metal-organic compounds
(μ-1,4,7,10-Tetraoxacyclododecane)bis[(1,4,7,10-tetraoxacyclododecane)lithium] bis(perchlorate)
aDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA, bSmall Molecule Process & Product Development, AMGEN, One Amgen Center Drive, Thousand Oaks, CA 91320, USA, and cSchool of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA
*Correspondence e-mail: iguzei@chem.wisc.edu
12-Crown-4 ether (12C4) and LiClO4 combine to form the ionic title compound, [Li2(C8H16O4)3](ClO4)2, which is composed of discrete Li/12C4 cations and perchlorate anions. In the [Li2(12C4)3]2+ cation there are two peripheral 12C4 ligands, which each form four Li—O bonds with only one Li+ atom. Additionally there is a central 12C4 in which diagonal O atoms form one Li—O bond each with both Li+ atoms. Therefore each Li+ atom is pentacoordinated in a distorted square-pyramidal geometry, forming four longer bonds to the O atoms on the peripheral 12C4 and one shorter bond to an O atom of the central 12C4. The cation occupies a crystallographic inversion centre located at the center of the ring of the central 12C4 ligand. The Li+ atom lies above the cavity of the peripheral 12C4 by 0.815 (2) Å because it is too large to fit in the cavity.
Related literature
For applications of ); Lehn (1973, 1995); Doyle & McCord (1998); Blasius et al. (1982); Blasius & Janzen (1982); Hayashita et al. (1992); Frühauf & Zeller (1991). For 12-crown-4 ether geometry, see: Raithby et al. (1997); Jones et al. (1997). For the size of the crown ether cavity and lithium ion, see: Shoham et al. (1983); Dalley (1978); Shannon (1976). For tris(1,4,7,10-tetraoxacyclododecane)dilithium bis[tetrahydridoaluminate(III)], see: Bollmann & Olbrich (2004). Bond distances and angles were confirmed to be typical by a Mogul structural check (Bruno et al., 2002). For a description of 1,4,7,10-tetraoxacyclododecane-trideuteroacetonitrile-lithium perchlorate, synthesized simultaneously with the title compound, see: Guzei et al. (2010). The outlier reflections were omitted based on the statistics test described by Prince & Nicholson (1983); Rollett (1988).
see: Jagannadh & Sarma (1999Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL and FCF_filter (Guzei, 2007); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).
Supporting information
10.1107/S1600536810009542/si2246sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810009542/si2246Isup2.hkl
All chemicals were purchased from the Aldrich Chemical Co. Inc. and were used as received. 12-crown-4 (12C4, C8H16O4, 98% pure) and lithium perchlorate (LiClO4, 99% pure) were separately dissolved in acetonitrile-d3 (CD3CN, 99% pure). These two solutions were then mixed together according to a 1:1 molar ratio of 12C4/LiClO4.The final solution was kept in a desiccator and the solvent was allowed to evaporate gradually in order to produce a supersaturated solution. The supersaturated solution was stored at –20 °C refrigerator, until crystals formed after 48 hours. Two types of colorless crystals suitable for X-ray diffraction were obtained and separated from the solution, one of which was compound (I) the other being 1,4,7,10-tetraoxacyclododecane-trideuteroacetonitrile-lithium perchlorate (Guzei et al., 2010).
All H atoms were placed in idealized locations and refined as riding, with C—H=0.99 Å and Uiso(H) = 1.2Ueq(C).
The outlier reflections were omitted based on the statistics test described in Prince, E. and Nicholson, W. L. (1983) Acta Cryst. A39, 407-410 and Rollett J. S. (1988) Crystallographic Computing 4, 149-166. Oxford University Press, and implemented in program FCF_filter (Guzei, 2007). The number of omitted outliers is 2..
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL and FCF_filter (Guzei, 2007); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).[Li2(C8H16O4)3](ClO4)2 | F(000) = 784 |
Mr = 741.40 | Dx = 1.475 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 999 reflections |
a = 7.7395 (7) Å | θ = 2.7–26.4° |
b = 14.1924 (13) Å | µ = 0.28 mm−1 |
c = 15.2801 (14) Å | T = 100 K |
β = 95.962 (2)° | Block, colourless |
V = 1669.3 (3) Å3 | 0.40 × 0.30 × 0.20 mm |
Z = 2 |
Bruker CCD-1000 area-detector diffractometer | 3412 independent reflections |
Radiation source: fine-focus sealed tube | 3139 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
0.30° ω and 0.4 ° ϕ scans | θmax = 26.4°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −9→9 |
Tmin = 0.897, Tmax = 0.947 | k = −17→17 |
13593 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0467P)2 + 1.027P] where P = (Fo2 + 2Fc2)/3 |
3412 reflections | (Δ/σ)max < 0.001 |
217 parameters | Δρmax = 0.51 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
[Li2(C8H16O4)3](ClO4)2 | V = 1669.3 (3) Å3 |
Mr = 741.40 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.7395 (7) Å | µ = 0.28 mm−1 |
b = 14.1924 (13) Å | T = 100 K |
c = 15.2801 (14) Å | 0.40 × 0.30 × 0.20 mm |
β = 95.962 (2)° |
Bruker CCD-1000 area-detector diffractometer | 3412 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 3139 reflections with I > 2σ(I) |
Tmin = 0.897, Tmax = 0.947 | Rint = 0.027 |
13593 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.51 e Å−3 |
3412 reflections | Δρmin = −0.36 e Å−3 |
217 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.37224 (13) | −0.00939 (8) | 0.79331 (7) | 0.0253 (2) | |
O2 | 0.14456 (14) | −0.11875 (7) | 0.68986 (7) | 0.0228 (2) | |
O3 | −0.10708 (13) | 0.00835 (7) | 0.70392 (6) | 0.0206 (2) | |
O4 | 0.11574 (14) | 0.11599 (7) | 0.80927 (7) | 0.0223 (2) | |
O5 | 0.01430 (12) | −0.10039 (7) | 0.88536 (6) | 0.0188 (2) | |
O6 | −0.20229 (14) | 0.05033 (7) | 0.94017 (7) | 0.0233 (2) | |
Li1 | 0.1036 (3) | −0.02805 (17) | 0.79255 (15) | 0.0201 (5) | |
C1 | 0.4243 (2) | −0.04051 (12) | 0.71080 (10) | 0.0279 (3) | |
H1A | 0.5516 | −0.0498 | 0.7151 | 0.033* | |
H1B | 0.3909 | 0.0063 | 0.6641 | 0.033* | |
C2 | 0.3315 (2) | −0.13188 (12) | 0.69088 (11) | 0.0303 (4) | |
H2A | 0.3585 | −0.1557 | 0.6329 | 0.036* | |
H2B | 0.3719 | −0.1792 | 0.7360 | 0.036* | |
C3 | 0.0620 (2) | −0.08202 (11) | 0.60923 (10) | 0.0261 (3) | |
H3A | 0.0564 | −0.1304 | 0.5624 | 0.031* | |
H3B | 0.1261 | −0.0267 | 0.5900 | 0.031* | |
C4 | −0.1181 (2) | −0.05422 (12) | 0.62882 (10) | 0.0261 (3) | |
H4A | −0.1794 | −0.0223 | 0.5770 | 0.031* | |
H4B | −0.1849 | −0.1112 | 0.6414 | 0.031* | |
C5 | −0.0971 (2) | 0.10586 (11) | 0.68153 (10) | 0.0243 (3) | |
H5A | −0.2113 | 0.1291 | 0.6550 | 0.029* | |
H5B | −0.0103 | 0.1158 | 0.6392 | 0.029* | |
C6 | −0.0433 (2) | 0.15582 (11) | 0.76647 (10) | 0.0255 (3) | |
H6A | −0.0256 | 0.2236 | 0.7548 | 0.031* | |
H6B | −0.1366 | 0.1503 | 0.8058 | 0.031* | |
C7 | 0.2697 (2) | 0.15160 (11) | 0.77685 (10) | 0.0251 (3) | |
H7A | 0.2919 | 0.2173 | 0.7966 | 0.030* | |
H7B | 0.2586 | 0.1501 | 0.7117 | 0.030* | |
C8 | 0.4132 (2) | 0.08828 (12) | 0.81403 (10) | 0.0277 (3) | |
H8A | 0.5222 | 0.1058 | 0.7895 | 0.033* | |
H8B | 0.4315 | 0.0963 | 0.8787 | 0.033* | |
C9 | 0.1074 (2) | −0.16375 (11) | 0.94693 (10) | 0.0236 (3) | |
H9A | 0.1499 | −0.2182 | 0.9148 | 0.028* | |
H9B | 0.0280 | −0.1878 | 0.9886 | 0.028* | |
C10 | −0.17131 (18) | −0.10405 (11) | 0.88613 (9) | 0.0211 (3) | |
H10A | −0.2075 | −0.1703 | 0.8930 | 0.025* | |
H10B | −0.2275 | −0.0808 | 0.8290 | 0.025* | |
C11 | −0.23197 (18) | −0.04594 (11) | 0.95912 (10) | 0.0219 (3) | |
H11A | −0.3572 | −0.0569 | 0.9632 | 0.026* | |
H11B | −0.1670 | −0.0636 | 1.0160 | 0.026* | |
C12 | −0.2582 (2) | 0.11475 (11) | 1.00296 (10) | 0.0248 (3) | |
H12A | −0.3248 | 0.0802 | 1.0447 | 0.030* | |
H12B | −0.3363 | 0.1622 | 0.9723 | 0.030* | |
Cl1 | 0.42590 (4) | 0.18127 (2) | 0.53628 (2) | 0.01772 (11) | |
O7 | 0.49851 (14) | 0.23355 (8) | 0.61216 (7) | 0.0266 (3) | |
O8 | 0.38979 (16) | 0.24318 (8) | 0.46246 (8) | 0.0325 (3) | |
O9 | 0.26490 (16) | 0.13825 (9) | 0.55554 (7) | 0.0334 (3) | |
O10 | 0.54620 (18) | 0.11021 (10) | 0.51571 (9) | 0.0421 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0200 (5) | 0.0360 (6) | 0.0202 (5) | −0.0012 (4) | 0.0035 (4) | 0.0050 (4) |
O2 | 0.0284 (6) | 0.0210 (5) | 0.0197 (5) | −0.0002 (4) | 0.0064 (4) | 0.0007 (4) |
O3 | 0.0213 (5) | 0.0225 (5) | 0.0179 (5) | −0.0017 (4) | 0.0012 (4) | 0.0025 (4) |
O4 | 0.0266 (5) | 0.0227 (5) | 0.0177 (5) | −0.0050 (4) | 0.0026 (4) | −0.0001 (4) |
O5 | 0.0162 (5) | 0.0221 (5) | 0.0183 (5) | 0.0005 (4) | 0.0026 (4) | 0.0035 (4) |
O6 | 0.0276 (5) | 0.0241 (5) | 0.0191 (5) | 0.0013 (4) | 0.0060 (4) | −0.0004 (4) |
Li1 | 0.0201 (11) | 0.0215 (12) | 0.0188 (11) | −0.0005 (9) | 0.0028 (9) | 0.0021 (9) |
C1 | 0.0204 (7) | 0.0401 (9) | 0.0240 (8) | 0.0036 (6) | 0.0065 (6) | 0.0031 (7) |
C2 | 0.0344 (9) | 0.0293 (8) | 0.0295 (8) | 0.0115 (7) | 0.0138 (7) | 0.0026 (7) |
C3 | 0.0332 (8) | 0.0269 (8) | 0.0181 (7) | −0.0032 (6) | 0.0033 (6) | −0.0031 (6) |
C4 | 0.0287 (8) | 0.0304 (8) | 0.0183 (7) | −0.0091 (6) | −0.0015 (6) | −0.0031 (6) |
C5 | 0.0217 (7) | 0.0234 (7) | 0.0273 (8) | 0.0013 (6) | 0.0001 (6) | 0.0063 (6) |
C6 | 0.0266 (8) | 0.0219 (7) | 0.0290 (8) | 0.0054 (6) | 0.0075 (6) | 0.0020 (6) |
C7 | 0.0283 (8) | 0.0264 (8) | 0.0211 (7) | −0.0099 (6) | 0.0043 (6) | −0.0009 (6) |
C8 | 0.0229 (7) | 0.0377 (9) | 0.0220 (7) | −0.0124 (6) | −0.0006 (6) | −0.0002 (6) |
C9 | 0.0288 (8) | 0.0193 (7) | 0.0226 (7) | 0.0045 (6) | 0.0020 (6) | 0.0022 (6) |
C10 | 0.0167 (7) | 0.0260 (7) | 0.0207 (7) | −0.0057 (5) | 0.0019 (5) | −0.0007 (6) |
C11 | 0.0186 (7) | 0.0269 (8) | 0.0206 (7) | −0.0004 (6) | 0.0050 (5) | 0.0031 (6) |
C12 | 0.0228 (7) | 0.0292 (8) | 0.0223 (7) | 0.0086 (6) | 0.0012 (6) | −0.0023 (6) |
Cl1 | 0.01952 (18) | 0.01895 (18) | 0.01472 (18) | −0.00176 (12) | 0.00186 (12) | 0.00107 (11) |
O7 | 0.0229 (5) | 0.0326 (6) | 0.0233 (5) | −0.0044 (4) | −0.0018 (4) | −0.0071 (5) |
O8 | 0.0369 (6) | 0.0321 (6) | 0.0267 (6) | −0.0082 (5) | −0.0056 (5) | 0.0132 (5) |
O9 | 0.0339 (6) | 0.0468 (7) | 0.0197 (5) | −0.0226 (5) | 0.0043 (5) | −0.0008 (5) |
O10 | 0.0496 (8) | 0.0424 (8) | 0.0346 (7) | 0.0217 (6) | 0.0055 (6) | −0.0075 (6) |
O1—C1 | 1.4326 (18) | C4—H4B | 0.9900 |
O1—C8 | 1.450 (2) | C5—C6 | 1.499 (2) |
O1—Li1 | 2.094 (3) | C5—H5A | 0.9900 |
O2—C3 | 1.4264 (18) | C5—H5B | 0.9900 |
O2—C2 | 1.4573 (19) | C6—H6A | 0.9900 |
O2—Li1 | 2.079 (3) | C6—H6B | 0.9900 |
O3—C5 | 1.4296 (18) | C7—C8 | 1.494 (2) |
O3—C4 | 1.4466 (18) | C7—H7A | 0.9900 |
O3—Li1 | 2.074 (3) | C7—H7B | 0.9900 |
O4—C7 | 1.4295 (18) | C8—H8A | 0.9900 |
O4—C6 | 1.4473 (18) | C8—H8B | 0.9900 |
O4—Li1 | 2.061 (3) | C9—C12i | 1.499 (2) |
O5—C10 | 1.4388 (16) | C9—H9A | 0.9900 |
O5—C9 | 1.4394 (17) | C9—H9B | 0.9900 |
O5—Li1 | 1.936 (3) | C10—C11 | 1.501 (2) |
O6—C11 | 1.4203 (18) | C10—H10A | 0.9900 |
O6—C12 | 1.4247 (18) | C10—H10B | 0.9900 |
C1—C2 | 1.498 (2) | C11—H11A | 0.9900 |
C1—H1A | 0.9900 | C11—H11B | 0.9900 |
C1—H1B | 0.9900 | C12—C9i | 1.499 (2) |
C2—H2A | 0.9900 | C12—H12A | 0.9900 |
C2—H2B | 0.9900 | C12—H12B | 0.9900 |
C3—C4 | 1.508 (2) | Cl1—O10 | 1.4294 (12) |
C3—H3A | 0.9900 | Cl1—O8 | 1.4343 (11) |
C3—H3B | 0.9900 | Cl1—O7 | 1.4407 (11) |
C4—H4A | 0.9900 | Cl1—O9 | 1.4451 (11) |
C1—O1—C8 | 114.32 (12) | C6—C5—H5A | 110.6 |
C1—O1—Li1 | 109.00 (11) | O3—C5—H5B | 110.6 |
C8—O1—Li1 | 108.46 (11) | C6—C5—H5B | 110.6 |
C3—O2—C2 | 114.29 (11) | H5A—C5—H5B | 108.8 |
C3—O2—Li1 | 109.63 (11) | O4—C6—C5 | 110.67 (12) |
C2—O2—Li1 | 107.45 (11) | O4—C6—H6A | 109.5 |
C5—O3—C4 | 113.86 (11) | C5—C6—H6A | 109.5 |
C5—O3—Li1 | 109.81 (11) | O4—C6—H6B | 109.5 |
C4—O3—Li1 | 110.02 (11) | C5—C6—H6B | 109.5 |
C7—O4—C6 | 113.93 (11) | H6A—C6—H6B | 108.1 |
C7—O4—Li1 | 109.66 (11) | O4—C7—C8 | 105.61 (12) |
C6—O4—Li1 | 107.81 (11) | O4—C7—H7A | 110.6 |
C10—O5—C9 | 113.85 (11) | C8—C7—H7A | 110.6 |
C10—O5—Li1 | 117.26 (11) | O4—C7—H7B | 110.6 |
C9—O5—Li1 | 128.14 (11) | C8—C7—H7B | 110.6 |
C11—O6—C12 | 114.41 (11) | H7A—C7—H7B | 108.7 |
O5—Li1—O4 | 116.76 (12) | O1—C8—C7 | 110.79 (12) |
O5—Li1—O3 | 107.10 (12) | O1—C8—H8A | 109.5 |
O4—Li1—O3 | 81.74 (10) | C7—C8—H8A | 109.5 |
O5—Li1—O2 | 108.58 (12) | O1—C8—H8B | 109.5 |
O4—Li1—O2 | 134.35 (13) | C7—C8—H8B | 109.5 |
O3—Li1—O2 | 80.36 (9) | H8A—C8—H8B | 108.1 |
O5—Li1—O1 | 119.53 (12) | O5—C9—C12i | 110.75 (12) |
O4—Li1—O1 | 80.89 (10) | O5—C9—H9A | 109.5 |
O3—Li1—O1 | 133.22 (12) | C12i—C9—H9A | 109.5 |
O2—Li1—O1 | 81.58 (10) | O5—C9—H9B | 109.5 |
O1—C1—C2 | 105.85 (12) | C12i—C9—H9B | 109.5 |
O1—C1—H1A | 110.6 | H9A—C9—H9B | 108.1 |
C2—C1—H1A | 110.6 | O5—C10—C11 | 112.07 (11) |
O1—C1—H1B | 110.6 | O5—C10—H10A | 109.2 |
C2—C1—H1B | 110.6 | C11—C10—H10A | 109.2 |
H1A—C1—H1B | 108.7 | O5—C10—H10B | 109.2 |
O2—C2—C1 | 110.23 (12) | C11—C10—H10B | 109.2 |
O2—C2—H2A | 109.6 | H10A—C10—H10B | 107.9 |
C1—C2—H2A | 109.6 | O6—C11—C10 | 107.90 (11) |
O2—C2—H2B | 109.6 | O6—C11—H11A | 110.1 |
C1—C2—H2B | 109.6 | C10—C11—H11A | 110.1 |
H2A—C2—H2B | 108.1 | O6—C11—H11B | 110.1 |
O2—C3—C4 | 105.34 (12) | C10—C11—H11B | 110.1 |
O2—C3—H3A | 110.7 | H11A—C11—H11B | 108.4 |
C4—C3—H3A | 110.7 | O6—C12—C9i | 111.52 (12) |
O2—C3—H3B | 110.7 | O6—C12—H12A | 109.3 |
C4—C3—H3B | 110.7 | C9i—C12—H12A | 109.3 |
H3A—C3—H3B | 108.8 | O6—C12—H12B | 109.3 |
O3—C4—C3 | 109.81 (12) | C9i—C12—H12B | 109.3 |
O3—C4—H4A | 109.7 | H12A—C12—H12B | 108.0 |
C3—C4—H4A | 109.7 | O10—Cl1—O8 | 109.72 (8) |
O3—C4—H4B | 109.7 | O10—Cl1—O7 | 109.37 (7) |
C3—C4—H4B | 109.7 | O8—Cl1—O7 | 110.20 (7) |
H4A—C4—H4B | 108.2 | O10—Cl1—O9 | 109.99 (9) |
O3—C5—C6 | 105.53 (12) | O8—Cl1—O9 | 108.50 (7) |
O3—C5—H5A | 110.6 | O7—Cl1—O9 | 109.04 (7) |
C10—O5—Li1—O4 | 79.93 (16) | C1—O1—Li1—O4 | −119.04 (11) |
C9—O5—Li1—O4 | −110.63 (15) | C8—O1—Li1—O4 | 6.01 (12) |
C10—O5—Li1—O3 | −9.32 (17) | C1—O1—Li1—O3 | −49.5 (2) |
C9—O5—Li1—O3 | 160.13 (11) | C8—O1—Li1—O3 | 75.50 (19) |
C10—O5—Li1—O2 | −94.65 (14) | C1—O1—Li1—O2 | 18.65 (12) |
C9—O5—Li1—O2 | 74.80 (17) | C8—O1—Li1—O2 | 143.69 (10) |
C10—O5—Li1—O1 | 174.62 (12) | C8—O1—C1—C2 | −165.58 (12) |
C9—O5—Li1—O1 | −15.9 (2) | Li1—O1—C1—C2 | −44.04 (15) |
C7—O4—Li1—O5 | 142.15 (13) | C3—O2—C2—C1 | 81.88 (16) |
C6—O4—Li1—O5 | −93.29 (15) | Li1—O2—C2—C1 | −40.01 (16) |
C7—O4—Li1—O3 | −112.81 (10) | O1—C1—C2—O2 | 56.83 (16) |
C6—O4—Li1—O3 | 11.75 (11) | C2—O2—C3—C4 | −167.89 (12) |
C7—O4—Li1—O2 | −45.1 (2) | Li1—O2—C3—C4 | −47.21 (15) |
C6—O4—Li1—O2 | 79.51 (19) | C5—O3—C4—C3 | 89.63 (15) |
C7—O4—Li1—O1 | 23.59 (12) | Li1—O3—C4—C3 | −34.13 (15) |
C6—O4—Li1—O1 | 148.15 (10) | O2—C3—C4—O3 | 53.90 (15) |
C5—O3—Li1—O5 | 133.72 (12) | C4—O3—C5—C6 | −166.51 (12) |
C4—O3—Li1—O5 | −100.20 (13) | Li1—O3—C5—C6 | −42.64 (14) |
C5—O3—Li1—O4 | 18.16 (12) | C7—O4—C6—C5 | 82.64 (15) |
C4—O3—Li1—O4 | 144.25 (10) | Li1—O4—C6—C5 | −39.31 (15) |
C5—O3—Li1—O2 | −119.67 (11) | O3—C5—C6—O4 | 55.08 (15) |
C4—O3—Li1—O2 | 6.42 (12) | C6—O4—C7—C8 | −168.01 (12) |
C5—O3—Li1—O1 | −51.0 (2) | Li1—O4—C7—C8 | −47.09 (14) |
C4—O3—Li1—O1 | 75.10 (19) | C1—O1—C8—C7 | 88.01 (15) |
C3—O2—Li1—O5 | 128.64 (12) | Li1—O1—C8—C7 | −33.84 (15) |
C2—O2—Li1—O5 | −106.61 (13) | O4—C7—C8—O1 | 54.00 (15) |
C3—O2—Li1—O4 | −44.6 (2) | C10—O5—C9—C12i | −134.05 (13) |
C2—O2—Li1—O4 | 80.17 (19) | Li1—O5—C9—C12i | 56.20 (18) |
C3—O2—Li1—O3 | 23.72 (12) | C9—O5—C10—C11 | 81.83 (15) |
C2—O2—Li1—O3 | 148.47 (10) | Li1—O5—C10—C11 | −107.23 (14) |
C3—O2—Li1—O1 | −112.94 (11) | C12—O6—C11—C10 | 178.36 (11) |
C2—O2—Li1—O1 | 11.80 (12) | O5—C10—C11—O6 | 67.70 (15) |
C1—O1—Li1—O5 | 125.29 (14) | C11—O6—C12—C9i | 112.52 (14) |
C8—O1—Li1—O5 | −109.67 (15) |
Symmetry code: (i) −x, −y, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Li2(C8H16O4)3](ClO4)2 |
Mr | 741.40 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 7.7395 (7), 14.1924 (13), 15.2801 (14) |
β (°) | 95.962 (2) |
V (Å3) | 1669.3 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.28 |
Crystal size (mm) | 0.40 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Bruker CCD-1000 area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.897, 0.947 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13593, 3412, 3139 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.626 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.092, 1.04 |
No. of reflections | 3412 |
No. of parameters | 217 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.51, −0.36 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2008), SHELXTL and FCF_filter (Guzei, 2007), SHELXTL and DIAMOND (Brandenburg, 1999), SHELXTL, publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).
O1—Li1 | 2.094 (3) | O4—Li1 | 2.061 (3) |
O2—Li1 | 2.079 (3) | O5—Li1 | 1.936 (3) |
O3—Li1 | 2.074 (3) |
References
Blasius, E. & Janzen, K. P. (1982). Pure Appl. Chem. 54, 2115–2128. CrossRef CAS Web of Science Google Scholar
Blasius, E., Janzen, K. P., Klotz, H. & Toussaint, A. (1982). Makromol. Chem. 183, 1401–1411. CrossRef CAS Google Scholar
Bollmann, M. & Olbrich, F. (2004). Private communication. Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2003). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dalley, N. D. (1978). Synthetic Multidentate Macrocyclic Compounds, edited by R. M. Izatt & J. J. Christensen, pp. 207–243. New York: Academic Press. Google Scholar
Doyle, J. M. & McCord, B. R. (1998). J. Chromatogr. B, 714, 105–111. CrossRef CAS Google Scholar
Frühauf, S. & Zeller, W. J. (1991). Cancer Res. 51, 2943–2948. PubMed Web of Science Google Scholar
Guzei, I. A. (2007). FCF_filter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA. Google Scholar
Guzei, I. A., Spencer, L. C., Xiao, L. & Burnette, R. R. (2010). Acta Cryst. E66, m440–m441. Web of Science CrossRef IUCr Journals Google Scholar
Hayashita, T., Lee, J. H., Hankins, M. G., Lee, J. C., Kim, J. S., Knobeloch, J. M. & Bartsch, R. A. (1992). Anal. Chem. 64, 815–819. CrossRef CAS Web of Science Google Scholar
Jagannadh, B. & Sarma, J. A. R. P. (1999). J. Phys. Chem. A, 103, 10993–10997. Web of Science CrossRef CAS Google Scholar
Jones, P. G., Moers, O. & Blaschette, A. (1997). Acta Cryst. C53, 1809–1811. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lehn, J. M. (1973). Structure Bonding, 16, 1–69. CrossRef CAS Google Scholar
Lehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspectives. Weinheim: VCH. Google Scholar
Prince, E. & Nicholson, W. L. (1983). Acta Cryst. A39, 407–410. CrossRef CAS IUCr Journals Google Scholar
Raithby, P. R., Shields, G. P. & Allen, F. H. (1997). Acta Cryst. B53, 241–251. CrossRef CAS Web of Science IUCr Journals Google Scholar
Rollett, J. S. (1988). Crystallographic Computing, Vol. 4, pp. 149–166. Oxford University Press. Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shoham, G., Lipscomb, W. N. & Olsher, U. (1983). J. Chem. Soc. Chem. Commun. pp. 208–209. CrossRef Web of Science Google Scholar
Westrip, S. P. (2010). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Crown ethers complex with metal ions through the oxygen atoms with remarkable selectivity. They have high conformational flexibility, act as host molecules for various guests (Jagannadh et al., 1999), and have a broad range of applications. Their importance has been studied in numerous fields such as molecular design (Lehn, 1973), supramolecular chemistry (Lehn, 1995), analytical chemistry (Doyle & McCord, 1998; Blasius et al., 1982; Blasius & Janzen, 1982; Hayashita et al., 1992) and medicine (Fruhauf & Zeller, 1991). In this study, the goal was to understand the nature of crown ether/Li+ complexes, and to extend its application to facilitate the characterization of host-guest type drug delivery systems. Thus, we are developing a systematic methodology based on experimental X-ray crystallography. As a result several novel complexes including the title compound (I) were synthesized.
12-crown-4 ether (12C4) and LiClO4 combine to form an ionic compound composed of discrete cations and anions. The cation is formed by two Li+ metals and three 12C4 ligands interacting to form a complex while the anion is uncomplexed perchlorate. In the cation, two of the 12C4 ligands are peripheral, each interacting with only one Li+. The third 12C4 lies between the two Li+ atoms and two opposite oxygen atoms each interact with one of the Li+ atoms. The cation occupies an inversion center located at the center of the ring of the central 12C4. Each Li+ is pentacoordinate with a distorted square pyramidal geometry forming four bonds to the oxygen atoms of a peripheral 12C4 and one bond to an oxygen atom belonging to the center 12C4. The Li—O bond to the central 12C4 is significantly shorter (1.936 (3) Å) than those to the oxygen atoms on the peripheral 12C4 (av. 2.077 (14) Å). The peripheral 12C4 has approximate C4 symmetry and is in the common [3333] conformation (Raithby et al., 1997; Jones et al., 1997) with the oxygen atoms being coplanar within of 0.013 Å . The central 12C4 is in the [66] conformation (Raithby et al., 1997). The Li+ atom resides above the cavity of the peripheral 12C4 by 0.815 (2) Å. The average diagonal length measured between atom pairs O1/O3 and O2/O4 of the peripheral 12C4 is 3.8211 (15) Å resulting in an adjusted diameter of the cavity of 1.0211 Å (Shoham et al., 1983; Dalley, 1978) . The Li+ has an ionic diameter between 1.18 Å and 1.52 Å; thus it is to large to fit in the cavity (Shannon, 1976).
The angles and distances involving the lithium atoms are similar to those in tris(1,4,7,10-tetraoxacyclododecane)-di-lithium bis(tetrahydridoaluminate(III)) (Bollmann & Olbrich, 2004) which contains the same cationic lithium complex as (I) with a different anion . A Mogul structural check confirmed that (I) exhibits typical geometrical parameters (Bruno et al., 2002).
The Li+ cation complexes form sheets in the ac plane which stack along the b axis. The anions are positioned between adjacent sheets of cations.