metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1,4,7,10-Tetra­oxa­cyclo­dodeca­ne)(trideuteroaceto­nitrile)lithium perchlorate

aDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA, bSmall Molecule Process & Product Development, AMGEN, One Amgen Center Drive, Thousand Oaks, CA 91320, USA, and cSchool of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705, USA
*Correspondence e-mail: iguzei@chem.wisc.edu

(Received 4 March 2010; accepted 12 March 2010; online 24 March 2010)

In the title compound, [Li(C8H16O4)(CD3CN)]ClO4, the Li atom is penta­coordinate. The O atoms of the 12-crown-4 ether form the basal plane, whereas the N atom of the trideutero­aceto­nitrile occupies the apical position. The Li+ atom is displaced by 0.794 (6) Å toward the apical position from the plane formed by the O atoms because the Li+ atom is too large to fit in the cavity of the 12-crown-4 ether, resulting in a distorted square-pyramidal geometry about the Li+ atom.

Related literature

For applications of crown ethers, see: Jagannadh & Sarma (1999[Jagannadh, B. & Sarma, J. A. R. P. (1999). J. Phys. Chem. A, 103, 10993-10997.]); Lehn (1973[Lehn, J. M. (1973). Struct. Bond. 16, 1-69.], 1995[Lehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspectives. Weinheim, VCH.]); Doyle & McCord (1998[Doyle, J. M. & McCord, B. R. (1998). J. Chromatogr. B, 714, 105-111.]); Blasius et al. (1982[Blasius, E., Janzen, K. P., Klotz, H. & Toussaint, A. (1982). Makromol. Chem. 183, 1401-1411.]); Blasius & Janzen (1982[Blasius, E. & Janzen, K. P. (1982). Pure Appl. Chem. 54, 2115-2128.]); Hayashita et al. (1992[Hayashita, T., Lee, J. H., Hankins, M. G., Lee, J. C., Kim, J. S., Knobeloch, J. M. & Bartsch, R. A. (1992). Anal. Chem. 64, 815-819.]); Frühauf & Zeller (1991[Frühauf, S. & Zeller, W. J. (1991). Cancer Res. 51, 2943-2948.]). For 12-crown-4 ether geometry, see: Raithby et al. (1997[Raithby, P. R., Shields, G. P. & Allen, F. H. (1997). Acta Cryst. B53, 241-251.]); Jones et al. (1997[Jones, P. G., Moers, O. & Blaschette, A. (1997). Acta Cryst. C53, 1809-1811.]). For the size of the crown ether cavity and lithium ion, see: Shoham et al. (1983[Shoham, G., Lipscomb, W. N. & Olsher, U. (1983). J. Chem. Soc. Chem. Commun. pp. 208-209.]); Dalley (1978[Dalley, N. D. (1978). Synthetic Multidentate Macrocyclic Compounds, edited by R. M. Izatt & J. J. Christensen, pp. 207-243. New York: Academic Press.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). Bond distances and angles were confirmed to be typical by a Mogul structural check (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]). For a description of tris­(1,4,7,10-tetra­oxacyclo­dodeca­ne)dilithium bis(perchlorate), synthesized simultaneously with the title compound, see: Guzei et al. (2010[Guzei, I. A., Spencer, L. C., Xiao, L. & Burnette, R. R. (2010). Acta Cryst. E66, m438-m439.]).

[Scheme 1]

Experimental

Crystal data
  • [Li(C8H16O4)(C2D3N)]ClO4

  • Mr = 323.65

  • Orthorhombic, P b c a

  • a = 12.1605 (14) Å

  • b = 12.6338 (15) Å

  • c = 19.870 (2) Å

  • V = 3052.7 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker CCD-1000 area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.895, Tmax = 0.945

  • 20941 measured reflections

  • 2621 independent reflections

  • 2164 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.214

  • S = 1.03

  • 2621 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

O1—Li1 2.022 (6)
O2—Li1 2.058 (6)
O3—Li1 2.036 (6)
O4—Li1 2.050 (6)
N1—Li1 2.010 (6)

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL and FCF_filter (Guzei, 2007[Guzei, I. A. (2007). FCF_filter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]) and modiCIFer (Guzei, 2007[Guzei, I. A. (2007). FCF_filter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.]).

Supporting information


Comment top

Crown ethers are important due to their remarkable selectivity toward complexation with metal ions through oxygen atoms on the crown ether ring. They have high conformational flexibility, act as host molecules for various guests (Jagannadh et al., 1999), and have a broad range of applications. Their importance has been studied in numerous fields such as molecular design (Lehn, 1973), supramolecular chemistry (Lehn, 1995), analytical chemistry (Doyle & McCord, 1998; Blasius et al., 1982; Blasius & Janzen, 1982; Hayashita et al., 1992) and medicine (Frühauf & Zeller, 1991). The ionic title compound (I), a crown ether/Li+ system, was prepared in a study aiming to develop a systematic methodology to understand the nature of these complexes. This methodology based on experimental crystallography may find application in characterization of host-guest type drug delivery systems.

Compound (I) crystallizes with discrete cations and anions. The Li+ atom of the cation exhibits a distorted square pyramidal geometry. The four oxygen atoms of the 12-crown-4 ether (12C4) bond to lithium in the basal positions, and the acetonitrile nitrogen atom occupies the apical position. The 12C4 is in the frequently observed [3333] conformation approximating C4 symmetry (Raithby et al., 1997; Jones et al., 1997). The oxygen atoms are nearly planar with a rms of 0.1325 (14) Å. The lithium atom is displaced out of this plane toward the apical position by 0.794 (6) Å. This displacement results from the Li+ being too large to fit in the cavity of the crown ether. The two diagonal distances across the ring between the opposite oxygens are 3.611 (4) Å and 3.890 (4) Å resulting in an adjusted diameter of the cavity between 0.811 Å and 1.090 Å. This cavity is too small to accomodate the lithium ion whose ionic diameter is between 1.18 Å and 1.52 Å (Shoham et al., 1983; Dalley, 1978). The Li—N vector is nearly perpendicular to the plane of the 12C4 oxygen atoms forming a 89.8 (5)° angle. The angles and distances involving lithium were statistically similar to the averages for 14 related compounds found in the Cambridge Structural Database (CSD; Version 1.11, September 2009 release; Allen, 2002). A Mogul structural check also confirmed that (I) exhibits typical geometrical parameters (Bruno et al., 2002).

The lithium complexes and the perchorate anions in the lattice of (I) are each stacked along a twofold screw axis to form columns along the a axis.

Related literature top

For applications of crown ethers, see: Jagannadh et al. (1999); Lehn (1973, (1995); Doyle & McCord (1998); Blasius et al. (1982); Blasius & Janzen (1982); Hayashita et al. (1992); Frühauf & Zeller (1991). For 12-crown-4 ether geometry, see: Raithby et al. (1997); Jones et al. (1997). For the size of the crown ether cavity and lithium ion, see: Shoham et al. (1983); Dalley (1978). For a description of the Cambridge Structural Database, see: Allen (2002). Bond distances and angles were confirmed to be typical by a Mogul structural check (Bruno et al., 2002). For a description of tris(1,4,7,10-tetraoxacyclododecane)-di-lithium perchlorate synthesized simultaneously with the title compound, see: Guzei et al. (2010).

Experimental top

All chemicals were purchased from the Aldrich Chemical Co. Inc. and were used as received. 12-crown-4 (12C4, C8H16O4, 98% pure) and lithium perchlorate (LiClO4, 99% pure) were separately dissolved in acetonitrile-d3 (CD3CN, 99% pure). These two solutions were then mixed together according to a 1:1 molar ratio of 12C4/LiClO4.The final solution was kept in a desiccator and the solvent was allowed to evaporate gradually in order to produce a supersaturated solution. The supersaturated solution was stored at –20 °C refrigerator, until crystals formed after 48 hours. Two types of colorless crystals suitable for X-ray diffraction were obtained and separated from the solution, one of which was compound (I) the other being tris(1,4,7,10-tetraoxacyclododecane)-di-lithium diperchlorate (Guzei et al., 2010).

Refinement top

All H and D atoms were placed in idealized locations and refined as riding, with C—H=0.99 Å and Uiso(H) = 1.2Ueq(C) for all hydrogen atoms, and C—D=0.98 Å and Uiso(D)=1.5Ueq(C) for all deuterium atoms.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008) and FCF_filter (Guzei, 2007); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). The thermal ellipsoids are shown at 50% probability level. All hydrogen atoms were omitted for clarity.
(1,4,7,10-Tetraoxacyclododecane)(trideuteroacetonitrile)lithium perchlorate top
Crystal data top
[Li(C8H16O4)(C2D3N)]ClO4F(000) = 1360
Mr = 323.65Dx = 1.408 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 999 reflections
a = 12.1605 (14) Åθ = 2.5–24.8°
b = 12.6338 (15) ŵ = 0.29 mm1
c = 19.870 (2) ÅT = 100 K
V = 3052.7 (6) Å3Block, colourless
Z = 80.40 × 0.30 × 0.20 mm
Data collection top
Bruker CCD-1000 area-detector
diffractometer
2621 independent reflections
Radiation source: fine-focus sealed tube2164 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
0.30° ω and 0.4 ° ϕ scansθmax = 24.8°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1414
Tmin = 0.895, Tmax = 0.945k = 1414
20941 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1041P)2 + 6.1747P]
where P = (Fo2 + 2Fc2)/3
2621 reflections(Δ/σ)max = 0.024
191 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Li(C8H16O4)(C2D3N)]ClO4V = 3052.7 (6) Å3
Mr = 323.65Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.1605 (14) ŵ = 0.29 mm1
b = 12.6338 (15) ÅT = 100 K
c = 19.870 (2) Å0.40 × 0.30 × 0.20 mm
Data collection top
Bruker CCD-1000 area-detector
diffractometer
2621 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2164 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.945Rint = 0.030
20941 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0730 restraints
wR(F2) = 0.214H-atom parameters constrained
S = 1.03Δρmax = 0.81 e Å3
2621 reflectionsΔρmin = 0.36 e Å3
191 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.13806 (7)0.22119 (7)0.03636 (4)0.0480 (3)
O10.0293 (2)0.1535 (2)0.28852 (16)0.0647 (8)
O20.2455 (2)0.1542 (2)0.27072 (15)0.0672 (8)
O30.2453 (2)0.0130 (3)0.35435 (13)0.0637 (8)
O40.0258 (2)0.0332 (2)0.34845 (13)0.0627 (8)
O50.2322 (3)0.1706 (3)0.06187 (18)0.0885 (11)
O60.1349 (3)0.2031 (4)0.03414 (17)0.1030 (15)
O70.1441 (3)0.3323 (3)0.0458 (3)0.1151 (17)
O80.0413 (3)0.1795 (3)0.06594 (17)0.0792 (10)
N10.1324 (2)0.0384 (3)0.19108 (15)0.0479 (8)
Li10.1361 (4)0.0312 (5)0.2820 (3)0.0427 (13)
C10.0820 (5)0.2547 (4)0.2874 (3)0.0878 (17)
H1A0.03320.30780.26620.105*
H1B0.09840.27820.33390.105*
C20.1800 (5)0.2452 (4)0.2504 (4)0.0945 (18)
H2A0.22420.31030.25630.113*
H2B0.16180.23870.20200.113*
C30.3096 (4)0.1645 (5)0.3295 (3)0.0889 (18)
H3A0.26690.20010.36540.107*
H3B0.37650.20680.32030.107*
C40.3396 (4)0.0557 (6)0.3504 (3)0.0899 (19)
H4A0.39270.02610.31760.108*
H4B0.37600.05840.39490.108*
C50.1849 (5)0.0045 (5)0.4155 (2)0.0873 (17)
H5A0.22860.03370.45320.105*
H5B0.16880.07070.42530.105*
C60.0857 (5)0.0617 (5)0.4086 (2)0.0805 (15)
H6A0.03870.04830.44840.097*
H6B0.10240.13840.40730.097*
C70.0691 (4)0.0308 (5)0.3513 (3)0.0782 (14)
H7A0.10770.01820.39440.094*
H7B0.11950.01070.31430.094*
C80.0425 (4)0.1423 (4)0.3456 (2)0.0767 (14)
H8A0.11030.18440.33890.092*
H8B0.00550.16730.38700.092*
C90.1229 (3)0.0579 (3)0.13610 (17)0.0405 (8)
C100.1084 (4)0.0830 (4)0.06532 (18)0.0582 (10)
D10A0.04030.12350.05940.087*
D10B0.17090.12510.04960.087*
D10C0.10400.01730.03920.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0511 (6)0.0499 (6)0.0430 (6)0.0013 (4)0.0001 (4)0.0025 (4)
O10.0504 (16)0.0519 (16)0.092 (2)0.0035 (12)0.0154 (15)0.0002 (15)
O20.0497 (15)0.0672 (18)0.085 (2)0.0098 (13)0.0005 (15)0.0171 (15)
O30.0570 (17)0.089 (2)0.0449 (14)0.0253 (15)0.0082 (12)0.0116 (14)
O40.0598 (17)0.082 (2)0.0460 (15)0.0077 (15)0.0056 (13)0.0086 (13)
O50.071 (2)0.102 (3)0.093 (2)0.0072 (19)0.0286 (19)0.019 (2)
O60.089 (3)0.175 (5)0.0449 (19)0.010 (3)0.0026 (16)0.001 (2)
O70.095 (3)0.057 (2)0.193 (5)0.0080 (19)0.038 (3)0.019 (3)
O80.072 (2)0.091 (2)0.075 (2)0.0203 (18)0.0178 (16)0.0094 (18)
N10.0537 (18)0.0506 (18)0.0395 (17)0.0010 (13)0.0001 (13)0.0062 (13)
Li10.044 (3)0.049 (3)0.034 (3)0.002 (2)0.002 (2)0.007 (2)
C10.082 (4)0.054 (3)0.128 (5)0.010 (3)0.006 (3)0.013 (3)
C20.103 (4)0.060 (3)0.121 (5)0.015 (3)0.030 (4)0.010 (3)
C30.059 (3)0.114 (5)0.093 (4)0.029 (3)0.004 (3)0.044 (3)
C40.045 (2)0.143 (6)0.081 (3)0.017 (3)0.021 (2)0.037 (4)
C50.089 (4)0.130 (5)0.043 (2)0.027 (4)0.006 (2)0.000 (3)
C60.106 (4)0.088 (4)0.047 (2)0.012 (3)0.002 (3)0.013 (2)
C70.057 (3)0.111 (4)0.067 (3)0.014 (3)0.012 (2)0.001 (3)
C80.054 (3)0.099 (4)0.077 (3)0.020 (3)0.017 (2)0.017 (3)
C90.0419 (18)0.0396 (18)0.0401 (19)0.0004 (14)0.0002 (14)0.0042 (14)
C100.075 (3)0.064 (2)0.0359 (19)0.005 (2)0.0047 (18)0.0088 (17)
Geometric parameters (Å, º) top
Cl1—O51.406 (3)C2—H2A0.9900
Cl1—O81.416 (3)C2—H2B0.9900
Cl1—O71.418 (4)C3—C41.481 (9)
Cl1—O61.420 (4)C3—H3A0.9900
O1—C11.430 (6)C3—H3B0.9900
O1—C81.439 (5)C4—H4A0.9900
O1—Li12.022 (6)C4—H4B0.9900
O2—C31.411 (6)C5—C61.413 (8)
O2—C21.456 (7)C5—H5A0.9900
O2—Li12.058 (6)C5—H5B0.9900
O3—C51.424 (5)C6—H6A0.9900
O3—C41.440 (7)C6—H6B0.9900
O3—Li12.036 (6)C7—C81.449 (7)
O4—C71.411 (6)C7—H7A0.9900
O4—C61.444 (6)C7—H7B0.9900
O4—Li12.050 (6)C8—H8A0.9900
N1—C91.126 (4)C8—H8B0.9900
N1—Li12.010 (6)C9—C101.452 (5)
C1—C21.405 (8)C10—D10A0.9800
C1—H1A0.9900C10—D10B0.9800
C1—H1B0.9900C10—D10C0.9800
O5—Cl1—O8111.0 (2)O2—C3—H3A110.5
O5—Cl1—O7111.1 (3)C4—C3—H3A110.5
O8—Cl1—O7110.9 (2)O2—C3—H3B110.5
O5—Cl1—O6107.7 (2)C4—C3—H3B110.5
O8—Cl1—O6109.1 (2)H3A—C3—H3B108.7
O7—Cl1—O6106.9 (3)O3—C4—C3112.3 (4)
C1—O1—C8111.9 (4)O3—C4—H4A109.2
C1—O1—Li1113.2 (3)C3—C4—H4A109.2
C8—O1—Li1111.4 (3)O3—C4—H4B109.2
C3—O2—C2117.3 (4)C3—C4—H4B109.2
C3—O2—Li1109.7 (3)H4A—C4—H4B107.9
C2—O2—Li1105.8 (3)C6—C5—O3108.6 (4)
C5—O3—C4114.3 (4)C6—C5—H5A110.0
C5—O3—Li1104.2 (3)O3—C5—H5A110.0
C4—O3—Li1108.4 (3)C6—C5—H5B110.0
C7—O4—C6121.5 (4)O3—C5—H5B110.0
C7—O4—Li1109.4 (3)H5A—C5—H5B108.4
C6—O4—Li1107.6 (3)C5—C6—O4112.5 (4)
C9—N1—Li1166.0 (4)C5—C6—H6A109.1
N1—Li1—O1112.2 (3)O4—C6—H6A109.1
N1—Li1—O3121.9 (3)C5—C6—H6B109.1
O1—Li1—O3125.7 (3)O4—C6—H6B109.1
N1—Li1—O4113.0 (3)H6A—C6—H6B107.8
O1—Li1—O480.9 (2)O4—C7—C8111.8 (4)
O3—Li1—O482.1 (2)O4—C7—H7A109.2
N1—Li1—O2104.3 (3)C8—C7—H7A109.2
O1—Li1—O281.1 (2)O4—C7—H7B109.2
O3—Li1—O282.1 (2)C8—C7—H7B109.2
O4—Li1—O2142.4 (3)H7A—C7—H7B107.9
C2—C1—O1108.1 (4)O1—C8—C7107.0 (4)
C2—C1—H1A110.1O1—C8—H8A110.3
O1—C1—H1A110.1C7—C8—H8A110.3
C2—C1—H1B110.1O1—C8—H8B110.3
O1—C1—H1B110.1C7—C8—H8B110.3
H1A—C1—H1B108.4H8A—C8—H8B108.6
C1—C2—O2112.8 (4)N1—C9—C10178.9 (4)
C1—C2—H2A109.0C9—C10—D10A109.5
O2—C2—H2A109.0C9—C10—D10B109.5
C1—C2—H2B109.0D10A—C10—D10B109.5
O2—C2—H2B109.0C9—C10—D10C109.5
H2A—C2—H2B107.8D10A—C10—D10C109.5
O2—C3—C4106.3 (4)D10B—C10—D10C109.5
C9—N1—Li1—O125.1 (15)C2—O2—Li1—N191.0 (4)
C9—N1—Li1—O3150.4 (12)C3—O2—Li1—O1107.7 (3)
C9—N1—Li1—O4114.5 (13)C2—O2—Li1—O119.7 (4)
C9—N1—Li1—O260.9 (14)C3—O2—Li1—O320.5 (4)
C1—O1—Li1—N1106.3 (4)C2—O2—Li1—O3147.9 (3)
C8—O1—Li1—N1126.6 (4)C3—O2—Li1—O445.4 (6)
C1—O1—Li1—O369.1 (5)C2—O2—Li1—O482.0 (6)
C8—O1—Li1—O358.0 (5)C8—O1—C1—C2155.6 (5)
C1—O1—Li1—O4142.5 (4)Li1—O1—C1—C228.7 (6)
C8—O1—Li1—O415.4 (3)O1—C1—C2—O248.1 (7)
C1—O1—Li1—O24.4 (4)C3—O2—C2—C179.4 (6)
C8—O1—Li1—O2131.5 (3)Li1—O2—C2—C143.3 (6)
C5—O3—Li1—N1143.2 (4)C2—O2—C3—C4163.1 (4)
C4—O3—Li1—N194.7 (4)Li1—O2—C3—C442.5 (5)
C5—O3—Li1—O141.8 (5)C5—O3—C4—C382.2 (5)
C4—O3—Li1—O180.3 (4)Li1—O3—C4—C333.5 (5)
C5—O3—Li1—O431.0 (4)O2—C3—C4—O351.2 (6)
C4—O3—Li1—O4153.1 (3)C4—O3—C5—C6170.3 (5)
C5—O3—Li1—O2114.8 (4)Li1—O3—C5—C652.2 (5)
C4—O3—Li1—O27.3 (3)O3—C5—C6—O451.1 (6)
C7—O4—Li1—N199.2 (4)C7—O4—C6—C5104.8 (5)
C6—O4—Li1—N1126.9 (4)Li1—O4—C6—C522.3 (6)
C7—O4—Li1—O111.2 (3)C6—O4—C7—C890.0 (5)
C6—O4—Li1—O1122.7 (3)Li1—O4—C7—C836.3 (5)
C7—O4—Li1—O3139.4 (3)C1—O1—C8—C7165.9 (4)
C6—O4—Li1—O35.5 (4)Li1—O1—C8—C738.0 (5)
C7—O4—Li1—O273.5 (6)O4—C7—C8—O149.2 (5)
C6—O4—Li1—O260.4 (6)Li1—N1—C9—C1072 (20)
C3—O2—Li1—N1141.5 (4)

Experimental details

Crystal data
Chemical formula[Li(C8H16O4)(C2D3N)]ClO4
Mr323.65
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)12.1605 (14), 12.6338 (15), 19.870 (2)
V3)3052.7 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker CCD-1000 area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.895, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
20941, 2621, 2164
Rint0.030
(sin θ/λ)max1)0.590
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.214, 1.03
No. of reflections2621
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.36

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2008) and FCF_filter (Guzei, 2007), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010) and modiCIFer (Guzei, 2007).

Selected bond lengths (Å) top
O1—Li12.022 (6)O4—Li12.050 (6)
O2—Li12.058 (6)N1—Li12.010 (6)
O3—Li12.036 (6)
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlasius, E. & Janzen, K. P. (1982). Pure Appl. Chem. 54, 2115–2128.  CrossRef CAS Web of Science Google Scholar
First citationBlasius, E., Janzen, K. P., Klotz, H. & Toussaint, A. (1982). Makromol. Chem. 183, 1401–1411.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2003). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDalley, N. D. (1978). Synthetic Multidentate Macrocyclic Compounds, edited by R. M. Izatt & J. J. Christensen, pp. 207–243. New York: Academic Press.  Google Scholar
First citationDoyle, J. M. & McCord, B. R. (1998). J. Chromatogr. B, 714, 105–111.  CrossRef CAS Google Scholar
First citationFrühauf, S. & Zeller, W. J. (1991). Cancer Res. 51, 2943–2948.  PubMed Web of Science Google Scholar
First citationGuzei, I. A. (2007). FCF_filter and modiCIFer. Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, Wisconsin, USA.  Google Scholar
First citationGuzei, I. A., Spencer, L. C., Xiao, L. & Burnette, R. R. (2010). Acta Cryst. E66, m438–m439.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHayashita, T., Lee, J. H., Hankins, M. G., Lee, J. C., Kim, J. S., Knobeloch, J. M. & Bartsch, R. A. (1992). Anal. Chem. 64, 815–819.  CrossRef CAS Web of Science Google Scholar
First citationJagannadh, B. & Sarma, J. A. R. P. (1999). J. Phys. Chem. A, 103, 10993–10997.  Web of Science CrossRef CAS Google Scholar
First citationJones, P. G., Moers, O. & Blaschette, A. (1997). Acta Cryst. C53, 1809–1811.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLehn, J. M. (1973). Struct. Bond. 16, 1–69.  CrossRef CAS Google Scholar
First citationLehn, J. M. (1995). Supramolecular Chemistry: Concepts and Perspectives. Weinheim, VCH.  Google Scholar
First citationRaithby, P. R., Shields, G. P. & Allen, F. H. (1997). Acta Cryst. B53, 241–251.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShoham, G., Lipscomb, W. N. & Olsher, U. (1983). J. Chem. Soc. Chem. Commun. pp. 208–209.  CrossRef Web of Science Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds