organic compounds
(6S)-2,4-Di-tert-butyl-6-[(4S,5R)-3-isopropyl-4-methyl-5-phenyloxazolidin-2-yl]phenol
aCB 4160, Department of Chemistry, Illinois State University, Normal, IL 61790, USA
*Correspondence e-mail: Ferrence@IllinoisState.edu
The title oxazolidine compound, C27H39NO2, was synthesized from N-isopropylnorephedrine. The dihedral angle between the aromatic rings is 70.33 (5)°. The N atom of the heterocycle is oriented to allow intramolecular O—H⋯N hydrogen bonding with the hydroxy substituent.
Related literature
For related structures and background to chiral oxazolidines, see: Agami & Couty (2004); Anderson et al. (2010); Bourne et al. (1997); Duffy et al. (2004); Hitchcock et al. (2004); Koyanagi et al. (2010); Parrott & Hitchcock (2007); Parrott et al. (2008). The synthesis and assignment of the title compound is described by Parrott et al. (2008). The assignment is based on both optical activity measurements and on the known stereochemistry of the commercially obtained optically pure norephedrine from which it was prepared (Parrott et al., 2008). For geometry checks using Mogul, see: Bruno et al. (2004). For ring puckering analysis, see: Boeyens (1978); Cremer & Pople (1975); Spek (2009). For a description of the Jmol toolkit for the preparation of enhanced figures, see: McMahon & Hanson (2008).
Experimental
Crystal data
|
Refinement
|
|
Data collection: APEX2 (Bruker, 2008); cell APEX2 and SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (McMahon & Westrip, 2008).
Supporting information
10.1107/S1600536810009074/sj2720sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810009074/sj2720Isup2.hkl
The title compound was synthesized as previously reported (Parrott et al., 2008). Single crystals were grown by vapor diffusion of hexane into an ethyl acetate solution of the title compound.
All non-H atoms were refined anisotropically without disorder. All H atoms were initially identified through difference Fourier syntheses then, except for the O–H hydrogen atom, removed and included in the
in the riding-model approximation (C–H = 0.95, 0.98, and 1.00 Å for Ar–H, CH3 and CH; Uiso(H) = 1.2Ueq(C) except for methyl groups, where Uiso(H) = 1.5Ueq(C)). The OH H atom was freely refined isotropically. In the absence of significant effects, Friedel pairs were merged.Data collection: APEX2 (Bruker, 2008); cell
APEX2 and SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (McMahon & Westrip, 2008).C27H39NO2 | F(000) = 896 |
Mr = 409.59 | Dx = 1.119 Mg m−3 |
Monoclinic, C2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2y | Cell parameters from 4163 reflections |
a = 18.9564 (19) Å | θ = 2.4–30.0° |
b = 6.9943 (7) Å | µ = 0.07 mm−1 |
c = 18.3388 (19) Å | T = 140 K |
β = 91.833 (2)° | Prism, colourless |
V = 2430.2 (4) Å3 | 0.55 × 0.27 × 0.11 mm |
Z = 4 |
Bruker SMART APEX CCD diffractometer | 3938 independent reflections |
Radiation source: sealed tube | 3568 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
ω scans | θmax = 30.5°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −26→26 |
Tmin = 0.809, Tmax = 0.992 | k = −9→9 |
14330 measured reflections | l = −25→26 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.038 | w = 1/[σ2(Fo2) + (0.0531P)2 + 0.4486P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.097 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.31 e Å−3 |
3938 reflections | Δρmin = −0.21 e Å−3 |
275 parameters |
C27H39NO2 | V = 2430.2 (4) Å3 |
Mr = 409.59 | Z = 4 |
Monoclinic, C2 | Mo Kα radiation |
a = 18.9564 (19) Å | µ = 0.07 mm−1 |
b = 6.9943 (7) Å | T = 140 K |
c = 18.3388 (19) Å | 0.55 × 0.27 × 0.11 mm |
β = 91.833 (2)° |
Bruker SMART APEX CCD diffractometer | 3938 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 3568 reflections with I > 2σ(I) |
Tmin = 0.809, Tmax = 0.992 | Rint = 0.035 |
14330 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 1 restraint |
wR(F2) = 0.097 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.31 e Å−3 |
3938 reflections | Δρmin = −0.21 e Å−3 |
275 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.21602 (6) | 0.71916 (17) | 0.60579 (5) | 0.0173 (2) | |
C2 | 0.23499 (7) | 0.5793 (2) | 0.66002 (8) | 0.0151 (3) | |
H2 | 0.2784 | 0.5104 | 0.6451 | 0.018* | |
N3 | 0.17413 (6) | 0.4434 (2) | 0.65832 (7) | 0.0156 (2) | |
C4 | 0.13878 (8) | 0.4652 (3) | 0.58521 (8) | 0.0184 (3) | |
H4 | 0.1378 | 0.3396 | 0.5591 | 0.022* | |
C5 | 0.18794 (8) | 0.6063 (2) | 0.54634 (8) | 0.0168 (3) | |
H5 | 0.2272 | 0.5331 | 0.5242 | 0.02* | |
C6 | 0.15197 (8) | 0.7273 (3) | 0.48843 (8) | 0.0190 (3) | |
C7 | 0.13772 (9) | 0.6460 (3) | 0.41968 (9) | 0.0247 (4) | |
H7 | 0.1551 | 0.5222 | 0.4087 | 0.03* | |
C8 | 0.09812 (10) | 0.7473 (3) | 0.36750 (9) | 0.0310 (4) | |
H8 | 0.0879 | 0.6913 | 0.3211 | 0.037* | |
C9 | 0.07341 (9) | 0.9289 (3) | 0.38248 (10) | 0.0309 (4) | |
H9 | 0.0457 | 0.9962 | 0.3469 | 0.037* | |
C10 | 0.08921 (9) | 1.0122 (3) | 0.44958 (10) | 0.0296 (4) | |
H10 | 0.0734 | 1.1381 | 0.4596 | 0.036* | |
C11 | 0.12842 (9) | 0.9110 (3) | 0.50231 (9) | 0.0241 (3) | |
H11 | 0.1391 | 0.9684 | 0.5483 | 0.029* | |
C12 | 0.06366 (8) | 0.5394 (3) | 0.59313 (10) | 0.0265 (4) | |
H12A | 0.0356 | 0.4433 | 0.6181 | 0.04* | |
H12B | 0.0424 | 0.5647 | 0.5447 | 0.04* | |
H12C | 0.0648 | 0.6579 | 0.6217 | 0.04* | |
C13 | 0.19230 (8) | 0.2421 (2) | 0.67659 (9) | 0.0184 (3) | |
H13 | 0.2183 | 0.1852 | 0.6353 | 0.022* | |
C14 | 0.23865 (9) | 0.2287 (3) | 0.74597 (9) | 0.0239 (3) | |
H14A | 0.2823 | 0.3008 | 0.7395 | 0.036* | |
H14B | 0.2501 | 0.0944 | 0.756 | 0.036* | |
H14C | 0.2133 | 0.2823 | 0.787 | 0.036* | |
C15 | 0.12439 (8) | 0.1293 (2) | 0.68651 (9) | 0.0215 (3) | |
H15A | 0.0946 | 0.1382 | 0.642 | 0.032* | |
H15B | 0.099 | 0.1822 | 0.7276 | 0.032* | |
H15C | 0.136 | −0.0051 | 0.6963 | 0.032* | |
C16 | 0.24901 (8) | 0.6727 (2) | 0.73341 (8) | 0.0146 (3) | |
C17 | 0.19570 (8) | 0.6985 (2) | 0.78395 (8) | 0.0153 (3) | |
C18 | 0.21200 (7) | 0.7788 (2) | 0.85336 (8) | 0.0157 (3) | |
C19 | 0.28182 (8) | 0.8304 (2) | 0.86816 (8) | 0.0164 (3) | |
H19 | 0.2933 | 0.8853 | 0.9144 | 0.02* | |
C20 | 0.33651 (7) | 0.8063 (2) | 0.81889 (8) | 0.0152 (3) | |
C21 | 0.31826 (7) | 0.7257 (2) | 0.75174 (8) | 0.0154 (3) | |
H21 | 0.3539 | 0.706 | 0.7173 | 0.018* | |
O22 | 0.12784 (5) | 0.64508 (18) | 0.76713 (6) | 0.0186 (2) | |
C23 | 0.15478 (8) | 0.8022 (2) | 0.91039 (8) | 0.0177 (3) | |
C24 | 0.09529 (8) | 0.9342 (3) | 0.88101 (9) | 0.0240 (3) | |
H24A | 0.0751 | 0.8813 | 0.8355 | 0.036* | |
H24B | 0.1145 | 1.0616 | 0.8717 | 0.036* | |
H24C | 0.0585 | 0.9437 | 0.9171 | 0.036* | |
C25 | 0.12440 (9) | 0.6043 (3) | 0.92950 (9) | 0.0220 (3) | |
H25A | 0.1051 | 0.5433 | 0.8851 | 0.033* | |
H25B | 0.0868 | 0.6198 | 0.9645 | 0.033* | |
H25C | 0.162 | 0.5241 | 0.9511 | 0.033* | |
C26 | 0.18409 (9) | 0.8921 (3) | 0.98124 (9) | 0.0224 (3) | |
H26A | 0.1461 | 0.9042 | 1.016 | 0.034* | |
H26B | 0.2033 | 1.019 | 0.9708 | 0.034* | |
H26C | 0.2216 | 0.8107 | 1.0022 | 0.034* | |
C27 | 0.41164 (8) | 0.8692 (2) | 0.84125 (8) | 0.0175 (3) | |
C28 | 0.41262 (9) | 1.0865 (3) | 0.85531 (9) | 0.0217 (3) | |
H28A | 0.3789 | 1.1178 | 0.8929 | 0.033* | |
H28B | 0.3995 | 1.1542 | 0.8101 | 0.033* | |
H28C | 0.4601 | 1.1257 | 0.8719 | 0.033* | |
C29 | 0.46469 (8) | 0.8238 (3) | 0.78232 (9) | 0.0241 (3) | |
H29A | 0.5118 | 0.8663 | 0.7987 | 0.036* | |
H29B | 0.4508 | 0.8905 | 0.7371 | 0.036* | |
H29C | 0.4654 | 0.6857 | 0.7735 | 0.036* | |
C30 | 0.43590 (8) | 0.7636 (3) | 0.91139 (9) | 0.0225 (3) | |
H30A | 0.4029 | 0.7905 | 0.9502 | 0.034* | |
H30B | 0.4832 | 0.8074 | 0.9266 | 0.034* | |
H30C | 0.437 | 0.6257 | 0.9021 | 0.034* | |
H22 | 0.1327 (12) | 0.561 (4) | 0.7296 (12) | 0.034 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0198 (5) | 0.0170 (5) | 0.0150 (5) | −0.0012 (4) | −0.0024 (4) | 0.0005 (4) |
C2 | 0.0140 (6) | 0.0142 (7) | 0.0170 (7) | −0.0007 (5) | −0.0014 (5) | −0.0003 (5) |
N3 | 0.0157 (5) | 0.0134 (6) | 0.0175 (6) | −0.0004 (5) | −0.0026 (4) | 0.0003 (5) |
C4 | 0.0189 (7) | 0.0196 (7) | 0.0166 (7) | −0.0020 (6) | −0.0020 (5) | 0.0000 (6) |
C5 | 0.0178 (6) | 0.0184 (7) | 0.0143 (6) | −0.0009 (6) | −0.0006 (5) | −0.0022 (6) |
C6 | 0.0172 (7) | 0.0242 (8) | 0.0157 (7) | −0.0047 (6) | 0.0015 (5) | 0.0016 (6) |
C7 | 0.0264 (8) | 0.0308 (9) | 0.0172 (7) | −0.0099 (7) | 0.0023 (6) | −0.0016 (7) |
C8 | 0.0317 (9) | 0.0466 (12) | 0.0146 (7) | −0.0189 (9) | −0.0030 (6) | 0.0049 (8) |
C9 | 0.0228 (8) | 0.0445 (12) | 0.0249 (8) | −0.0102 (8) | −0.0044 (6) | 0.0169 (8) |
C10 | 0.0266 (8) | 0.0332 (10) | 0.0292 (9) | 0.0026 (7) | 0.0007 (7) | 0.0102 (8) |
C11 | 0.0258 (8) | 0.0278 (9) | 0.0185 (7) | 0.0030 (7) | −0.0011 (6) | 0.0021 (7) |
C12 | 0.0162 (7) | 0.0381 (10) | 0.0249 (8) | −0.0015 (7) | −0.0024 (6) | 0.0101 (8) |
C13 | 0.0178 (7) | 0.0148 (7) | 0.0229 (7) | 0.0015 (6) | 0.0016 (5) | −0.0002 (6) |
C14 | 0.0238 (8) | 0.0186 (8) | 0.0290 (8) | 0.0014 (6) | −0.0048 (6) | 0.0047 (7) |
C15 | 0.0231 (7) | 0.0167 (8) | 0.0247 (8) | −0.0019 (6) | 0.0026 (6) | 0.0002 (6) |
C16 | 0.0165 (7) | 0.0122 (7) | 0.0150 (6) | 0.0010 (5) | −0.0006 (5) | 0.0000 (5) |
C17 | 0.0136 (6) | 0.0138 (7) | 0.0184 (7) | 0.0010 (5) | −0.0006 (5) | 0.0007 (5) |
C18 | 0.0161 (6) | 0.0138 (7) | 0.0171 (7) | 0.0018 (5) | 0.0012 (5) | 0.0012 (5) |
C19 | 0.0171 (7) | 0.0176 (7) | 0.0145 (6) | 0.0004 (5) | −0.0007 (5) | −0.0010 (6) |
C20 | 0.0134 (6) | 0.0149 (7) | 0.0172 (7) | 0.0003 (5) | −0.0005 (5) | 0.0010 (6) |
C21 | 0.0143 (6) | 0.0153 (7) | 0.0167 (6) | 0.0014 (5) | 0.0020 (5) | −0.0001 (6) |
O22 | 0.0135 (5) | 0.0222 (6) | 0.0201 (5) | −0.0010 (4) | 0.0000 (4) | −0.0036 (5) |
C23 | 0.0146 (6) | 0.0202 (8) | 0.0183 (7) | 0.0013 (6) | 0.0023 (5) | −0.0004 (6) |
C24 | 0.0206 (7) | 0.0260 (9) | 0.0256 (8) | 0.0067 (7) | 0.0036 (6) | 0.0019 (7) |
C25 | 0.0213 (7) | 0.0246 (9) | 0.0204 (7) | −0.0038 (6) | 0.0029 (6) | 0.0021 (6) |
C26 | 0.0219 (7) | 0.0259 (9) | 0.0197 (7) | −0.0018 (7) | 0.0041 (6) | −0.0045 (6) |
C27 | 0.0135 (6) | 0.0207 (8) | 0.0181 (7) | −0.0012 (6) | −0.0004 (5) | −0.0014 (6) |
C28 | 0.0200 (7) | 0.0207 (8) | 0.0243 (8) | −0.0034 (6) | −0.0002 (6) | −0.0030 (6) |
C29 | 0.0141 (7) | 0.0334 (9) | 0.0248 (8) | −0.0021 (6) | 0.0025 (6) | −0.0082 (7) |
C30 | 0.0170 (7) | 0.0271 (9) | 0.0230 (7) | 0.0024 (6) | −0.0030 (6) | 0.0009 (7) |
O1—C2 | 1.4324 (18) | C16—C17 | 1.405 (2) |
O1—C5 | 1.4345 (18) | C17—O22 | 1.3652 (17) |
C2—N3 | 1.4947 (19) | C17—C18 | 1.416 (2) |
C2—C16 | 1.512 (2) | C18—C19 | 1.390 (2) |
C2—H2 | 1 | C18—C23 | 1.539 (2) |
N3—C13 | 1.485 (2) | C19—C20 | 1.407 (2) |
N3—C4 | 1.4875 (19) | C19—H19 | 0.95 |
C4—C12 | 1.527 (2) | C20—C21 | 1.388 (2) |
C4—C5 | 1.547 (2) | C20—C27 | 1.534 (2) |
C4—H4 | 1 | C21—H21 | 0.95 |
C5—C6 | 1.504 (2) | O22—H22 | 0.91 (3) |
C5—H5 | 1 | C23—C26 | 1.532 (2) |
C6—C11 | 1.386 (3) | C23—C24 | 1.541 (2) |
C6—C7 | 1.401 (2) | C23—C25 | 1.544 (2) |
C7—C8 | 1.391 (3) | C24—H24A | 0.98 |
C7—H7 | 0.95 | C24—H24B | 0.98 |
C8—C9 | 1.384 (3) | C24—H24C | 0.98 |
C8—H8 | 0.95 | C25—H25A | 0.98 |
C9—C10 | 1.386 (3) | C25—H25B | 0.98 |
C9—H9 | 0.95 | C25—H25C | 0.98 |
C10—C11 | 1.394 (2) | C26—H26A | 0.98 |
C10—H10 | 0.95 | C26—H26B | 0.98 |
C11—H11 | 0.95 | C26—H26C | 0.98 |
C12—H12A | 0.98 | C27—C29 | 1.533 (2) |
C12—H12B | 0.98 | C27—C30 | 1.541 (2) |
C12—H12C | 0.98 | C27—C28 | 1.541 (2) |
C13—C14 | 1.526 (2) | C28—H28A | 0.98 |
C13—C15 | 1.526 (2) | C28—H28B | 0.98 |
C13—H13 | 1 | C28—H28C | 0.98 |
C14—H14A | 0.98 | C29—H29A | 0.98 |
C14—H14B | 0.98 | C29—H29B | 0.98 |
C14—H14C | 0.98 | C29—H29C | 0.98 |
C15—H15A | 0.98 | C30—H30A | 0.98 |
C15—H15B | 0.98 | C30—H30B | 0.98 |
C15—H15C | 0.98 | C30—H30C | 0.98 |
C16—C21 | 1.395 (2) | ||
C2—O1—C5 | 103.35 (11) | C17—C16—C2 | 122.22 (13) |
O1—C2—N3 | 104.08 (11) | O22—C17—C16 | 120.56 (13) |
O1—C2—C16 | 110.87 (12) | O22—C17—C18 | 119.24 (13) |
N3—C2—C16 | 114.02 (12) | C16—C17—C18 | 120.20 (13) |
O1—C2—H2 | 109.2 | C19—C18—C17 | 117.22 (13) |
N3—C2—H2 | 109.2 | C19—C18—C23 | 121.78 (13) |
C16—C2—H2 | 109.2 | C17—C18—C23 | 120.97 (13) |
C13—N3—C4 | 113.28 (13) | C18—C19—C20 | 124.06 (14) |
C13—N3—C2 | 115.16 (12) | C18—C19—H19 | 118 |
C4—N3—C2 | 106.19 (11) | C20—C19—H19 | 118 |
N3—C4—C12 | 110.11 (12) | C21—C20—C19 | 116.77 (13) |
N3—C4—C5 | 102.71 (11) | C21—C20—C27 | 123.82 (13) |
C12—C4—C5 | 113.85 (14) | C19—C20—C27 | 119.41 (13) |
N3—C4—H4 | 110 | C20—C21—C16 | 121.85 (13) |
C12—C4—H4 | 110 | C20—C21—H21 | 119.1 |
C5—C4—H4 | 110 | C16—C21—H21 | 119.1 |
O1—C5—C6 | 112.09 (13) | C17—O22—H22 | 103.2 (14) |
O1—C5—C4 | 102.43 (11) | C26—C23—C18 | 112.07 (12) |
C6—C5—C4 | 114.71 (12) | C26—C23—C24 | 106.97 (14) |
O1—C5—H5 | 109.1 | C18—C23—C24 | 110.48 (12) |
C6—C5—H5 | 109.1 | C26—C23—C25 | 107.66 (13) |
C4—C5—H5 | 109.1 | C18—C23—C25 | 109.56 (13) |
C11—C6—C7 | 119.14 (16) | C24—C23—C25 | 110.02 (13) |
C11—C6—C5 | 122.20 (14) | C23—C24—H24A | 109.5 |
C7—C6—C5 | 118.51 (16) | C23—C24—H24B | 109.5 |
C8—C7—C6 | 119.79 (18) | H24A—C24—H24B | 109.5 |
C8—C7—H7 | 120.1 | C23—C24—H24C | 109.5 |
C6—C7—H7 | 120.1 | H24A—C24—H24C | 109.5 |
C9—C8—C7 | 120.60 (17) | H24B—C24—H24C | 109.5 |
C9—C8—H8 | 119.7 | C23—C25—H25A | 109.5 |
C7—C8—H8 | 119.7 | C23—C25—H25B | 109.5 |
C8—C9—C10 | 119.83 (17) | H25A—C25—H25B | 109.5 |
C8—C9—H9 | 120.1 | C23—C25—H25C | 109.5 |
C10—C9—H9 | 120.1 | H25A—C25—H25C | 109.5 |
C9—C10—C11 | 119.83 (19) | H25B—C25—H25C | 109.5 |
C9—C10—H10 | 120.1 | C23—C26—H26A | 109.5 |
C11—C10—H10 | 120.1 | C23—C26—H26B | 109.5 |
C6—C11—C10 | 120.75 (17) | H26A—C26—H26B | 109.5 |
C6—C11—H11 | 119.6 | C23—C26—H26C | 109.5 |
C10—C11—H11 | 119.6 | H26A—C26—H26C | 109.5 |
C4—C12—H12A | 109.5 | H26B—C26—H26C | 109.5 |
C4—C12—H12B | 109.5 | C29—C27—C20 | 112.13 (13) |
H12A—C12—H12B | 109.5 | C29—C27—C30 | 107.72 (13) |
C4—C12—H12C | 109.5 | C20—C27—C30 | 109.61 (13) |
H12A—C12—H12C | 109.5 | C29—C27—C28 | 108.51 (14) |
H12B—C12—H12C | 109.5 | C20—C27—C28 | 109.48 (13) |
N3—C13—C14 | 111.70 (13) | C30—C27—C28 | 109.35 (14) |
N3—C13—C15 | 109.08 (13) | C27—C28—H28A | 109.5 |
C14—C13—C15 | 109.52 (13) | C27—C28—H28B | 109.5 |
N3—C13—H13 | 108.8 | H28A—C28—H28B | 109.5 |
C14—C13—H13 | 108.8 | C27—C28—H28C | 109.5 |
C15—C13—H13 | 108.8 | H28A—C28—H28C | 109.5 |
C13—C14—H14A | 109.5 | H28B—C28—H28C | 109.5 |
C13—C14—H14B | 109.5 | C27—C29—H29A | 109.5 |
H14A—C14—H14B | 109.5 | C27—C29—H29B | 109.5 |
C13—C14—H14C | 109.5 | H29A—C29—H29B | 109.5 |
H14A—C14—H14C | 109.5 | C27—C29—H29C | 109.5 |
H14B—C14—H14C | 109.5 | H29A—C29—H29C | 109.5 |
C13—C15—H15A | 109.5 | H29B—C29—H29C | 109.5 |
C13—C15—H15B | 109.5 | C27—C30—H30A | 109.5 |
H15A—C15—H15B | 109.5 | C27—C30—H30B | 109.5 |
C13—C15—H15C | 109.5 | H30A—C30—H30B | 109.5 |
H15A—C15—H15C | 109.5 | C27—C30—H30C | 109.5 |
H15B—C15—H15C | 109.5 | H30A—C30—H30C | 109.5 |
C21—C16—C17 | 119.90 (13) | H30B—C30—H30C | 109.5 |
C21—C16—C2 | 117.82 (13) | ||
C5—O1—C2—N3 | −43.06 (13) | O1—C2—C16—C21 | −92.31 (16) |
C5—O1—C2—C16 | −166.07 (12) | N3—C2—C16—C21 | 150.63 (13) |
O1—C2—N3—C13 | 148.89 (12) | O1—C2—C16—C17 | 90.78 (16) |
C16—C2—N3—C13 | −90.19 (16) | N3—C2—C16—C17 | −26.3 (2) |
O1—C2—N3—C4 | 22.67 (15) | C21—C16—C17—O22 | −179.16 (14) |
C16—C2—N3—C4 | 143.59 (13) | C2—C16—C17—O22 | −2.3 (2) |
C13—N3—C4—C12 | 115.78 (16) | C21—C16—C17—C18 | 0.2 (2) |
C2—N3—C4—C12 | −116.86 (14) | C2—C16—C17—C18 | 177.09 (14) |
C13—N3—C4—C5 | −122.62 (14) | O22—C17—C18—C19 | 179.78 (14) |
C2—N3—C4—C5 | 4.73 (15) | C16—C17—C18—C19 | 0.4 (2) |
C2—O1—C5—C6 | 169.17 (12) | O22—C17—C18—C23 | 1.4 (2) |
C2—O1—C5—C4 | 45.70 (14) | C16—C17—C18—C23 | −178.02 (14) |
N3—C4—C5—O1 | −30.41 (15) | C17—C18—C19—C20 | −0.5 (2) |
C12—C4—C5—O1 | 88.60 (15) | C23—C18—C19—C20 | 177.89 (15) |
N3—C4—C5—C6 | −152.11 (13) | C18—C19—C20—C21 | 0.0 (2) |
C12—C4—C5—C6 | −33.09 (19) | C18—C19—C20—C27 | 179.87 (15) |
O1—C5—C6—C11 | −20.2 (2) | C19—C20—C21—C16 | 0.7 (2) |
C4—C5—C6—C11 | 96.10 (18) | C27—C20—C21—C16 | −179.21 (15) |
O1—C5—C6—C7 | 164.23 (13) | C17—C16—C21—C20 | −0.8 (2) |
C4—C5—C6—C7 | −79.51 (18) | C2—C16—C21—C20 | −177.78 (14) |
C11—C6—C7—C8 | −2.4 (2) | C19—C18—C23—C26 | 1.8 (2) |
C5—C6—C7—C8 | 173.36 (14) | C17—C18—C23—C26 | −179.90 (15) |
C6—C7—C8—C9 | 0.9 (2) | C19—C18—C23—C24 | 120.96 (16) |
C7—C8—C9—C10 | 1.1 (3) | C17—C18—C23—C24 | −60.72 (19) |
C8—C9—C10—C11 | −1.6 (3) | C19—C18—C23—C25 | −117.67 (16) |
C7—C6—C11—C10 | 1.9 (2) | C17—C18—C23—C25 | 60.66 (18) |
C5—C6—C11—C10 | −173.66 (16) | C21—C20—C27—C29 | −2.7 (2) |
C9—C10—C11—C6 | 0.1 (3) | C19—C20—C27—C29 | 177.39 (15) |
C4—N3—C13—C14 | 170.85 (12) | C21—C20—C27—C30 | −122.31 (16) |
C2—N3—C13—C14 | 48.35 (18) | C19—C20—C27—C30 | 57.81 (19) |
C4—N3—C13—C15 | −67.93 (16) | C21—C20—C27—C28 | 117.75 (17) |
C2—N3—C13—C15 | 169.56 (12) | C19—C20—C27—C28 | −62.13 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
O22—H22···N3 | 0.91 (3) | 1.75 (2) | 2.6180 (17) | 158 (2) |
Experimental details
Crystal data | |
Chemical formula | C27H39NO2 |
Mr | 409.59 |
Crystal system, space group | Monoclinic, C2 |
Temperature (K) | 140 |
a, b, c (Å) | 18.9564 (19), 6.9943 (7), 18.3388 (19) |
β (°) | 91.833 (2) |
V (Å3) | 2430.2 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.55 × 0.27 × 0.11 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.809, 0.992 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14330, 3938, 3568 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.715 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.097, 1.06 |
No. of reflections | 3938 |
No. of parameters | 275 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.31, −0.21 |
Computer programs: APEX2 (Bruker, 2008), APEX2 and SAINT (Bruker, 2008), SAINT (Bruker, 2008), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999) and publCIF (McMahon & Westrip, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O22—H22···N3 | 0.91 (3) | 1.75 (2) | 2.6180 (17) | 158 (2) |
Acknowledgements
This material is based upon work supported by the US National Science Foundation (CHE-0348158 to GMF). GMF thanks Matthias Zeller of the Youngstown State University Structure & Chemical Instrumentation Facility for the data collection and useful discussions. The diffractometer was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491, and YSU.
References
Agami, C. & Couty, F. (2004). Eur. J. Org. Chem. 4, 677–685. Web of Science CrossRef Google Scholar
Anderson, A. E., Edler, K. L., Parrott, R. W., Hitchcock, S. R. & Ferrence, G. M. (2010). Acta Cryst. E66, o902–o903. Web of Science CrossRef IUCr Journals Google Scholar
Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320. CrossRef Web of Science Google Scholar
Bourne, S. A., Fitz, L. D., Kashyap, R. P., Krawiec, M., Walker, R. B., Watson, W. H. & Williams, L. M. (1997). J. Chem. Crystallogr. 27, 35–44. CAS Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. Web of Science CrossRef PubMed CAS Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Duffy, M., Gallagher, J. F. & Lough, A. J. (2004). Acta Cryst. E60, o234–o236. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hitchcock, S. R., Casper, D. M., Vaughn, J. F., Finefield, J. M., Ferrence, G. M. & Esken, J. M. (2004). J. Org. Chem. 69, 714–718. Web of Science CSD CrossRef PubMed CAS Google Scholar
Koyanagi, T., Edler, K. L., Parrott, R. W., Hitchcock, S. R. & Ferrence, G. M. (2010). Acta Cryst. E66, o898–o899. Web of Science CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
McMahon, B. & Hanson, R. M. (2008). J. Appl. Cryst. 41, 811–814. Web of Science CrossRef CAS IUCr Journals Google Scholar
McMahon, B. & Westrip, S. P. (2008). Acta Cryst. A64, C161. CrossRef IUCr Journals Google Scholar
Parrott, R. W. II, Hamaker, C. G. & Hitchcock, S. R. (2008). J. Heterocycl. Chem. 45, 873–878. CSD CrossRef CAS Google Scholar
Parrott, R. W. II & Hitchcock, S. R. (2007). Tetrahedron Asymmetry, 18, 377–382. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chiral oxazolidines are useful templates for conducting asymmetric syntheses (Agami & Couty, 2004). In order to explore the utility of these compounds in the catalytic asymmetric addition of diethylzinc to aldehydes, we prepared a series of oxazolidines from (1R,2S)-ephedrine (Parrott & Hitchcock, 2007), and (1R,2S)-norephedrine (Parrott et al., 2008). In the course of synthesizing these oxazolidines, we were able to obtain crystals suitable for X-ray crystallographic analysis.
Comparison of the title compound to the CSD structure refcode ROBWIO (Bourne et al., 1997) shows similar bond lengths and angles. Differences in the two structures occur in the presence of two t-butyl groups on the phenyl ring (C18 and C20 in the title compound) and an isopropyl group on the nitrogen (N3 in the title compound) instead of a methyl group. A Mogul geometry check (Bruno et al., 2004) indicates two angles to be unusual in both structures. Angle C2—N3—C4 in the title compound and the corresponding angle in ROBWIO are similar (106.2 (1) ° and 106.3 (2) ° respectively). However, angle C5—O1—C2 in the title compound is considered unusual (103.3 (1) °) while that of ROBWIO is not (110.8 (2) °). The difference could be due to ring compression from the additional steric bulk of the two t-butyl substituents on the phenyl ring present in the title compound. The distance between the hydrogen donor and acceptor (O22 and N3 in the title compound and their analogous partners) are indistinguishable at 2.6180 (17) Å and 2.638 (432) Å, respectively.
Ring puckering analysis using PLATON (Spek, 2009; Cremer & Pople, 1975; Boeyens, 1978) indicates Φ = -7.05 (19)° for the O1—C2—N3—C4—C5 ring, which is consistent with a formal conformational assignment in between an idealized 1E envelope and a 1T5 twist with O1 being the flap apex and C5 having a slight twist. The anti-relationship between the substituents on N3 and C2, C4, and C5 is necessary to support the intramolecular hydrogen bonding present.
About the Jmol enhanced figure:
The procedure for recreating the Jmol figure is provided in the hope that readers will find it useful for creating their own. We are reporting three related structures containing Jmol enhanced figures, one in this paper and the other two in other papers in this Journal (Anderson et al., 2010; Koyanagi et al., 2010). The Jmol enhanced figures were created to illustrate a range of author convenience versus end user experience, ranging from a purely GUI driven experience for the author resulting in a less functional figure for the end user to a more sophisticated use of the Jmol scripting by the author resulting in a more polished and versatile figure for the end user. The buttons, check boxes and radio buttons in the three examples visually appear to be identical; however, the underlying code they execute results in significantly different overall responses by the Jmol visualizer.
By strictly authoring with the Jmol toolkit GUI, without text editing any code, generation of the figure is relatively quick and easy. However, doing so results in a final figure which has some significant limitations. In particular, when the end user manipulates the figure by, for example, a rotation, subsequent clicking of a radiobutton will result in the figure reseting to appear exactly as it appeared when the author saved the script. This includes all settings such as orientation and any other highlighting. This is the scenario illustrated by the Jmol enhanced figure associated with this Acta E article. The enhanced figure options were intentionally selected with an alteration of the structure's orientation, so that the molecule's orientation changes upon each option selected by the end user, which serves to emphasize the view that best show cases the selected option.
The Jmol options were created as follows:
Labels were added to atoms by navigating to the "label" sub-tab under the "select/label" tab and by checking the button "atom name" before turning the labels "on". The script was imported into a checkbox by navigating to the "checkbox" sub-tab under the "script" tab, and by clicking "import view".
The thermal displacement coloring was achieved by navigating to the "model" tab and by selecting "atomic displacement" next to the "colour" heading.
The color of particular atoms was changed by first selecting them. The atoms were selected by navigating to the "select/label" tab, turning the "highlight selection" on, and picking "within area" under "selection mode". The color of the atoms was changed by navigating to the "atoms" sub-tab and picking a color from the drop down box next to the "colour" heading.
The various atom styles were selected by navigating to the "model" tab and by selecting the atom style of choice next to the "overall style" heading.
The hydrogen bond was displayed by navigating to the "measurements" sub-tab under the "select/label" tab. The "distance" option next to the "mode" heading was then selected, followed by the hydrogen and acceptor atoms.