organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-[3-(4-nitro­benzo­yl)thio­ureido]benzoate

aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad, Pakistan, and bDepartment of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China
*Correspondence e-mail: Sohail262001@yahoo.com

(Received 11 March 2010; accepted 24 March 2010; online 31 March 2010)

In the title compound, C17H15N3O5S, the nitro and thio­ureido groups are twisted by 7.2 (7) and 21.4 (2)°, respectively, from the nitro­benzene ring plane whereas the thio­ureido and the ethyl ester group make dihedral angles of 43.0 (1) and 18.0 (2)°, respectively, with the benzene rings to which they are attached. Intra­molecular N—H⋯O hydrogen-bonding inter­actions are observed. In the crystal, inter­molecular N—H⋯O hydrogen bonds connect the mol­ecules into chains running along the a axis.

Related literature

For general background to the chemistry of thio­urea derivatives, see: Ugur et al. (2006[Ugur, D., Arslan, H. & Külcü, N. (2006). Russ. J. Coord. Chem. 32, 669-675.]). For related compounds with anti­tubercular properties, see: Huebner et al. (1953[Huebner, C. F., Marsh, J. L., Mizzoni, R. H., Mull, R. P., Schroeder, D. C., Troxell, H. A. & Scholz, C. R. (1953). J. Am. Chem. Soc. 75, 2274-2275.]) and for other biological activities of thio­urea compounds, see: Glasser & Doughty (1964[Glasser, A. C. & Doughty, R. M. (1964). J. Pharm. Soc. 53, 40-42.]). For related structures, see: Saeed et al. (2008a[Saeed, S., Bhatti, M. H., Tahir, M. K. & Jones, P. G. (2008a). Acta Cryst. E64, o1369.],b[Saeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008b). Acta Cryst. E64, o1485.]). For the cytotoxicity of anti­cancer drugs to normal cells in cancer therapy, see: Saeed et al. (2010[Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323-1331.]). For the herbicidal activity of thio­urea derivatives, see: Zheng et al. (2004[Zheng, W., Yates, S. R., Papiernik, S. K. & Guo, M. (2004). Environ. Sci. Technol. 38, 6855-6860.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15N3O5S

  • Mr = 373.38

  • Orthorhombic, P b c a

  • a = 9.0698 (13) Å

  • b = 15.778 (2) Å

  • c = 24.889 (4) Å

  • V = 3561.7 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 295 K

  • 0.36 × 0.25 × 0.03 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.927, Tmax = 0.994

  • 23121 measured reflections

  • 4362 independent reflections

  • 2877 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.171

  • S = 1.07

  • 4362 reflections

  • 244 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O3i 0.80 (4) 2.12 (4) 2.903 (3) 165 (3)
N3—H3N⋯O3 0.91 (3) 1.91 (3) 2.664 (3) 139 (3)
N3—H3N⋯O4 0.91 (3) 2.15 (3) 2.721 (3) 120 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and CrystalStructure (Rigaku/MSC and Rigaku, 2006[Rigaku/MSC and Rigaku (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Industrial production and the use of transition elements can cause environmental pollution. However, some of these metals are present in trace amounts as essential elements for biological systems and also play an important role in bioinorganic chemistry. In order to understand the role of these metal ions in biological systems, structural studies of the biological compounds and their metal complexes are extremely important. Compounds containing carbonyl and thiocarbonyl groups occupy an important position among organic reagents as potential donor ligands for transition metal ions (Ugur et al., 2006). Thioureas are also known to exhibit a wide range of biological activities including antiviral, antibacterial, anticancer (Saeed et al., 2010), antifungal, antitubercular, antithyroidal, herbicidal and insecticidal activities (Huebner et al., 1953) and as agrochemicals (Saeed et al., 2008a). An example is furnished by 1- benzoyl-3-(4,5-disubstituted-pyrimidine-2-yl)- thioureas, which have excellent herbicidal activity (Zheng et al., 2004). Thioureas are also well known chelating agents for transition metals and the complexes also show varied biological activities (Glasser & Doughty, 1964). Thioureas and substituted thioureas are also known as epoxy resin curing agents (Saeed et al., 2008b). We became interested in the synthesis of N-aroyl, N'-arylthioureas as intermediates towards some new novel heterocycles and for the systematic study of their bioactive complexes and their function as epoxy resin curing agents. Here we present the structure of the title compound (I). The molecule is not planar. The nitro group is slightly twisted (7.2 (7)°) from the benzene ring plane of C1—C6. The thioureido group is 21.4 (1)° from the benzene ring plane of C1—C6 and 43.0 (1)° from the benzene ring plane of C9—C14. The ethyl ester group is twisted 18.0 (2)° from the benzene ring plane of C9—C14. Both intra- and inter-molecular N—H···O H-bond interactions are observed in the crystal lattice. The intermolecular N2—H2N···O3 H-bonding interactions, connect the molecules into 1-D chains running along the a-axis. There seems to be no significant π···π nor C—H···π interaction in the crystal lattice.

There is no residual solvent accessible void volume in the unit cell.

Related literature top

For general background to the chemistry of thiourea derivatives, see: Ugur et al. (2006). For related compounds with antitubercular properties, see: Huebner et al. (1953) and for other biological activities of thiourea compounds, see: Glasser & Doughty (1964). For related structures, see: Saeed et al. (2008a,b). For the cytotoxicity of anticancer drugs to normal cells in cancer therapy, see: Saeed et al. (2010). For the herbicidal activity of thiourea derivatives ,see: Zheng et al. (2004).

Experimental top

A solution of 4-nitrobenzoyl chloride (0.01 mol) in dry acetone (80 ml) was added dropwise to a suspension of ammonium thiocyanate (0.01 mol) in acetone (50 ml) and the reaction mixture was refluxed for 45 minutes. After cooling to room temperature, a solution of ethyl 2-aminobenzoate (0.01 mol) in acetone (25 ml) was added and the resulting mixture refluxed for 2 h. The reaction mixture was poured into five times its volume of cold water, upon which the thiourea precipitated. The product was recrystallized from ethyl acetate as intensely yellow crystals.

Refinement top

All of the C-bound H atoms are observable from difference Fourier map but are all placed at geometrical positions with C—H = 0.93, 0.96 and 0.97Å for phenyl methyl and methylene H-atoms. All C-bound H-atoms are refined using riding model with Uiso(H) = 1.2Ueq(Carrier).

The N-bound H atoms are located from a difference Fourier map and refined isotropically. Six restraints are related to the refinement of O2 using isotropic restraints of standard deviation of 0.001 in the anisotropic atom displacement components.

Highest peak is 0.63 at (0.3420, 0.1232, 0.3759) [0.84Å from O2] Deepest hole is -0.32 at (0.3460, 0.0919, 0.4004) [0.36Å from O2]

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006) and CrystalStructure (Rigaku/MSC and Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP plot of the compound was shown at 30% probability thermal ellipsoids with the atom numbering scheme.
[Figure 2] Fig. 2. The unit cell packing diagram of the compound was projected down the a-axis and shown at 30% probability thermal ellipsoids.
Ethyl 2-[3-(4-nitrobenzoyl)thioureido]benzoate top
Crystal data top
C17H15N3O5SDx = 1.393 Mg m3
Mr = 373.38Melting point: 438 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 23121 reflections
a = 9.0698 (13) Åθ = 1.6–28.3°
b = 15.778 (2) ŵ = 0.22 mm1
c = 24.889 (4) ÅT = 295 K
V = 3561.7 (9) Å3Plate, yellow
Z = 80.36 × 0.25 × 0.03 mm
F(000) = 1552
Data collection top
Bruker SMART 1000 CCD
diffractometer
4362 independent reflections
Radiation source: fine-focus sealed tube2877 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scanθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 811
Tmin = 0.927, Tmax = 0.994k = 2121
23121 measured reflectionsl = 3332
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0709P)2 + 2.2491P]
where P = (Fo2 + 2Fc2)/3
4362 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.63 e Å3
6 restraintsΔρmin = 0.32 e Å3
Crystal data top
C17H15N3O5SV = 3561.7 (9) Å3
Mr = 373.38Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.0698 (13) ŵ = 0.22 mm1
b = 15.778 (2) ÅT = 295 K
c = 24.889 (4) Å0.36 × 0.25 × 0.03 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
4362 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2877 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.994Rint = 0.032
23121 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0596 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.63 e Å3
4362 reflectionsΔρmin = 0.32 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.51557 (9)0.11637 (5)0.20685 (4)0.0587 (3)
O10.3603 (6)0.5330 (3)0.44429 (14)0.1331 (16)
O20.1862 (4)0.6034 (2)0.40527 (18)0.1245 (13)
O30.1165 (2)0.29106 (13)0.21392 (8)0.0476 (5)
O40.0879 (3)0.24551 (13)0.09489 (9)0.0641 (6)
O50.0925 (3)0.19226 (14)0.01211 (9)0.0662 (7)
N10.2655 (5)0.5415 (2)0.41024 (19)0.0936 (13)
N20.3396 (2)0.23826 (15)0.23814 (10)0.0428 (5)
N30.2463 (3)0.15722 (15)0.16898 (9)0.0414 (5)
C10.2484 (4)0.4741 (2)0.36882 (15)0.0648 (9)
C20.1512 (4)0.4866 (2)0.32689 (17)0.0690 (10)
H20.09370.53530.32500.083*
C30.1416 (4)0.4242 (2)0.28770 (13)0.0552 (8)
H30.07580.43060.25930.066*
C40.2296 (3)0.35235 (17)0.29062 (11)0.0423 (6)
C50.3214 (3)0.3409 (2)0.33479 (12)0.0516 (7)
H50.37640.29140.33790.062*
C60.3312 (4)0.4026 (2)0.37399 (13)0.0630 (9)
H60.39320.39550.40340.076*
C70.2219 (3)0.29142 (16)0.24481 (10)0.0388 (6)
C80.3576 (3)0.17016 (17)0.20286 (10)0.0411 (6)
C90.2299 (3)0.08868 (17)0.13261 (11)0.0423 (6)
C100.2679 (4)0.00680 (19)0.14754 (13)0.0575 (8)
H100.30600.00300.18170.069*
C110.2504 (4)0.0600 (2)0.11286 (15)0.0661 (9)
H110.27670.11440.12360.079*
C120.1938 (4)0.0466 (2)0.06204 (15)0.0659 (9)
H120.18370.09160.03820.079*
C130.1526 (4)0.03375 (19)0.04696 (13)0.0552 (8)
H130.11380.04240.01280.066*
C140.1677 (3)0.10259 (17)0.08161 (11)0.0435 (6)
C150.1132 (3)0.18718 (18)0.06483 (12)0.0472 (7)
C160.0290 (5)0.2705 (2)0.00865 (15)0.0782 (11)
H16A0.09070.31840.00100.094*
H16B0.06840.27940.00640.094*
C170.0198 (5)0.2627 (3)0.06722 (17)0.0872 (13)
H17A0.02200.31350.08200.105*
H17B0.04140.21520.07630.105*
H17C0.11680.25430.08170.105*
H2N0.409 (4)0.2503 (19)0.2566 (13)0.047 (9)*
H3N0.177 (3)0.200 (2)0.1694 (12)0.050 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0427 (4)0.0648 (5)0.0686 (5)0.0143 (3)0.0073 (4)0.0180 (4)
O10.208 (5)0.116 (3)0.075 (2)0.037 (3)0.004 (3)0.037 (2)
O20.099 (2)0.104 (2)0.171 (3)0.0053 (18)0.0240 (19)0.073 (2)
O30.0353 (10)0.0564 (12)0.0511 (11)0.0026 (8)0.0027 (8)0.0000 (9)
O40.0893 (17)0.0445 (12)0.0584 (13)0.0126 (11)0.0185 (12)0.0062 (10)
O50.0994 (19)0.0516 (13)0.0476 (12)0.0076 (12)0.0137 (12)0.0037 (10)
N10.094 (3)0.073 (2)0.114 (3)0.026 (2)0.042 (2)0.039 (2)
N20.0302 (11)0.0540 (14)0.0442 (13)0.0015 (10)0.0021 (10)0.0106 (10)
N30.0400 (12)0.0416 (12)0.0425 (12)0.0015 (10)0.0035 (10)0.0026 (10)
C10.065 (2)0.062 (2)0.067 (2)0.0163 (17)0.0258 (18)0.0232 (17)
C20.066 (2)0.0466 (18)0.094 (3)0.0033 (15)0.027 (2)0.0093 (18)
C30.0485 (17)0.0510 (17)0.0661 (19)0.0060 (13)0.0097 (15)0.0010 (15)
C40.0356 (13)0.0448 (14)0.0466 (14)0.0019 (11)0.0115 (11)0.0026 (12)
C50.0468 (16)0.0601 (18)0.0479 (16)0.0042 (13)0.0045 (13)0.0090 (14)
C60.058 (2)0.083 (2)0.0482 (17)0.0072 (18)0.0094 (15)0.0178 (16)
C70.0310 (12)0.0442 (14)0.0410 (13)0.0020 (10)0.0057 (11)0.0024 (11)
C80.0379 (13)0.0476 (15)0.0378 (13)0.0009 (11)0.0031 (11)0.0008 (11)
C90.0416 (14)0.0404 (14)0.0448 (14)0.0014 (11)0.0001 (12)0.0015 (11)
C100.068 (2)0.0458 (16)0.0589 (19)0.0016 (15)0.0138 (16)0.0046 (14)
C110.079 (2)0.0407 (17)0.079 (2)0.0046 (16)0.0134 (19)0.0007 (15)
C120.086 (3)0.0419 (17)0.070 (2)0.0032 (16)0.0107 (19)0.0121 (15)
C130.067 (2)0.0484 (17)0.0496 (16)0.0006 (14)0.0096 (15)0.0070 (13)
C140.0460 (15)0.0416 (14)0.0429 (14)0.0026 (11)0.0026 (12)0.0010 (11)
C150.0489 (16)0.0447 (16)0.0481 (16)0.0025 (12)0.0088 (13)0.0004 (12)
C160.107 (3)0.059 (2)0.069 (2)0.012 (2)0.021 (2)0.0121 (18)
C170.103 (3)0.083 (3)0.076 (3)0.005 (2)0.026 (2)0.021 (2)
Geometric parameters (Å, º) top
S1—C81.668 (3)C4—C71.493 (4)
O1—N11.215 (6)C5—C61.381 (4)
O2—N11.219 (5)C5—H50.9300
O3—C71.227 (3)C6—H60.9300
O4—C151.208 (3)C9—C101.388 (4)
O5—C151.328 (3)C9—C141.406 (4)
O5—C161.457 (4)C10—C111.371 (4)
N1—C11.489 (5)C10—H100.9300
N2—C71.368 (3)C11—C121.381 (5)
N2—C81.397 (3)C11—H110.9300
N2—H2N0.80 (3)C12—C131.373 (5)
N3—C81.331 (3)C12—H120.9300
N3—C91.418 (3)C13—C141.394 (4)
N3—H3N0.91 (3)C13—H130.9300
C1—C61.361 (5)C14—C151.483 (4)
C1—C21.380 (6)C16—C171.465 (6)
C2—C31.388 (5)C16—H16A0.9700
C2—H20.9300C16—H16B0.9700
C3—C41.388 (4)C17—H17A0.9600
C3—H30.9300C17—H17B0.9600
C4—C51.391 (4)C17—H17C0.9600
C15—O5—C16117.2 (3)C10—C9—C14119.1 (3)
O1—N1—O2125.2 (4)C10—C9—N3120.9 (3)
O1—N1—C1118.6 (4)C14—C9—N3119.9 (2)
O2—N1—C1116.1 (5)C11—C10—C9121.2 (3)
C7—N2—C8129.7 (2)C11—C10—H10119.4
C7—N2—H2N113 (2)C9—C10—H10119.4
C8—N2—H2N117 (2)C10—C11—C12120.1 (3)
C8—N3—C9126.9 (2)C10—C11—H11119.9
C8—N3—H3N113.5 (19)C12—C11—H11119.9
C9—N3—H3N119.5 (19)C13—C12—C11119.5 (3)
C6—C1—C2122.8 (3)C13—C12—H12120.2
C6—C1—N1117.9 (4)C11—C12—H12120.2
C2—C1—N1119.2 (4)C12—C13—C14121.6 (3)
C1—C2—C3118.0 (3)C12—C13—H13119.2
C1—C2—H2121.0C14—C13—H13119.2
C3—C2—H2121.0C13—C14—C9118.4 (3)
C2—C3—C4120.4 (3)C13—C14—C15119.6 (3)
C2—C3—H3119.8C9—C14—C15121.9 (2)
C4—C3—H3119.8O4—C15—O5122.6 (3)
C3—C4—C5119.4 (3)O4—C15—C14125.1 (3)
C3—C4—C7117.3 (3)O5—C15—C14112.3 (2)
C5—C4—C7123.2 (2)O5—C16—C17107.7 (3)
C6—C5—C4120.4 (3)O5—C16—H16A110.2
C6—C5—H5119.8C17—C16—H16A110.2
C4—C5—H5119.8O5—C16—H16B110.2
C1—C6—C5118.8 (3)C17—C16—H16B110.2
C1—C6—H6120.6H16A—C16—H16B108.5
C5—C6—H6120.6C16—C17—H17A109.5
O3—C7—N2122.0 (2)C16—C17—H17B109.5
O3—C7—C4121.2 (2)H17A—C17—H17B109.5
N2—C7—C4116.8 (2)C16—C17—H17C109.5
N3—C8—N2115.3 (2)H17A—C17—H17C109.5
N3—C8—S1127.7 (2)H17B—C17—H17C109.5
N2—C8—S1117.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O3i0.80 (4)2.12 (4)2.903 (3)165 (3)
N3—H3N···O30.91 (3)1.91 (3)2.664 (3)139 (3)
N3—H3N···O40.91 (3)2.15 (3)2.721 (3)120 (2)
Symmetry code: (i) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H15N3O5S
Mr373.38
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)9.0698 (13), 15.778 (2), 24.889 (4)
V3)3561.7 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.36 × 0.25 × 0.03
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.927, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
23121, 4362, 2877
Rint0.032
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.171, 1.07
No. of reflections4362
No. of parameters244
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.32

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 2006) and CrystalStructure (Rigaku/MSC and Rigaku, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O3i0.80 (4)2.12 (4)2.903 (3)165 (3)
N3—H3N···O30.91 (3)1.91 (3)2.664 (3)139 (3)
N3—H3N···O40.91 (3)2.15 (3)2.721 (3)120 (2)
Symmetry code: (i) x+1/2, y, z+1/2.
 

Acknowledgements

The authors are grateful to Allama Iqbal Open University, Islamabad, and The Hong Kong Polytechnic University for providing laboratory and analytical facilities.

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGlasser, A. C. & Doughty, R. M. (1964). J. Pharm. Soc. 53, 40–42.  CrossRef CAS Web of Science Google Scholar
First citationHuebner, C. F., Marsh, J. L., Mizzoni, R. H., Mull, R. P., Schroeder, D. C., Troxell, H. A. & Scholz, C. R. (1953). J. Am. Chem. Soc. 75, 2274–2275.  CrossRef CAS Web of Science Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationRigaku/MSC and Rigaku (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSaeed, S., Bhatti, M. H., Tahir, M. K. & Jones, P. G. (2008a). Acta Cryst. E64, o1369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008b). Acta Cryst. E64, o1485.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323–1331.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUgur, D., Arslan, H. & Külcü, N. (2006). Russ. J. Coord. Chem. 32, 669–675.  Web of Science CrossRef CAS Google Scholar
First citationZheng, W., Yates, S. R., Papiernik, S. K. & Guo, M. (2004). Environ. Sci. Technol. 38, 6855–6860.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds