metal-organic compounds
Diacetatobis(propane-1,3-diamine)nickel(II) dihydrate
aMaterials Chemistry Laboratry, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey
*Correspondence e-mail: iuklodhi@yahoo.com, onurs@omu.edu.tr
In the title complex, [Ni(CH3COO)2(C3H10N2)2]·2H2O, the NiII atom resides on a centre of symmetry and is in an octahedral coordination environment comprising four amino N atoms and two carboxylate O atoms. Intermolecular N—H⋯O and O—H⋯O hydrogen bonds produce R21(6), R22(12), R32(8) and R55(16) rings, which generate a two-dimensional polymeric network parallel to (001).
Related literature
For the graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995). For details of ring puckering analysis, see: Cremer & Pople (1975). For the effect of hydrogen bonding on the coordination in trans-di(salicylato)bis(1,3- diaminopropane-N,N')copper(II), see: Sundberg et al. (2001).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810010172/si2249sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810010172/si2249Isup2.hkl
Nickel(II) acetate (0.249 g, 1.0 mmol) was dissolved in methanol (25 ml). 1,3-diaminopropane(0.148 g, 2.0 mmol) were added and the mixture refluxed for 4 hours. The blue solution formed, which was filtered off, kept the filtrate for few days. Blue blocks were obtained from methanol.
All H atoms bound to C atoms were refined using a riding model, with C—H = 0.97Å and Uiso(H) = 1.2Ueq(C) for methylene C atoms and C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl C atom. Water H atoms were located in difference maps and refined subject to a DFIX restraint of O—H = 0.83 (2) Å. Amino H atoms were located in difference maps and refined freely.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. Molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The intra- and intermolecular hydrogen bonds are shown as dashed lines. [Symmetry code: (i) -x, 2-y, -z.] | |
Fig. 2. Perspective view of part of the crystal structure of (I), showing the formation of a hydrogen-bonded sheet built from R21(6), R22(12), R32(8) and R55(16) rings. |
[Ni(C2H3O2)2(C3H10N2)2]·2H2O | Z = 1 |
Mr = 361.09 | F(000) = 194 |
Triclinic, P1 | Dx = 1.404 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.6268 (3) Å | Cell parameters from 5325 reflections |
b = 7.8164 (3) Å | θ = 2.8–28.3° |
c = 8.9123 (4) Å | µ = 1.17 mm−1 |
α = 73.933 (2)° | T = 296 K |
β = 80.797 (3)° | Blocks, blue |
γ = 75.323 (2)° | 0.32 × 0.18 × 0.13 mm |
V = 427.12 (3) Å3 |
Bruker Kappa APEXII CCD area-detector diffractometer | 2078 independent reflections |
Radiation source: fine-focus sealed tube | 2021 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
phi and ω scans | θmax = 28.3°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −6→8 |
Tmin = 0.775, Tmax = 0.857 | k = −10→10 |
7230 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0798P)2] where P = (Fo2 + 2Fc2)/3 |
2078 reflections | (Δ/σ)max < 0.001 |
122 parameters | Δρmax = 0.53 e Å−3 |
3 restraints | Δρmin = −0.58 e Å−3 |
[Ni(C2H3O2)2(C3H10N2)2]·2H2O | γ = 75.323 (2)° |
Mr = 361.09 | V = 427.12 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 6.6268 (3) Å | Mo Kα radiation |
b = 7.8164 (3) Å | µ = 1.17 mm−1 |
c = 8.9123 (4) Å | T = 296 K |
α = 73.933 (2)° | 0.32 × 0.18 × 0.13 mm |
β = 80.797 (3)° |
Bruker Kappa APEXII CCD area-detector diffractometer | 2078 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2021 reflections with I > 2σ(I) |
Tmin = 0.775, Tmax = 0.857 | Rint = 0.025 |
7230 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 3 restraints |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.53 e Å−3 |
2078 reflections | Δρmin = −0.58 e Å−3 |
122 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.1844 (3) | 0.7809 (3) | 0.3153 (2) | 0.0399 (4) | |
H1A | −0.2579 | 0.6840 | 0.3658 | 0.048* | |
H1B | −0.2714 | 0.8939 | 0.3353 | 0.048* | |
C2 | 0.0196 (3) | 0.7404 (3) | 0.3857 (2) | 0.0435 (4) | |
H2A | 0.1101 | 0.6333 | 0.3572 | 0.052* | |
H2B | −0.0085 | 0.7106 | 0.4991 | 0.052* | |
C3 | 0.1366 (3) | 0.8935 (3) | 0.3368 (2) | 0.0407 (4) | |
H3A | 0.0437 | 1.0038 | 0.3579 | 0.049* | |
H3B | 0.2537 | 0.8620 | 0.3995 | 0.049* | |
C4 | 0.3734 (2) | 0.7432 (2) | −0.14011 (19) | 0.0288 (3) | |
C5 | 0.4393 (3) | 0.6191 (3) | −0.2513 (3) | 0.0509 (5) | |
H5A | 0.5557 | 0.6526 | −0.3227 | 0.076* | |
H5B | 0.3242 | 0.6311 | −0.3094 | 0.076* | |
H5C | 0.4798 | 0.4948 | −0.1924 | 0.076* | |
N1 | −0.1533 (2) | 0.7972 (2) | 0.14486 (17) | 0.0314 (3) | |
H1 | −0.274 (4) | 0.816 (3) | 0.110 (3) | 0.047 (6)* | |
H2 | −0.073 (4) | 0.700 (4) | 0.135 (3) | 0.047 (6)* | |
N2 | 0.2158 (2) | 0.9299 (2) | 0.16906 (17) | 0.0309 (3) | |
H3 | 0.293 (3) | 0.835 (3) | 0.152 (2) | 0.036 (5)* | |
H4 | 0.293 (3) | 1.004 (3) | 0.145 (3) | 0.038 (6)* | |
O1 | 0.17922 (17) | 0.79863 (15) | −0.11179 (14) | 0.0319 (3) | |
O2 | 0.5114 (2) | 0.7828 (2) | −0.08414 (19) | 0.0492 (4) | |
O1W | 0.0788 (2) | 0.3937 (2) | 0.1862 (2) | 0.0462 (3) | |
H1W | 0.189 (3) | 0.364 (4) | 0.144 (3) | 0.067 (8)* | |
H2W | 0.001 (3) | 0.339 (3) | 0.173 (3) | 0.052 (7)* | |
Ni1 | 0.0000 | 1.0000 | 0.0000 | 0.02287 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0449 (9) | 0.0370 (8) | 0.0357 (9) | −0.0139 (7) | 0.0100 (7) | −0.0089 (7) |
C2 | 0.0616 (12) | 0.0382 (9) | 0.0291 (8) | −0.0117 (8) | −0.0034 (8) | −0.0055 (7) |
C3 | 0.0528 (10) | 0.0434 (9) | 0.0297 (8) | −0.0125 (8) | −0.0085 (7) | −0.0110 (7) |
C4 | 0.0239 (7) | 0.0277 (7) | 0.0356 (8) | −0.0050 (5) | 0.0005 (6) | −0.0117 (6) |
C5 | 0.0316 (9) | 0.0667 (13) | 0.0661 (13) | −0.0010 (8) | −0.0004 (8) | −0.0463 (11) |
N1 | 0.0296 (7) | 0.0305 (7) | 0.0354 (7) | −0.0107 (6) | 0.0009 (5) | −0.0087 (5) |
N2 | 0.0276 (6) | 0.0339 (7) | 0.0330 (7) | −0.0053 (6) | −0.0044 (5) | −0.0118 (6) |
O1 | 0.0227 (5) | 0.0329 (6) | 0.0449 (7) | −0.0050 (4) | 0.0010 (4) | −0.0206 (5) |
O2 | 0.0255 (6) | 0.0670 (9) | 0.0704 (10) | −0.0107 (6) | 0.0005 (5) | −0.0441 (8) |
O1W | 0.0329 (7) | 0.0489 (8) | 0.0668 (9) | −0.0088 (6) | −0.0035 (6) | −0.0316 (7) |
Ni1 | 0.01974 (16) | 0.02373 (17) | 0.02636 (18) | −0.00491 (10) | 0.00030 (10) | −0.00948 (11) |
C1—N1 | 1.473 (2) | C5—H5B | 0.9600 |
C1—C2 | 1.506 (3) | C5—H5C | 0.9600 |
C1—H1A | 0.9700 | N1—Ni1 | 2.1152 (13) |
C1—H1B | 0.9700 | N1—H1 | 0.87 (3) |
C2—C3 | 1.515 (3) | N1—H2 | 0.82 (3) |
C2—H2A | 0.9700 | N2—Ni1 | 2.1095 (14) |
C2—H2B | 0.9700 | N2—H3 | 0.82 (2) |
C3—N2 | 1.477 (2) | N2—H4 | 0.83 (2) |
C3—H3A | 0.9700 | O1—Ni1 | 2.1031 (10) |
C3—H3B | 0.9700 | O1W—H1W | 0.777 (16) |
C4—O2 | 1.2473 (19) | O1W—H2W | 0.789 (15) |
C4—O1 | 1.2572 (17) | Ni1—O1i | 2.1031 (10) |
C4—C5 | 1.515 (2) | Ni1—N2i | 2.1095 (14) |
C5—H5A | 0.9600 | Ni1—N1i | 2.1152 (13) |
N1—C1—C2 | 112.28 (14) | C1—N1—H1 | 109.3 (15) |
N1—C1—H1A | 109.1 | Ni1—N1—H1 | 106.9 (16) |
C2—C1—H1A | 109.1 | C1—N1—H2 | 104.5 (16) |
N1—C1—H1B | 109.1 | Ni1—N1—H2 | 103.9 (16) |
C2—C1—H1B | 109.1 | H1—N1—H2 | 114 (2) |
H1A—C1—H1B | 107.9 | C3—N2—Ni1 | 118.74 (11) |
C1—C2—C3 | 115.24 (16) | C3—N2—H3 | 108.3 (15) |
C1—C2—H2A | 108.5 | Ni1—N2—H3 | 102.3 (15) |
C3—C2—H2A | 108.5 | C3—N2—H4 | 112.4 (15) |
C1—C2—H2B | 108.5 | Ni1—N2—H4 | 109.5 (16) |
C3—C2—H2B | 108.5 | H3—N2—H4 | 104 (2) |
H2A—C2—H2B | 107.5 | C4—O1—Ni1 | 132.72 (10) |
N2—C3—C2 | 112.68 (15) | H1W—O1W—H2W | 110 (2) |
N2—C3—H3A | 109.1 | O1i—Ni1—O1 | 180.0 |
C2—C3—H3A | 109.1 | O1i—Ni1—N2i | 91.58 (5) |
N2—C3—H3B | 109.1 | O1—Ni1—N2i | 88.42 (5) |
C2—C3—H3B | 109.1 | O1i—Ni1—N2 | 88.42 (5) |
H3A—C3—H3B | 107.8 | O1—Ni1—N2 | 91.58 (5) |
O2—C4—O1 | 125.10 (14) | N2i—Ni1—N2 | 180.0 |
O2—C4—C5 | 118.96 (15) | O1i—Ni1—N1i | 87.27 (5) |
O1—C4—C5 | 115.95 (14) | O1—Ni1—N1i | 92.73 (5) |
C4—C5—H5A | 109.5 | N2i—Ni1—N1i | 88.43 (6) |
C4—C5—H5B | 109.5 | N2—Ni1—N1i | 91.57 (6) |
H5A—C5—H5B | 109.5 | O1i—Ni1—N1 | 92.73 (5) |
C4—C5—H5C | 109.5 | O1—Ni1—N1 | 87.27 (5) |
H5A—C5—H5C | 109.5 | N2i—Ni1—N1 | 91.57 (6) |
H5B—C5—H5C | 109.5 | N2—Ni1—N1 | 88.43 (6) |
C1—N1—Ni1 | 118.49 (10) | N1i—Ni1—N1 | 180.0 |
N1—C1—C2—C3 | 67.9 (2) | C4—O1—Ni1—N1 | −127.02 (16) |
C1—C2—C3—N2 | −67.2 (2) | C3—N2—Ni1—O1i | 51.20 (13) |
C2—C1—N1—Ni1 | −59.62 (18) | C3—N2—Ni1—O1 | −128.80 (13) |
C2—C3—N2—Ni1 | 58.12 (19) | C3—N2—Ni1—N1i | 138.42 (13) |
O2—C4—O1—Ni1 | 11.3 (3) | C3—N2—Ni1—N1 | −41.58 (13) |
C5—C4—O1—Ni1 | −168.72 (14) | C1—N1—Ni1—O1i | −46.03 (14) |
C4—O1—Ni1—N2i | 141.34 (15) | C1—N1—Ni1—O1 | 133.97 (14) |
C4—O1—Ni1—N2 | −38.66 (15) | C1—N1—Ni1—N2i | −137.69 (14) |
C4—O1—Ni1—N1i | 52.98 (16) | C1—N1—Ni1—N2 | 42.31 (14) |
Symmetry code: (i) −x, −y+2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H2···O1W | 0.82 (3) | 2.30 (3) | 3.087 (2) | 160 (2) |
N2—H3···O2 | 0.82 (2) | 2.43 (2) | 3.0218 (19) | 129.7 (19) |
N1—H1···O2ii | 0.87 (3) | 2.51 (3) | 3.290 (2) | 150 (2) |
N2—H4···O2iii | 0.83 (2) | 2.26 (2) | 3.092 (2) | 177 (2) |
O1W—H2W···O1iv | 0.79 (2) | 2.02 (2) | 2.7999 (18) | 173 (2) |
O1W—H1W···O2v | 0.78 (2) | 2.10 (2) | 2.848 (2) | 163 (3) |
Symmetry codes: (ii) x−1, y, z; (iii) −x+1, −y+2, −z; (iv) −x, −y+1, −z; (v) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C2H3O2)2(C3H10N2)2]·2H2O |
Mr | 361.09 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 6.6268 (3), 7.8164 (3), 8.9123 (4) |
α, β, γ (°) | 73.933 (2), 80.797 (3), 75.323 (2) |
V (Å3) | 427.12 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.17 |
Crystal size (mm) | 0.32 × 0.18 × 0.13 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.775, 0.857 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7230, 2078, 2021 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.094, 1.02 |
No. of reflections | 2078 |
No. of parameters | 122 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.53, −0.58 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H2···O1W | 0.82 (3) | 2.30 (3) | 3.087 (2) | 160 (2) |
N2—H3···O2 | 0.82 (2) | 2.43 (2) | 3.0218 (19) | 129.7 (19) |
N1—H1···O2i | 0.87 (3) | 2.51 (3) | 3.290 (2) | 150 (2) |
N2—H4···O2ii | 0.83 (2) | 2.26 (2) | 3.092 (2) | 177 (2) |
O1W—H2W···O1iii | 0.789 (15) | 2.015 (16) | 2.7999 (18) | 173 (2) |
O1W—H1W···O2iv | 0.777 (16) | 2.096 (18) | 2.848 (2) | 163 (3) |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+2, −z; (iii) −x, −y+1, −z; (iv) −x+1, −y+1, −z. |
Acknowledgements
IUK thanks the Higher Education Commission of Pakistan for financial support under the project Strengthening of the Materials Chemistry Laboratory at GCUL.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sundberg, M. R., Kivekäs, R., Huovilainen, R. & Uggla, R. (2001). Inorg. Chim. Acta, 324, 212–217. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The 1,3-Diaminopropane (tn) ligand behaves as a strong chelator in its metal complexes due to the formation of a stable six-membered ring. At the same time, it is a good H-bond donor due to the existence of amino groups (Sundberg et al., 2001). Herein, we report the synthesis and structure of the title compound.
The molecular structure and atom-numbering scheme are shown in Fig. 1. The compound crystallizes in the space group P-1 with Z'=1/2. The nickel(II) ion is located on a symmetry center, and is coordinated by two O atoms from two identical carboxylate groups and four N atoms from two 1,3-diaminopropane ligands. The geometry around the nickel(II) ion (Table 1) is that of a slightly distorted octahedron, of which the equatorial plane (N1/N2/N1i/N2i) is formed by four amino N atoms [symmetry code:(i) -x, 2-y, -z]. The axial positions in the octahedron are occupied by two carboxylate O atoms (O1 and O1i). The 1,3-diaminopropane ligand shows chelating coordination behavior and displays a chair conformation [the puckering parameters (Cremer & Pople, 1975) are q2 = 0.0467 (17)Å , q3 = -0.5913 (18) Å, QT = 0.5930 (19) Å, ϕ = 349 (2)° and θ = 175.66 (16)°] in the equatorial direction.
The amino atom N1 in the molecule at (x, y, z) acts as a hydrogen-bond donor (Table 2) to atom O2i so forming a C(6) (Bernstein et al., 1995) chain running parallel to the [-100] direction. Amino atom N2 in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom O2ii so forming a C(6) chain running parallel to the [100] direction. The combination of N—H···O and O—H···O hydrogen bonds generates R21(6), R22(12), R32(8) and R55(16) rings parallel to the ab plane (Fig. 2).