metal-organic compounds
(1,4,7,10-Tetraoxacyclododecane)(trideuteroacetonitrile)lithium perchlorate
aDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA, bSmall Molecule Process & Product Development, AMGEN, One Amgen Center Drive, Thousand Oaks, CA 91320, USA, and cSchool of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA
*Correspondence e-mail: iguzei@chem.wisc.edu
In the title compound, [Li(C8H16O4)(CD3CN)]ClO4, the Li atom is pentacoordinate. The O atoms of the 12-crown-4 ether form the basal plane, whereas the N atom of the trideuteroacetonitrile occupies the apical position. The Li+ atom is displaced by 0.794 (6) Å toward the apical position from the plane formed by the O atoms because the Li+ atom is too large to fit in the cavity of the 12-crown-4 ether, resulting in a distorted square-pyramidal geometry about the Li+ atom.
Related literature
For applications of ); Lehn (1973, 1995); Doyle & McCord (1998); Blasius et al. (1982); Blasius & Janzen (1982); Hayashita et al. (1992); Frühauf & Zeller (1991). For 12-crown-4 ether geometry, see: Raithby et al. (1997); Jones et al. (1997). For the size of the crown ether cavity and lithium ion, see: Shoham et al. (1983); Dalley (1978). For a description of the Cambridge Structural Database, see: Allen (2002). Bond distances and angles were confirmed to be typical by a Mogul structural check (Bruno et al., 2002). For a description of tris(1,4,7,10-tetraoxacyclododecane)dilithium bis(perchlorate), synthesized simultaneously with the title compound, see: Guzei et al. (2010).
see: Jagannadh & Sarma (1999Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL and FCF_filter (Guzei, 2007); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).
Supporting information
10.1107/S1600536810009530/si2247sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810009530/si2247Isup2.hkl
All chemicals were purchased from the Aldrich Chemical Co. Inc. and were used as received. 12-crown-4 (12C4, C8H16O4, 98% pure) and lithium perchlorate (LiClO4, 99% pure) were separately dissolved in acetonitrile-d3 (CD3CN, 99% pure). These two solutions were then mixed together according to a 1:1 molar ratio of 12C4/LiClO4.The final solution was kept in a desiccator and the solvent was allowed to evaporate gradually in order to produce a supersaturated solution. The supersaturated solution was stored at –20 °C refrigerator, until crystals formed after 48 hours. Two types of colorless crystals suitable for X-ray diffraction were obtained and separated from the solution, one of which was compound (I) the other being tris(1,4,7,10-tetraoxacyclododecane)-di-lithium diperchlorate (Guzei et al., 2010).
All H and D atoms were placed in idealized locations and refined as riding, with C—H=0.99 Å and Uiso(H) = 1.2Ueq(C) for all hydrogen atoms, and C—D=0.98 Å and Uiso(D)=1.5Ueq(C) for all deuterium atoms.
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008) and FCF_filter (Guzei, 2007); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).Fig. 1. Molecular structure of (I). The thermal ellipsoids are shown at 50% probability level. All hydrogen atoms were omitted for clarity. |
[Li(C8H16O4)(C2D3N)]ClO4 | F(000) = 1360 |
Mr = 323.65 | Dx = 1.408 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 999 reflections |
a = 12.1605 (14) Å | θ = 2.5–24.8° |
b = 12.6338 (15) Å | µ = 0.29 mm−1 |
c = 19.870 (2) Å | T = 100 K |
V = 3052.7 (6) Å3 | Block, colourless |
Z = 8 | 0.40 × 0.30 × 0.20 mm |
Bruker CCD-1000 area-detector diffractometer | 2621 independent reflections |
Radiation source: fine-focus sealed tube | 2164 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
0.30° ω and 0.4 ° ϕ scans | θmax = 24.8°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −14→14 |
Tmin = 0.895, Tmax = 0.945 | k = −14→14 |
20941 measured reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.073 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.214 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.1041P)2 + 6.1747P] where P = (Fo2 + 2Fc2)/3 |
2621 reflections | (Δ/σ)max = 0.024 |
191 parameters | Δρmax = 0.81 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
[Li(C8H16O4)(C2D3N)]ClO4 | V = 3052.7 (6) Å3 |
Mr = 323.65 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 12.1605 (14) Å | µ = 0.29 mm−1 |
b = 12.6338 (15) Å | T = 100 K |
c = 19.870 (2) Å | 0.40 × 0.30 × 0.20 mm |
Bruker CCD-1000 area-detector diffractometer | 2621 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 2164 reflections with I > 2σ(I) |
Tmin = 0.895, Tmax = 0.945 | Rint = 0.030 |
20941 measured reflections |
R[F2 > 2σ(F2)] = 0.073 | 0 restraints |
wR(F2) = 0.214 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.81 e Å−3 |
2621 reflections | Δρmin = −0.36 e Å−3 |
191 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.13806 (7) | 0.22119 (7) | 0.03636 (4) | 0.0480 (3) | |
O1 | 0.0293 (2) | 0.1535 (2) | 0.28852 (16) | 0.0647 (8) | |
O2 | 0.2455 (2) | 0.1542 (2) | 0.27072 (15) | 0.0672 (8) | |
O3 | 0.2453 (2) | −0.0130 (3) | 0.35435 (13) | 0.0637 (8) | |
O4 | 0.0258 (2) | −0.0332 (2) | 0.34845 (13) | 0.0627 (8) | |
O5 | 0.2322 (3) | 0.1706 (3) | 0.06187 (18) | 0.0885 (11) | |
O6 | 0.1349 (3) | 0.2031 (4) | −0.03414 (17) | 0.1030 (15) | |
O7 | 0.1441 (3) | 0.3323 (3) | 0.0458 (3) | 0.1151 (17) | |
O8 | 0.0413 (3) | 0.1795 (3) | 0.06594 (17) | 0.0792 (10) | |
N1 | 0.1324 (2) | −0.0384 (3) | 0.19108 (15) | 0.0479 (8) | |
Li1 | 0.1361 (4) | 0.0312 (5) | 0.2820 (3) | 0.0427 (13) | |
C1 | 0.0820 (5) | 0.2547 (4) | 0.2874 (3) | 0.0878 (17) | |
H1A | 0.0332 | 0.3078 | 0.2662 | 0.105* | |
H1B | 0.0984 | 0.2782 | 0.3339 | 0.105* | |
C2 | 0.1800 (5) | 0.2452 (4) | 0.2504 (4) | 0.0945 (18) | |
H2A | 0.2242 | 0.3103 | 0.2563 | 0.113* | |
H2B | 0.1618 | 0.2387 | 0.2020 | 0.113* | |
C3 | 0.3096 (4) | 0.1645 (5) | 0.3295 (3) | 0.0889 (18) | |
H3A | 0.2669 | 0.2001 | 0.3654 | 0.107* | |
H3B | 0.3765 | 0.2068 | 0.3203 | 0.107* | |
C4 | 0.3396 (4) | 0.0557 (6) | 0.3504 (3) | 0.0899 (19) | |
H4A | 0.3927 | 0.0261 | 0.3176 | 0.108* | |
H4B | 0.3760 | 0.0584 | 0.3949 | 0.108* | |
C5 | 0.1849 (5) | −0.0045 (5) | 0.4155 (2) | 0.0873 (17) | |
H5A | 0.2286 | −0.0337 | 0.4532 | 0.105* | |
H5B | 0.1688 | 0.0707 | 0.4253 | 0.105* | |
C6 | 0.0857 (5) | −0.0617 (5) | 0.4086 (2) | 0.0805 (15) | |
H6A | 0.0387 | −0.0483 | 0.4484 | 0.097* | |
H6B | 0.1024 | −0.1384 | 0.4073 | 0.097* | |
C7 | −0.0691 (4) | 0.0308 (5) | 0.3513 (3) | 0.0782 (14) | |
H7A | −0.1077 | 0.0182 | 0.3944 | 0.094* | |
H7B | −0.1195 | 0.0107 | 0.3143 | 0.094* | |
C8 | −0.0425 (4) | 0.1423 (4) | 0.3456 (2) | 0.0767 (14) | |
H8A | −0.1103 | 0.1844 | 0.3389 | 0.092* | |
H8B | −0.0055 | 0.1673 | 0.3870 | 0.092* | |
C9 | 0.1229 (3) | −0.0579 (3) | 0.13610 (17) | 0.0405 (8) | |
C10 | 0.1084 (4) | −0.0830 (4) | 0.06532 (18) | 0.0582 (10) | |
D10A | 0.0403 | −0.1235 | 0.0594 | 0.087* | |
D10B | 0.1709 | −0.1251 | 0.0496 | 0.087* | |
D10C | 0.1040 | −0.0173 | 0.0392 | 0.087* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0511 (6) | 0.0499 (6) | 0.0430 (6) | −0.0013 (4) | 0.0001 (4) | 0.0025 (4) |
O1 | 0.0504 (16) | 0.0519 (16) | 0.092 (2) | 0.0035 (12) | 0.0154 (15) | 0.0002 (15) |
O2 | 0.0497 (15) | 0.0672 (18) | 0.085 (2) | −0.0098 (13) | 0.0005 (15) | −0.0171 (15) |
O3 | 0.0570 (17) | 0.089 (2) | 0.0449 (14) | 0.0253 (15) | −0.0082 (12) | −0.0116 (14) |
O4 | 0.0598 (17) | 0.082 (2) | 0.0460 (15) | −0.0077 (15) | 0.0056 (13) | 0.0086 (13) |
O5 | 0.071 (2) | 0.102 (3) | 0.093 (2) | 0.0072 (19) | −0.0286 (19) | 0.019 (2) |
O6 | 0.089 (3) | 0.175 (5) | 0.0449 (19) | 0.010 (3) | −0.0026 (16) | −0.001 (2) |
O7 | 0.095 (3) | 0.057 (2) | 0.193 (5) | −0.0080 (19) | 0.038 (3) | −0.019 (3) |
O8 | 0.072 (2) | 0.091 (2) | 0.075 (2) | −0.0203 (18) | 0.0178 (16) | 0.0094 (18) |
N1 | 0.0537 (18) | 0.0506 (18) | 0.0395 (17) | −0.0010 (13) | 0.0001 (13) | −0.0062 (13) |
Li1 | 0.044 (3) | 0.049 (3) | 0.034 (3) | 0.002 (2) | −0.002 (2) | −0.007 (2) |
C1 | 0.082 (4) | 0.054 (3) | 0.128 (5) | 0.010 (3) | 0.006 (3) | 0.013 (3) |
C2 | 0.103 (4) | 0.060 (3) | 0.121 (5) | −0.015 (3) | 0.030 (4) | 0.010 (3) |
C3 | 0.059 (3) | 0.114 (5) | 0.093 (4) | −0.029 (3) | 0.004 (3) | −0.044 (3) |
C4 | 0.045 (2) | 0.143 (6) | 0.081 (3) | 0.017 (3) | −0.021 (2) | −0.037 (4) |
C5 | 0.089 (4) | 0.130 (5) | 0.043 (2) | 0.027 (4) | −0.006 (2) | 0.000 (3) |
C6 | 0.106 (4) | 0.088 (4) | 0.047 (2) | −0.012 (3) | 0.002 (3) | 0.013 (2) |
C7 | 0.057 (3) | 0.111 (4) | 0.067 (3) | −0.014 (3) | 0.012 (2) | 0.001 (3) |
C8 | 0.054 (3) | 0.099 (4) | 0.077 (3) | 0.020 (3) | 0.017 (2) | −0.017 (3) |
C9 | 0.0419 (18) | 0.0396 (18) | 0.0401 (19) | 0.0004 (14) | −0.0002 (14) | −0.0042 (14) |
C10 | 0.075 (3) | 0.064 (2) | 0.0359 (19) | 0.005 (2) | −0.0047 (18) | −0.0088 (17) |
Cl1—O5 | 1.406 (3) | C2—H2A | 0.9900 |
Cl1—O8 | 1.416 (3) | C2—H2B | 0.9900 |
Cl1—O7 | 1.418 (4) | C3—C4 | 1.481 (9) |
Cl1—O6 | 1.420 (4) | C3—H3A | 0.9900 |
O1—C1 | 1.430 (6) | C3—H3B | 0.9900 |
O1—C8 | 1.439 (5) | C4—H4A | 0.9900 |
O1—Li1 | 2.022 (6) | C4—H4B | 0.9900 |
O2—C3 | 1.411 (6) | C5—C6 | 1.413 (8) |
O2—C2 | 1.456 (7) | C5—H5A | 0.9900 |
O2—Li1 | 2.058 (6) | C5—H5B | 0.9900 |
O3—C5 | 1.424 (5) | C6—H6A | 0.9900 |
O3—C4 | 1.440 (7) | C6—H6B | 0.9900 |
O3—Li1 | 2.036 (6) | C7—C8 | 1.449 (7) |
O4—C7 | 1.411 (6) | C7—H7A | 0.9900 |
O4—C6 | 1.444 (6) | C7—H7B | 0.9900 |
O4—Li1 | 2.050 (6) | C8—H8A | 0.9900 |
N1—C9 | 1.126 (4) | C8—H8B | 0.9900 |
N1—Li1 | 2.010 (6) | C9—C10 | 1.452 (5) |
C1—C2 | 1.405 (8) | C10—D10A | 0.9800 |
C1—H1A | 0.9900 | C10—D10B | 0.9800 |
C1—H1B | 0.9900 | C10—D10C | 0.9800 |
O5—Cl1—O8 | 111.0 (2) | O2—C3—H3A | 110.5 |
O5—Cl1—O7 | 111.1 (3) | C4—C3—H3A | 110.5 |
O8—Cl1—O7 | 110.9 (2) | O2—C3—H3B | 110.5 |
O5—Cl1—O6 | 107.7 (2) | C4—C3—H3B | 110.5 |
O8—Cl1—O6 | 109.1 (2) | H3A—C3—H3B | 108.7 |
O7—Cl1—O6 | 106.9 (3) | O3—C4—C3 | 112.3 (4) |
C1—O1—C8 | 111.9 (4) | O3—C4—H4A | 109.2 |
C1—O1—Li1 | 113.2 (3) | C3—C4—H4A | 109.2 |
C8—O1—Li1 | 111.4 (3) | O3—C4—H4B | 109.2 |
C3—O2—C2 | 117.3 (4) | C3—C4—H4B | 109.2 |
C3—O2—Li1 | 109.7 (3) | H4A—C4—H4B | 107.9 |
C2—O2—Li1 | 105.8 (3) | C6—C5—O3 | 108.6 (4) |
C5—O3—C4 | 114.3 (4) | C6—C5—H5A | 110.0 |
C5—O3—Li1 | 104.2 (3) | O3—C5—H5A | 110.0 |
C4—O3—Li1 | 108.4 (3) | C6—C5—H5B | 110.0 |
C7—O4—C6 | 121.5 (4) | O3—C5—H5B | 110.0 |
C7—O4—Li1 | 109.4 (3) | H5A—C5—H5B | 108.4 |
C6—O4—Li1 | 107.6 (3) | C5—C6—O4 | 112.5 (4) |
C9—N1—Li1 | 166.0 (4) | C5—C6—H6A | 109.1 |
N1—Li1—O1 | 112.2 (3) | O4—C6—H6A | 109.1 |
N1—Li1—O3 | 121.9 (3) | C5—C6—H6B | 109.1 |
O1—Li1—O3 | 125.7 (3) | O4—C6—H6B | 109.1 |
N1—Li1—O4 | 113.0 (3) | H6A—C6—H6B | 107.8 |
O1—Li1—O4 | 80.9 (2) | O4—C7—C8 | 111.8 (4) |
O3—Li1—O4 | 82.1 (2) | O4—C7—H7A | 109.2 |
N1—Li1—O2 | 104.3 (3) | C8—C7—H7A | 109.2 |
O1—Li1—O2 | 81.1 (2) | O4—C7—H7B | 109.2 |
O3—Li1—O2 | 82.1 (2) | C8—C7—H7B | 109.2 |
O4—Li1—O2 | 142.4 (3) | H7A—C7—H7B | 107.9 |
C2—C1—O1 | 108.1 (4) | O1—C8—C7 | 107.0 (4) |
C2—C1—H1A | 110.1 | O1—C8—H8A | 110.3 |
O1—C1—H1A | 110.1 | C7—C8—H8A | 110.3 |
C2—C1—H1B | 110.1 | O1—C8—H8B | 110.3 |
O1—C1—H1B | 110.1 | C7—C8—H8B | 110.3 |
H1A—C1—H1B | 108.4 | H8A—C8—H8B | 108.6 |
C1—C2—O2 | 112.8 (4) | N1—C9—C10 | 178.9 (4) |
C1—C2—H2A | 109.0 | C9—C10—D10A | 109.5 |
O2—C2—H2A | 109.0 | C9—C10—D10B | 109.5 |
C1—C2—H2B | 109.0 | D10A—C10—D10B | 109.5 |
O2—C2—H2B | 109.0 | C9—C10—D10C | 109.5 |
H2A—C2—H2B | 107.8 | D10A—C10—D10C | 109.5 |
O2—C3—C4 | 106.3 (4) | D10B—C10—D10C | 109.5 |
C9—N1—Li1—O1 | 25.1 (15) | C2—O2—Li1—N1 | 91.0 (4) |
C9—N1—Li1—O3 | −150.4 (12) | C3—O2—Li1—O1 | 107.7 (3) |
C9—N1—Li1—O4 | 114.5 (13) | C2—O2—Li1—O1 | −19.7 (4) |
C9—N1—Li1—O2 | −60.9 (14) | C3—O2—Li1—O3 | −20.5 (4) |
C1—O1—Li1—N1 | −106.3 (4) | C2—O2—Li1—O3 | −147.9 (3) |
C8—O1—Li1—N1 | 126.6 (4) | C3—O2—Li1—O4 | 45.4 (6) |
C1—O1—Li1—O3 | 69.1 (5) | C2—O2—Li1—O4 | −82.0 (6) |
C8—O1—Li1—O3 | −58.0 (5) | C8—O1—C1—C2 | 155.6 (5) |
C1—O1—Li1—O4 | 142.5 (4) | Li1—O1—C1—C2 | 28.7 (6) |
C8—O1—Li1—O4 | 15.4 (3) | O1—C1—C2—O2 | −48.1 (7) |
C1—O1—Li1—O2 | −4.4 (4) | C3—O2—C2—C1 | −79.4 (6) |
C8—O1—Li1—O2 | −131.5 (3) | Li1—O2—C2—C1 | 43.3 (6) |
C5—O3—Li1—N1 | −143.2 (4) | C2—O2—C3—C4 | 163.1 (4) |
C4—O3—Li1—N1 | 94.7 (4) | Li1—O2—C3—C4 | 42.5 (5) |
C5—O3—Li1—O1 | 41.8 (5) | C5—O3—C4—C3 | −82.2 (5) |
C4—O3—Li1—O1 | −80.3 (4) | Li1—O3—C4—C3 | 33.5 (5) |
C5—O3—Li1—O4 | −31.0 (4) | O2—C3—C4—O3 | −51.2 (6) |
C4—O3—Li1—O4 | −153.1 (3) | C4—O3—C5—C6 | 170.3 (5) |
C5—O3—Li1—O2 | 114.8 (4) | Li1—O3—C5—C6 | 52.2 (5) |
C4—O3—Li1—O2 | −7.3 (3) | O3—C5—C6—O4 | −51.1 (6) |
C7—O4—Li1—N1 | −99.2 (4) | C7—O4—C6—C5 | −104.8 (5) |
C6—O4—Li1—N1 | 126.9 (4) | Li1—O4—C6—C5 | 22.3 (6) |
C7—O4—Li1—O1 | 11.2 (3) | C6—O4—C7—C8 | 90.0 (5) |
C6—O4—Li1—O1 | −122.7 (3) | Li1—O4—C7—C8 | −36.3 (5) |
C7—O4—Li1—O3 | 139.4 (3) | C1—O1—C8—C7 | −165.9 (4) |
C6—O4—Li1—O3 | 5.5 (4) | Li1—O1—C8—C7 | −38.0 (5) |
C7—O4—Li1—O2 | 73.5 (6) | O4—C7—C8—O1 | 49.2 (5) |
C6—O4—Li1—O2 | −60.4 (6) | Li1—N1—C9—C10 | −72 (20) |
C3—O2—Li1—N1 | −141.5 (4) |
Experimental details
Crystal data | |
Chemical formula | [Li(C8H16O4)(C2D3N)]ClO4 |
Mr | 323.65 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 100 |
a, b, c (Å) | 12.1605 (14), 12.6338 (15), 19.870 (2) |
V (Å3) | 3052.7 (6) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.29 |
Crystal size (mm) | 0.40 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Bruker CCD-1000 area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.895, 0.945 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20941, 2621, 2164 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.590 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.073, 0.214, 1.03 |
No. of reflections | 2621 |
No. of parameters | 191 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.81, −0.36 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2008) and FCF_filter (Guzei, 2007), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).
O1—Li1 | 2.022 (6) | O4—Li1 | 2.050 (6) |
O2—Li1 | 2.058 (6) | N1—Li1 | 2.010 (6) |
O3—Li1 | 2.036 (6) |
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blasius, E. & Janzen, K. P. (1982). Pure Appl. Chem. 54, 2115–2128. CrossRef CAS Web of Science Google Scholar
Blasius, E., Janzen, K. P., Klotz, H. & Toussaint, A. (1982). Makromol. Chem. 183, 1401–1411. CrossRef CAS Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2003). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dalley, N. D. (1978). Synthetic Multidentate Macrocyclic Compounds, edited by R. M. Izatt & J. J. Christensen, pp. 207–243. New York: Academic Press. Google Scholar
Doyle, J. M. & McCord, B. R. (1998). J. Chromatogr. B, 714, 105–111. CrossRef CAS Google Scholar
Frühauf, S. & Zeller, W. J. (1991). Cancer Res. 51, 2943–2948. PubMed Web of Science Google Scholar
Guzei, I. A. (2007). FCF_filter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA. Google Scholar
Guzei, I. A., Spencer, L. C., Xiao, L. & Burnette, R. R. (2010). Acta Cryst. E66, m438–m439. Web of Science CrossRef IUCr Journals Google Scholar
Hayashita, T., Lee, J. H., Hankins, M. G., Lee, J. C., Kim, J. S., Knobeloch, J. M. & Bartsch, R. A. (1992). Anal. Chem. 64, 815–819. CrossRef CAS Web of Science Google Scholar
Jagannadh, B. & Sarma, J. A. R. P. (1999). J. Phys. Chem. A, 103, 10993–10997. Web of Science CrossRef CAS Google Scholar
Jones, P. G., Moers, O. & Blaschette, A. (1997). Acta Cryst. C53, 1809–1811. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Lehn, J. M. (1973). Struct. Bond. 16, 1–69. CrossRef CAS Google Scholar
Lehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspectives. Weinheim, VCH. Google Scholar
Raithby, P. R., Shields, G. P. & Allen, F. H. (1997). Acta Cryst. B53, 241–251. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shoham, G., Lipscomb, W. N. & Olsher, U. (1983). J. Chem. Soc. Chem. Commun. pp. 208–209. CrossRef Web of Science Google Scholar
Westrip, S. P. (2010). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Crown ethers are important due to their remarkable selectivity toward complexation with metal ions through oxygen atoms on the crown ether ring. They have high conformational flexibility, act as host molecules for various guests (Jagannadh et al., 1999), and have a broad range of applications. Their importance has been studied in numerous fields such as molecular design (Lehn, 1973), supramolecular chemistry (Lehn, 1995), analytical chemistry (Doyle & McCord, 1998; Blasius et al., 1982; Blasius & Janzen, 1982; Hayashita et al., 1992) and medicine (Frühauf & Zeller, 1991). The ionic title compound (I), a crown ether/Li+ system, was prepared in a study aiming to develop a systematic methodology to understand the nature of these complexes. This methodology based on experimental crystallography may find application in characterization of host-guest type drug delivery systems.
Compound (I) crystallizes with discrete cations and anions. The Li+ atom of the cation exhibits a distorted square pyramidal geometry. The four oxygen atoms of the 12-crown-4 ether (12C4) bond to lithium in the basal positions, and the acetonitrile nitrogen atom occupies the apical position. The 12C4 is in the frequently observed [3333] conformation approximating C4 symmetry (Raithby et al., 1997; Jones et al., 1997). The oxygen atoms are nearly planar with a rms of 0.1325 (14) Å. The lithium atom is displaced out of this plane toward the apical position by 0.794 (6) Å. This displacement results from the Li+ being too large to fit in the cavity of the crown ether. The two diagonal distances across the ring between the opposite oxygens are 3.611 (4) Å and 3.890 (4) Å resulting in an adjusted diameter of the cavity between 0.811 Å and 1.090 Å. This cavity is too small to accomodate the lithium ion whose ionic diameter is between 1.18 Å and 1.52 Å (Shoham et al., 1983; Dalley, 1978). The Li—N vector is nearly perpendicular to the plane of the 12C4 oxygen atoms forming a 89.8 (5)° angle. The angles and distances involving lithium were statistically similar to the averages for 14 related compounds found in the Cambridge Structural Database (CSD; Version 1.11, September 2009 release; Allen, 2002). A Mogul structural check also confirmed that (I) exhibits typical geometrical parameters (Bruno et al., 2002).
The lithium complexes and the perchorate anions in the lattice of (I) are each stacked along a twofold screw axis to form columns along the a axis.