H7A110.6
C10—O5—Li1117.26 (11)O4—C7—H7B110.6
C9—O5—Li1128.14 (11)C8—C7—H7B110.6
C11—O6—C12114.41 (11)H7A—C7—H7B108.7
O5—Li1—O4116.76 (12)O1—C8—C7110.79 (12)
O5—Li1—O3107.10 (12)O1—C8—H8A109.5
O4—Li1—O381.74 (10)C7—C8—H8A109.5
O5—Li1—O2108.58 (12)O1—C8—H8B109.5
O4—Li1—O2134.35 (13)C7—C8—H8B109.5
O3—Li1—O280.36 (9)H8A—C8—H8B108.1
O5—Li1—O1119.53 (12)O5—C9—C12i110.75 (12)
O4—Li1—O180.89 (10)O5—C9—H9A109.5
O3—Li1—O1133.22 (12)C12i—C9—H9A109.5
O2—Li1—O181.58 (10)O5—C9—H9B109.5
O1—C1—C2105.85 (12)C12i—C9—H9B109.5
O1—C1—H1A110.6H9A—C9—H9B108.1
C2—C1—H1A110.6O5—C10—C11112.07 (11)
O1—C1—H1B110.6O5—C10—H10A109.2
C2—C1—H1B110.6C11—C10—H10A109.2
H1A—C1—H1B108.7O5—C10—H10B109.2
O2—C2—C1110.23 (12)C11—C10—H10B109.2
O2—C2—H2A109.6H10A—C10—H10B107.9
C1—C2—H2A109.6O6—C11—C10107.90 (11)
O2—C2—H2B109.6O6—C11—H11A110.1
C1—C2—H2B109.6C10—C11—H11A110.1
H2A—C2—H2B108.1O6—C11—H11B110.1
O2—C3—C4105.34 (12)C10—C11—H11B110.1
O2—C3—H3A110.7H11A—C11—H11B108.4
C4—C3—H3A110.7O6—C12—C9i111.52 (12)
O2—C3—H3B110.7O6—C12—H12A109.3
C4—C3—H3B110.7C9i—C12—H12A109.3
H3A—C3—H3B108.8O6—C12—H12B109.3
O3—C4—C3109.81 (12)C9i—C12—H12B109.3
O3—C4—H4A109.7H12A—C12—H12B108.0
C3—C4—H4A109.7O10—Cl1—O8109.72 (8)
O3—C4—H4B109.7O10—Cl1—O7109.37 (7)
C3—C4—H4B109.7O8—Cl1—O7110.20 (7)
H4A—C4—H4B108.2O10—Cl1—O9109.99 (9)
O3—C5—C6105.53 (12)O8—Cl1—O9108.50 (7)
O3—C5—H5A110.6O7—Cl1—O9109.04 (7)
C10—O5—Li1—O479.93 (16)C1—O1—Li1—O4119.04 (11)
C9—O5—Li1—O4110.63 (15)C8—O1—Li1—O46.01 (12)
C10—O5—Li1—O39.32 (17)C1—O1—Li1—O349.5 (2)
C9—O5—Li1—O3160.13 (11)C8—O1—Li1—O375.50 (19)
C10—O5—Li1—O294.65 (14)C1—O1—Li1—O218.65 (12)
C9—O5—Li1—O274.80 (17)C8—O1—Li1—O2143.69 (10)
C10—O5—Li1—O1174.62 (12)C8—O1—C1—C2165.58 (12)
C9—O5—Li1—O115.9 (2)Li1—O1—C1—C244.04 (15)
C7—O4—Li1—O5142.15 (13)C3—O2—C2—C181.88 (16)
C6—O4—Li1—O593.29 (15)Li1—O2—C2—C140.01 (16)
C7—O4—Li1—O3112.81 (10)O1—C1—C2—O256.83 (16)
C6—O4—Li1—O311.75 (11)C2—O2—C3—C4167.89 (12)
C7—O4—Li1—O245.1 (2)Li1—O2—C3—C447.21 (15)
C6—O4—Li1—O279.51 (19)C5—O3—C4—C389.63 (15)
C7—O4—Li1—O123.59 (12)Li1—O3—C4—C334.13 (15)
C6—O4—Li1—O1148.15 (10)O2—C3—C4—O353.90 (15)
C5—O3—Li1—O5133.72 (12)C4—O3—C5—C6166.51 (12)
C4—O3—Li1—O5100.20 (13)Li1—O3—C5—C642.64 (14)
C5—O3—Li1—O418.16 (12)C7—O4—C6—C582.64 (15)
C4—O3—Li1—O4144.25 (10)Li1—O4—C6—C539.31 (15)
C5—O3—Li1—O2119.67 (11)O3—C5—C6—O455.08 (15)
C4—O3—Li1—O26.42 (12)C6—O4—C7—C8168.01 (12)
C5—O3—Li1—O151.0 (2)Li1—O4—C7—C847.09 (14)
C4—O3—Li1—O175.10 (19)C1—O1—C8—C788.01 (15)
C3—O2—Li1—O5128.64 (12)Li1—O1—C8—C733.84 (15)
C2—O2—Li1—O5106.61 (13)O4—C7—C8—O154.00 (15)
C3—O2—Li1—O444.6 (2)C10—O5—C9—C12i134.05 (13)
C2—O2—Li1—O480.17 (19)Li1—O5—C9—C12i56.20 (18)
C3—O2—Li1—O323.72 (12)C9—O5—C10—C1181.83 (15)
C2—O2—Li1—O3148.47 (10)Li1—O5—C10—C11107.23 (14)
C3—O2—Li1—O1112.94 (11)C12—O6—C11—C10178.36 (11)
C2—O2—Li1—O111.80 (12)O5—C10—C11—O667.70 (15)
C1—O1—Li1—O5125.29 (14)C11—O6—C12—C9i112.52 (14)
C8—O1—Li1—O5109.67 (15)
Symmetry code: (i) x, y, z+2.

Experimental details

Crystal data
Chemical formula[Li2(C8H16O4)3](ClO4)2
Mr741.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.7395 (7), 14.1924 (13), 15.2801 (14)
β (°) 95.962 (2)
V3)1669.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker CCD-1000 area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.897, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
13593, 3412, 3139
Rint0.027
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.04
No. of reflections3412
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.36

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2008), SHELXTL and FCF_filter (Guzei, 2007), SHELXTL and DIAMOND (Brandenburg, 1999), SHELXTL, publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

Selected bond lengths (Å) top
O1—Li12.094 (3)O4—Li12.061 (3)
O2—Li12.079 (3)O5—Li11.936 (3)
O3—Li12.074 (3)
 

References

First citationBlasius, E. & Janzen, K. P. (1982). Pure Appl. Chem. 54, 2115–2128.  CrossRef CAS Web of Science Google Scholar
First citationBlasius, E., Janzen, K. P., Klotz, H. & Toussaint, A. (1982). Makromol. Chem. 183, 1401–1411.  CrossRef CAS Google Scholar
First citationBollmann, M. & Olbrich, F. (2004). Private communication.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDalley, N. D. (1978). Synthetic Multidentate Macrocyclic Compounds, edited by R. M. Izatt & J. J. Christensen, pp. 207–243. New York: Academic Press.  Google Scholar
First citationDoyle, J. M. & McCord, B. R. (1998). J. Chromatogr. B, 714, 105–111.  CrossRef CAS Google Scholar
First citationFrühauf, S. & Zeller, W. J. (1991). Cancer Res. 51, 2943–2948.  PubMed Web of Science Google Scholar
First citationGuzei, I. A. (2007). FCF_filter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.  Google Scholar
First citationGuzei, I. A., Spencer, L. C., Xiao, L. & Burnette, R. R. (2010). Acta Cryst. E66, m440–m441.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHayashita, T., Lee, J. H., Hankins, M. G., Lee, J. C., Kim, J. S., Knobeloch, J. M. & Bartsch, R. A. (1992). Anal. Chem. 64, 815–819.  CrossRef CAS Web of Science Google Scholar
First citationJagannadh, B. & Sarma, J. A. R. P. (1999). J. Phys. Chem. A, 103, 10993–10997.  Web of Science CrossRef CAS Google Scholar
First citationJones, P. G., Moers, O. & Blaschette, A. (1997). Acta Cryst. C53, 1809–1811.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLehn, J. M. (1973). Structure Bonding, 16, 1–69.  CrossRef CAS Google Scholar
First citationLehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspectives. Weinheim: VCH.  Google Scholar
First citationPrince, E. & Nicholson, W. L. (1983). Acta Cryst. A39, 407–410.  CrossRef CAS IUCr Journals Google Scholar
First citationRaithby, P. R., Shields, G. P. & Allen, F. H. (1997). Acta Cryst. B53, 241–251.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRollett, J. S. (1988). Crystallographic Computing, Vol. 4, pp. 149–166. Oxford University Press.  Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShoham, G., Lipscomb, W. N. & Olsher, U. (1983). J. Chem. Soc. Chem. Commun. pp. 208–209.  CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m438-m439
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds