organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Acet­oxy­methyl-3-[(2-hydr­­oxy-3-meth­oxy­benzyl­­idene)amino]-3,4,5,6-tetra­hydro-2H-pyran-2,4,5-triyl tri­acetate

aCollege of Chemistry and Chemical Engineering, Central South University, Changsha 410083, People's Republic of China, bSchool of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China, and cCollege of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
*Correspondence e-mail: zsh720108@163.com

(Received 18 March 2010; accepted 26 March 2010; online 31 March 2010)

The title compound, C22H27NO11, was synthesized by the reaction of 4,5-diacet­oxy-6-acetoxy­methyl-3-amino­tetra­hydro­pyran-2-yl acetate and 2-hydr­oxy-3-methoxy­benzalde­hyde in ethanol. The mol­ecule contains two six-membered rings, one of which is in a chair conformation, and an intra­molecular O—H⋯N hydrogen bond is present.

Related literature

For a Schiff base complex, see: Zhang et al. (2003[Zhang, S. H., Jiang, Y. M., Xiao, Y. & Zhou, Z. Y. (2003). Chin. J. Inorg. Chem. 19, 517-520.]). For macrocyclic Schiff base compounds, see: Frischmann et al. (2008[Frischmann, P. D., Jiang, J., Hui, J. K. H., Grzybowski, J. J. & MacLachlan, M. J. (2008). Org. Lett. 10, 1255-1258.]); Jiang et al. (2010[Jiang, J. & MacLachlan, M. J. (2010). Org. Lett. 12, 1020-1023.]). For 5,5′-dimeth­oxy-2,2′-[4,5-dimethyl-o-phenyl­enebis(nitrilo­methyl­idyne)]diphenol, which shows similar hydrogen-bonding to the title compound, see: Kargar et al. (2010[Kargar, H., Kia, R., Khan, I. U., Sahraei, A. & Aberoomand Azar, P. (2010). Acta Cryst. E66, o728.]).

[Scheme 1]

Experimental

Crystal data
  • C22H27NO11

  • Mr = 481.45

  • Orthorhombic, P 21 21 21

  • a = 10.806 (3) Å

  • b = 11.151 (3) Å

  • c = 20.243 (5) Å

  • V = 2439.2 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.32 × 0.28 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 12313 measured reflections

  • 2460 independent reflections

  • 1506 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.126

  • S = 1.03

  • 2460 reflections

  • 314 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.90 2.625 (4) 147

Data collection: SMART (Bruker 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff base compounds (Zhang, et al. 2003; Frischmann, et al. 2008; Jiang, et al. 2010) have aroused increasing interest because of their antiviral, anticancer and antibacterial activities. Herein, we report the synthesis and crystal structure of a new schiff base compound, (I), prepared by the reaction of Acetic acid 4,5-diacetoxy-6-acetoxymethyl-3-amino]-tetrahydro-pyran-2-yl ester and 2-hydroxy-3-methoxy-benzaldehyde.

The molecular structure of (I) reveals the 2-hydroxy-3-methoxy-benzaldehyde configuration with one acetic acid 4,5-diacetoxy-6-acetoxymethyl-3-amino]-tetrahydro-pyran-2-yl ester molecule on N1-position (Fig. 1). The dihedral angle between the benzene ring of 2-hydroxy-3-methoxy-benzylidene group and the plane of C9, C10, C12, C13 is 56.78 (3) °. The other dihedral angle between the four acetic acid groups and the plane of C9, C10, C12, C13 are in the range of 57.0–111.7°. There is an intramolecular O–H···N hygrogen bond between the phenol and imido-group(Table 1). The distance of N1···H1 is substantially shorter than the van der Waals distance of 2.75 Å for the N and H distance. The hydrogen bond between the phenol and imido-group are similar to those found in the crystal structure of 5,5'-Dimethoxy-2,2'-[4,5-dimethyl-o- phenylenebis(nitrilomethylidyne)]diphenol (Kargar, et al. 2010). In the molecule, the C9 has S* configuration, while the C10, C11, C12, C13 are in R* configuration which form a R* configuration molecule.

Related literature top

For a Schiff base complex, see: Zhang et al. (2007). For macrocyclic Schiff base compounds, see: Frischmann et al. (2008); Jiang et al. (2010). [How are these compounds related to the title compound?] For 5,5'-dimethoxy-2,2'-[4,5-dimethyl-o- phenylenebis(nitrilomethylidyne)]diphenol, which shows similar hydrogen-bonding, see: Kargar et al. (2010).

For related literature, see: Zhang et al. (2003).

Experimental top

The compound Acetic acid 4,5-diacetoxy-6-acetoxymethyl- 3-amino]-tetrahydro-pyran-2-yl ester (0.182 g, 0.5 mmol) was dissolved in ethanol (10 ml). To this solution, 2-hydroxy-3-methoxy-benzaldehyde (0.076 g, 1 mmol) was added and the mixture was stirred and refluxed at 333 K for 3 h. After cooling to room temperature and filtration, the filtrate was left to stand at room temperature. Colourless block crystals suitable for X-ray diffraction were obtained in a yield of 53 %. Analysis found (%): C 54.64, H 5.69, N 2.94; C22H27NO11 requires (%) : C 54.88, H 5.65, N 2.91.

Refinement top

All H atoms were positioned geometrically and were refined as riding, with (C—H 0.93–0.98 Å, O—H 0.82 Å with Uiso(H) = 1.2 Ueq(aromatic C) and Uiso(H) = 1.5Ueq(other C or O).

In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Computing details top

Data collection: SMART (Bruker 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30 % probability displacement ellipsoids. H-atoms were omitted.
6-Acetoxymethyl-3-[(2-hydroxy-3-methoxybenzylidene)amino]-3,4,5,6-tetrahydro- 2H-pyran-2,4,5-triyl triacetate top
Crystal data top
C22H27NO11F(000) = 1016
Mr = 481.45Dx = 1.311 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1384 reflections
a = 10.806 (3) Åθ = 2.6–18.6°
b = 11.151 (3) ŵ = 0.11 mm1
c = 20.243 (5) ÅT = 296 K
V = 2439.2 (11) Å3Block, colourless
Z = 40.32 × 0.28 × 0.22 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1506 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Graphite monochromatorθmax = 25.1°, θmin = 2.0°
phi and ω scansh = 1212
12313 measured reflectionsk = 1213
2460 independent reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.177P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2460 reflectionsΔρmax = 0.17 e Å3
314 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0074 (13)
Crystal data top
C22H27NO11V = 2439.2 (11) Å3
Mr = 481.45Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.806 (3) ŵ = 0.11 mm1
b = 11.151 (3) ÅT = 296 K
c = 20.243 (5) Å0.32 × 0.28 × 0.22 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1506 reflections with I > 2σ(I)
12313 measured reflectionsRint = 0.061
2460 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
2460 reflectionsΔρmin = 0.14 e Å3
314 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4441 (3)0.0108 (3)0.01092 (15)0.0566 (9)
O10.2954 (3)0.1155 (2)0.08619 (14)0.0650 (8)
H10.34850.10410.05800.098*
O20.1136 (3)0.1188 (3)0.17050 (16)0.0796 (10)
O30.5742 (3)0.0540 (2)0.15220 (13)0.0587 (8)
O40.3813 (3)0.0041 (3)0.12705 (14)0.0679 (8)
O50.2923 (4)0.1724 (4)0.1455 (2)0.1216 (16)
O60.7049 (3)0.0885 (2)0.01748 (13)0.0653 (8)
O70.7871 (5)0.0297 (4)0.09480 (18)0.1221 (16)
O80.8528 (3)0.1002 (3)0.05512 (15)0.0654 (8)
O90.9690 (4)0.0649 (4)0.0508 (2)0.1069 (14)
O100.8042 (3)0.0141 (3)0.21533 (14)0.0709 (9)
O110.9237 (4)0.1041 (4)0.2885 (2)0.1134 (15)
C10.3183 (4)0.0980 (4)0.09509 (19)0.0564 (11)
C20.2611 (4)0.0094 (4)0.11268 (17)0.0523 (10)
C30.1641 (4)0.0085 (4)0.1582 (2)0.0579 (11)
C40.1275 (5)0.0970 (4)0.1868 (2)0.0686 (13)
H40.06200.09740.21660.082*
C50.1877 (6)0.2026 (4)0.1716 (2)0.0830 (17)
H50.16510.27350.19250.100*
C60.2796 (5)0.2030 (4)0.1261 (2)0.0763 (15)
H60.31780.27520.11530.092*
C70.0039 (5)0.1240 (5)0.2101 (2)0.0794 (15)
H7A0.06010.07700.18980.119*
H7B0.02300.20570.21390.119*
H7C0.02130.09270.25330.119*
C80.4107 (4)0.1028 (4)0.0435 (2)0.0593 (11)
H80.44730.17620.03380.071*
C90.4872 (4)0.0535 (4)0.1006 (2)0.0590 (11)
H90.46790.13510.08590.071*
C100.5319 (4)0.0245 (4)0.0434 (2)0.0545 (11)
H100.53340.10860.05750.065*
C110.6604 (4)0.0123 (4)0.02084 (19)0.0537 (10)
H110.65560.08410.00700.064*
C120.7471 (4)0.0339 (3)0.07825 (18)0.0524 (10)
H120.77370.04270.09720.063*
C130.6865 (4)0.1114 (4)0.13127 (19)0.0562 (11)
H130.66630.18980.11230.067*
C140.2886 (5)0.0675 (6)0.1493 (3)0.0823 (16)
C150.1874 (5)0.0050 (6)0.1787 (3)0.1032 (19)
H15A0.13110.04680.20180.155*
H15B0.14380.04660.14430.155*
H15C0.22170.06220.20910.155*
C160.7680 (6)0.0677 (5)0.0739 (2)0.0792 (15)
C170.8086 (7)0.1835 (6)0.1032 (3)0.120 (2)
H17A0.88820.17340.12340.180*
H17B0.81400.24320.06920.180*
H17C0.74980.20860.13590.180*
C180.9585 (5)0.0393 (6)0.0418 (3)0.0821 (15)
C191.0539 (6)0.1225 (6)0.0159 (3)0.124 (2)
H19A1.01940.16920.01940.187*
H19B1.08090.17500.05070.187*
H19C1.12310.07730.00030.187*
C200.7666 (5)0.1294 (4)0.1910 (2)0.0670 (13)
H20A0.72090.17210.22490.080*
H20B0.83880.17660.17940.080*
C210.8859 (5)0.0145 (5)0.2653 (2)0.0731 (14)
C220.9208 (6)0.1090 (5)0.2857 (3)0.0973 (18)
H22A0.85100.14760.30590.146*
H22B0.94630.15400.24760.146*
H22C0.98780.10530.31680.146*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.062 (2)0.055 (2)0.0534 (19)0.0008 (19)0.0100 (17)0.0002 (18)
O10.069 (2)0.0494 (16)0.077 (2)0.0002 (16)0.0246 (18)0.0102 (14)
O20.083 (2)0.061 (2)0.095 (2)0.0107 (18)0.037 (2)0.0081 (17)
O30.060 (2)0.0645 (18)0.0515 (17)0.0054 (15)0.0011 (16)0.0003 (13)
O40.0571 (19)0.075 (2)0.0714 (18)0.0045 (19)0.0075 (17)0.0013 (17)
O50.099 (3)0.096 (3)0.170 (4)0.015 (3)0.035 (3)0.016 (3)
O60.074 (2)0.0671 (18)0.0549 (17)0.0070 (17)0.0021 (17)0.0039 (15)
O70.175 (5)0.109 (3)0.083 (2)0.002 (3)0.043 (3)0.015 (2)
O80.057 (2)0.0658 (18)0.0736 (19)0.0114 (17)0.0010 (16)0.0063 (16)
O90.073 (3)0.095 (3)0.153 (4)0.014 (2)0.009 (3)0.006 (3)
O100.080 (2)0.0673 (19)0.0651 (17)0.0067 (19)0.0188 (18)0.0055 (15)
O110.113 (4)0.111 (3)0.116 (3)0.022 (3)0.055 (3)0.003 (3)
C10.067 (3)0.049 (2)0.054 (2)0.004 (2)0.008 (2)0.000 (2)
C20.057 (3)0.050 (2)0.049 (2)0.001 (2)0.005 (2)0.0066 (19)
C30.062 (3)0.052 (2)0.059 (2)0.002 (2)0.011 (2)0.005 (2)
C40.072 (3)0.064 (3)0.070 (3)0.009 (3)0.019 (3)0.003 (2)
C50.107 (5)0.051 (3)0.091 (3)0.006 (3)0.042 (4)0.013 (2)
C60.094 (4)0.047 (2)0.088 (3)0.004 (3)0.030 (3)0.001 (2)
C70.073 (4)0.079 (3)0.085 (3)0.017 (3)0.026 (3)0.014 (3)
C80.060 (3)0.054 (2)0.064 (3)0.002 (2)0.004 (2)0.005 (2)
C90.054 (3)0.066 (3)0.057 (3)0.004 (2)0.002 (2)0.001 (2)
C100.056 (3)0.051 (2)0.057 (2)0.003 (2)0.007 (2)0.004 (2)
C110.059 (3)0.047 (2)0.055 (2)0.003 (2)0.001 (2)0.004 (2)
C120.054 (3)0.050 (2)0.053 (2)0.007 (2)0.001 (2)0.0019 (18)
C130.062 (3)0.053 (2)0.054 (2)0.002 (2)0.006 (2)0.002 (2)
C140.062 (4)0.103 (4)0.082 (3)0.000 (3)0.007 (3)0.019 (3)
C150.051 (3)0.151 (5)0.108 (4)0.009 (4)0.012 (3)0.021 (4)
C160.088 (4)0.092 (4)0.058 (3)0.012 (3)0.000 (3)0.003 (3)
C170.147 (7)0.131 (5)0.083 (4)0.049 (5)0.010 (4)0.017 (4)
C180.060 (4)0.101 (4)0.086 (4)0.012 (3)0.007 (3)0.004 (3)
C190.083 (4)0.158 (6)0.132 (5)0.035 (5)0.023 (4)0.031 (5)
C200.072 (3)0.063 (3)0.066 (3)0.006 (3)0.009 (3)0.000 (2)
C210.067 (3)0.088 (4)0.064 (3)0.006 (3)0.013 (3)0.006 (3)
C220.079 (4)0.119 (5)0.094 (4)0.002 (4)0.017 (3)0.028 (4)
Geometric parameters (Å, º) top
N1—C81.271 (5)C7—H7B0.9600
N1—C101.461 (5)C7—H7C0.9600
O1—C21.351 (4)C8—H80.9300
O1—H10.8200C9—C101.526 (6)
O2—C31.368 (5)C9—H90.9800
O2—C71.433 (5)C10—C111.519 (6)
O3—C91.406 (5)C10—H100.9800
O3—C131.435 (5)C11—C121.512 (5)
O4—C141.359 (6)C11—H110.9800
O4—C91.417 (5)C12—C131.525 (6)
O5—C141.172 (6)C12—H120.9800
O6—C161.350 (6)C13—C201.501 (6)
O6—C111.448 (5)C13—H130.9800
O7—C161.184 (6)C14—C151.485 (7)
O8—C181.356 (6)C15—H15A0.9600
O8—C121.438 (5)C15—H15B0.9600
O9—C181.182 (6)C15—H15C0.9600
O10—C211.343 (5)C16—C171.486 (7)
O10—C201.435 (5)C17—H17A0.9600
O11—C211.176 (5)C17—H17B0.9600
C1—C61.393 (6)C17—H17C0.9600
C1—C21.394 (5)C18—C191.483 (7)
C1—C81.446 (6)C19—H19A0.9600
C2—C31.395 (5)C19—H19B0.9600
C3—C41.370 (6)C19—H19C0.9600
C4—C51.380 (6)C20—H20A0.9700
C4—H40.9300C20—H20B0.9700
C5—C61.354 (6)C21—C221.487 (7)
C5—H50.9300C22—H22A0.9600
C6—H60.9300C22—H22B0.9600
C7—H7A0.9600C22—H22C0.9600
C8—N1—C10119.4 (3)O8—C12—C13106.2 (3)
C2—O1—H1109.5C11—C12—C13111.4 (3)
C3—O2—C7117.9 (3)O8—C12—H12110.1
C9—O3—C13110.4 (3)C11—C12—H12110.1
C14—O4—C9117.0 (4)C13—C12—H12110.1
C16—O6—C11119.2 (4)O3—C13—C20108.0 (3)
C18—O8—C12118.5 (3)O3—C13—C12108.6 (3)
C21—O10—C20116.2 (4)C20—C13—C12113.3 (4)
C6—C1—C2118.3 (4)O3—C13—H13109.0
C6—C1—C8120.2 (4)C20—C13—H13109.0
C2—C1—C8121.5 (4)C12—C13—H13109.0
O1—C2—C1122.0 (3)O5—C14—O4122.6 (6)
O1—C2—C3118.3 (4)O5—C14—C15126.5 (6)
C1—C2—C3119.7 (4)O4—C14—C15110.8 (5)
O2—C3—C4125.4 (4)C14—C15—H15A109.5
O2—C3—C2114.4 (3)C14—C15—H15B109.5
C4—C3—C2120.2 (4)H15A—C15—H15B109.5
C3—C4—C5120.1 (4)C14—C15—H15C109.5
C3—C4—H4120.0H15A—C15—H15C109.5
C5—C4—H4120.0H15B—C15—H15C109.5
C6—C5—C4120.1 (4)O7—C16—O6123.2 (5)
C6—C5—H5120.0O7—C16—C17127.0 (5)
C4—C5—H5120.0O6—C16—C17109.7 (5)
C5—C6—C1121.6 (4)C16—C17—H17A109.5
C5—C6—H6119.2C16—C17—H17B109.5
C1—C6—H6119.2H17A—C17—H17B109.5
O2—C7—H7A109.5C16—C17—H17C109.5
O2—C7—H7B109.5H17A—C17—H17C109.5
H7A—C7—H7B109.5H17B—C17—H17C109.5
O2—C7—H7C109.5O9—C18—O8122.9 (5)
H7A—C7—H7C109.5O9—C18—C19127.1 (6)
H7B—C7—H7C109.5O8—C18—C19110.0 (5)
N1—C8—C1122.8 (4)C18—C19—H19A109.5
N1—C8—H8118.6C18—C19—H19B109.5
C1—C8—H8118.6H19A—C19—H19B109.5
O3—C9—O4105.2 (3)C18—C19—H19C109.5
O3—C9—C10110.7 (3)H19A—C19—H19C109.5
O4—C9—C10106.5 (3)H19B—C19—H19C109.5
O3—C9—H9111.4O10—C20—C13108.6 (3)
O4—C9—H9111.4O10—C20—H20A110.0
C10—C9—H9111.4C13—C20—H20A110.0
N1—C10—C11109.8 (3)O10—C20—H20B110.0
N1—C10—C9107.9 (3)C13—C20—H20B110.0
C11—C10—C9111.4 (3)H20A—C20—H20B108.3
N1—C10—H10109.3O11—C21—O10122.1 (5)
C11—C10—H10109.3O11—C21—C22126.0 (5)
C9—C10—H10109.3O10—C21—C22111.9 (5)
O6—C11—C12109.3 (3)C21—C22—H22A109.5
O6—C11—C10104.8 (3)C21—C22—H22B109.5
C12—C11—C10112.2 (3)H22A—C22—H22B109.5
O6—C11—H11110.1C21—C22—H22C109.5
C12—C11—H11110.1H22A—C22—H22C109.5
C10—C11—H11110.1H22B—C22—H22C109.5
O8—C12—C11108.9 (3)
C6—C1—C2—O1178.2 (4)C16—O6—C11—C12100.4 (4)
C8—C1—C2—O15.2 (6)C16—O6—C11—C10139.2 (4)
C6—C1—C2—C32.7 (6)N1—C10—C11—O677.7 (4)
C8—C1—C2—C3173.9 (4)C9—C10—C11—O6162.9 (3)
C7—O2—C3—C48.2 (7)N1—C10—C11—C12163.8 (3)
C7—O2—C3—C2172.3 (4)C9—C10—C11—C1244.4 (4)
O1—C2—C3—O20.3 (6)C18—O8—C12—C1199.4 (4)
C1—C2—C3—O2178.7 (4)C18—O8—C12—C13140.6 (4)
O1—C2—C3—C4179.1 (4)O6—C11—C12—O880.6 (4)
C1—C2—C3—C41.8 (6)C10—C11—C12—O8163.6 (3)
O2—C3—C4—C5178.4 (5)O6—C11—C12—C13162.6 (3)
C2—C3—C4—C51.0 (7)C10—C11—C12—C1346.8 (4)
C3—C4—C5—C62.8 (8)C9—O3—C13—C20169.9 (3)
C4—C5—C6—C11.8 (8)C9—O3—C13—C1266.9 (4)
C2—C1—C6—C50.9 (7)O8—C12—C13—O3175.1 (3)
C8—C1—C6—C5175.7 (5)C11—C12—C13—O356.7 (4)
C10—N1—C8—C1175.9 (4)O8—C12—C13—C2064.9 (4)
C6—C1—C8—N1175.8 (4)C11—C12—C13—C20176.7 (3)
C2—C1—C8—N10.8 (7)C9—O4—C14—O52.3 (8)
C13—O3—C9—O4179.7 (3)C9—O4—C14—C15176.9 (4)
C13—O3—C9—C1065.7 (4)C11—O6—C16—O71.7 (8)
C14—O4—C9—O398.4 (4)C11—O6—C16—C17177.7 (4)
C14—O4—C9—C10144.0 (4)C12—O8—C18—O93.0 (8)
C8—N1—C10—C11100.9 (4)C12—O8—C18—C19177.5 (4)
C8—N1—C10—C9137.6 (4)C21—O10—C20—C13174.1 (4)
O3—C9—C10—N1174.0 (3)O3—C13—C20—O1066.5 (4)
O4—C9—C10—N172.1 (4)C12—C13—C20—O1053.8 (5)
O3—C9—C10—C1153.4 (4)C20—O10—C21—O110.8 (7)
O4—C9—C10—C11167.3 (3)C20—O10—C21—C22178.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.902.625 (4)147

Experimental details

Crystal data
Chemical formulaC22H27NO11
Mr481.45
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)10.806 (3), 11.151 (3), 20.243 (5)
V3)2439.2 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.32 × 0.28 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12313, 2460, 1506
Rint0.061
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.126, 1.03
No. of reflections2460
No. of parameters314
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.14

Computer programs: SMART (Bruker 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.902.625 (4)146.5
 

Acknowledgements

We acknowledge financial support by the National Natural Science Foundation of China (No. 20861002) and the 973 Plan of China (2009CB526503).

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFrischmann, P. D., Jiang, J., Hui, J. K. H., Grzybowski, J. J. & MacLachlan, M. J. (2008). Org. Lett. 10, 1255–1258.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJiang, J. & MacLachlan, M. J. (2010). Org. Lett. 12, 1020–1023.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKargar, H., Kia, R., Khan, I. U., Sahraei, A. & Aberoomand Azar, P. (2010). Acta Cryst. E66, o728.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S. H., Jiang, Y. M., Xiao, Y. & Zhou, Z. Y. (2003). Chin. J. Inorg. Chem. 19, 517–520.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds