metal-organic compounds
catena-Poly[[aquacadmium(II)]-bis(μ2-4-chlorobenzoato)]
aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: wanchqing@yahoo.com.cn
In the title complex, [Cd(C7H4ClO2)2(H2O)]n, the Cd atom lies on a twofold axis and adopts a square-pyramidal coordination geometry. The water molecule occupies the axial site with O atoms from four different 4-chlorobenzoato ligands in the equatorial plane. Pairs of 4-chlorobenzoato ligands bridge adjacent CdII ions, generating an infinite chain structure along the c axis. Parallel polymeric chains are further interconnected through water–acetate O—H⋯O hydrogen bonds, forming layers in the bc plane.
Related literature
For the use of organic acids in constructing metal-organic frameworks, see: Zhao et al. (2003); Cao et al. (2002); Zhang et al. (2004). The related six-coordinate CdII complex with two coordinated water molecules has a distorted octahedral geometry, see: Rodesiler et al. (1985). For other related structures involving the 4-chlorobenzoato anion, see: Turpeinen et al. (1999); Xue et al. (2006).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2007); cell APEX2 and SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810008068/sj2730sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810008068/sj2730Isup2.hkl
4-chlorobenzoic acid (0.040 g, 0.3 mmol) was dissolved in a mixture of methanol, 2 ml, and acetonitrile, 2 ml. Sodium hydroxide was subsequently added at room temperature to adjust the pH to 7. Then, Cd(ClO4)2.6H2O (0.371 g, 0.1 mmol) was added and the solution stirred for an hour. The clear solution was filtered and then left to stand in air. After 6 days colorless rod-like crystals were deposited (260 mg, 72% yield).
The hydrogen atoms were placed in idealized positions and allowed to ride on the relevant carbon atoms, with C— H = 0.93 Å and Uĩso~(H) = 1.2Ueq(C). The position of the hydrogen atom of the coordinated water molecule was obtained from a difference Fourier map, with the O—H distances restrained to 0.89 Å.
Data collection: APEX2 (Bruker, 2007); cell
APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).[Cd(C7H4ClO2)2(H2O)] | F(000) = 864 |
Mr = 441.52 | Dx = 1.973 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 543 reflections |
a = 32.525 (2) Å | θ = 2.3–26.7° |
b = 6.4769 (5) Å | µ = 1.85 mm−1 |
c = 7.1419 (6) Å | T = 296 K |
β = 98.883 (3)° | Rod, colorless |
V = 1486.48 (19) Å3 | 0.4 × 0.3 × 0.2 mm |
Z = 4 |
Bruker APEXII CCD area-detector diffractometer | 1334 independent reflections |
Radiation source: fine-focus sealed tube | 1308 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ω scans | θmax = 25.1°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −38→38 |
Tmin = 0.567, Tmax = 0.746 | k = −7→7 |
9459 measured reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.016 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.042 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0231P)2 + 1.3036P] P = (Fo2 + 2Fc2)/3 |
1334 reflections | (Δ/σ)max = 0.001 |
101 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
[Cd(C7H4ClO2)2(H2O)] | V = 1486.48 (19) Å3 |
Mr = 441.52 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 32.525 (2) Å | µ = 1.85 mm−1 |
b = 6.4769 (5) Å | T = 296 K |
c = 7.1419 (6) Å | 0.4 × 0.3 × 0.2 mm |
β = 98.883 (3)° |
Bruker APEXII CCD area-detector diffractometer | 1334 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 1308 reflections with I > 2σ(I) |
Tmin = 0.567, Tmax = 0.746 | Rint = 0.021 |
9459 measured reflections |
R[F2 > 2σ(F2)] = 0.016 | 0 restraints |
wR(F2) = 0.042 | H-atom parameters constrained |
S = 1.12 | Δρmax = 0.26 e Å−3 |
1334 reflections | Δρmin = −0.34 e Å−3 |
101 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.0000 | −0.15461 (2) | 0.2500 | 0.02841 (8) | |
Cl1 | 0.222718 (19) | 0.55886 (13) | 0.63416 (9) | 0.0652 (2) | |
O1 | 0.06477 (4) | −0.0960 (2) | 0.3902 (2) | 0.0444 (3) | |
O2 | 0.02952 (4) | 0.1741 (2) | 0.4642 (2) | 0.0361 (3) | |
C1 | 0.06390 (6) | 0.0837 (3) | 0.4530 (2) | 0.0306 (4) | |
C2 | 0.10373 (6) | 0.1976 (3) | 0.5081 (2) | 0.0298 (4) | |
C3 | 0.10333 (6) | 0.4005 (3) | 0.5697 (3) | 0.0355 (4) | |
H3A | 0.0782 | 0.4630 | 0.5836 | 0.043* | |
C4 | 0.14008 (6) | 0.5103 (3) | 0.6107 (3) | 0.0405 (5) | |
H4A | 0.1398 | 0.6468 | 0.6510 | 0.049* | |
C5 | 0.17716 (6) | 0.4147 (4) | 0.5911 (3) | 0.0407 (5) | |
C6 | 0.17853 (6) | 0.2115 (4) | 0.5343 (3) | 0.0421 (5) | |
H6A | 0.2038 | 0.1485 | 0.5249 | 0.050* | |
C7 | 0.14156 (6) | 0.1033 (3) | 0.4914 (3) | 0.0363 (4) | |
H7A | 0.1420 | −0.0332 | 0.4513 | 0.044* | |
O1W | 0.0000 | −0.4993 (3) | 0.2500 | 0.0527 (6) | |
H1WA | 0.0106 | −0.5756 | 0.3494 | 0.079* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.02668 (12) | 0.02429 (12) | 0.03493 (12) | 0.000 | 0.00687 (8) | 0.000 |
Cl1 | 0.0426 (3) | 0.0929 (5) | 0.0609 (4) | −0.0347 (3) | 0.0102 (3) | −0.0183 (3) |
O1 | 0.0365 (8) | 0.0428 (8) | 0.0546 (9) | −0.0097 (6) | 0.0093 (6) | −0.0179 (7) |
O2 | 0.0272 (7) | 0.0388 (7) | 0.0420 (8) | −0.0023 (5) | 0.0047 (6) | 0.0094 (5) |
C1 | 0.0300 (9) | 0.0369 (10) | 0.0252 (8) | −0.0059 (8) | 0.0047 (7) | 0.0034 (7) |
C2 | 0.0282 (9) | 0.0356 (9) | 0.0260 (8) | −0.0046 (7) | 0.0047 (7) | 0.0006 (7) |
C3 | 0.0316 (10) | 0.0396 (10) | 0.0360 (9) | −0.0026 (8) | 0.0075 (8) | −0.0046 (8) |
C4 | 0.0434 (11) | 0.0411 (11) | 0.0377 (10) | −0.0117 (9) | 0.0081 (8) | −0.0080 (8) |
C5 | 0.0323 (10) | 0.0579 (13) | 0.0315 (9) | −0.0160 (9) | 0.0036 (8) | −0.0014 (9) |
C6 | 0.0273 (10) | 0.0556 (12) | 0.0434 (11) | 0.0006 (9) | 0.0055 (8) | 0.0032 (10) |
C7 | 0.0328 (10) | 0.0374 (10) | 0.0390 (10) | 0.0000 (8) | 0.0069 (8) | 0.0016 (8) |
O1W | 0.0701 (15) | 0.0225 (10) | 0.0564 (13) | 0.000 | −0.0190 (11) | 0.000 |
Cd1—O1i | 2.2210 (14) | C2—C7 | 1.395 (3) |
Cd1—O1 | 2.2210 (14) | C3—C4 | 1.383 (3) |
Cd1—O1W | 2.233 (2) | C3—H3A | 0.9300 |
Cd1—O2ii | 2.3896 (14) | C4—C5 | 1.382 (3) |
Cd1—O2iii | 2.3896 (14) | C4—H4A | 0.9300 |
Cl1—C5 | 1.738 (2) | C5—C6 | 1.380 (3) |
O1—C1 | 1.249 (2) | C6—C7 | 1.385 (3) |
O2—C1 | 1.276 (2) | C6—H6A | 0.9300 |
O2—Cd1iii | 2.3896 (14) | C7—H7A | 0.9300 |
C1—C2 | 1.490 (3) | O1W—H1WA | 0.8900 |
C2—C3 | 1.386 (3) | ||
O1i—Cd1—O1 | 160.33 (8) | C7—C2—C1 | 120.18 (18) |
O1i—Cd1—O1W | 99.84 (4) | C4—C3—C2 | 120.30 (18) |
O1—Cd1—O1W | 99.84 (4) | C4—C3—H3A | 119.9 |
O1i—Cd1—O2ii | 95.88 (5) | C2—C3—H3A | 119.9 |
O1—Cd1—O2ii | 85.16 (5) | C5—C4—C3 | 119.15 (19) |
O1W—Cd1—O2ii | 86.97 (3) | C5—C4—H4A | 120.4 |
O1i—Cd1—O2iii | 85.16 (5) | C3—C4—H4A | 120.4 |
O1—Cd1—O2iii | 95.88 (5) | C6—C5—C4 | 121.72 (18) |
O1W—Cd1—O2iii | 86.97 (3) | C6—C5—Cl1 | 119.92 (16) |
O2ii—Cd1—O2iii | 173.94 (6) | C4—C5—Cl1 | 118.34 (17) |
C1—O1—Cd1 | 104.39 (12) | C5—C6—C7 | 118.77 (19) |
C1—O2—Cd1iii | 120.07 (11) | C5—C6—H6A | 120.6 |
O1—C1—O2 | 121.26 (17) | C7—C6—H6A | 120.6 |
O1—C1—C2 | 119.30 (17) | C6—C7—C2 | 120.4 (2) |
O2—C1—C2 | 119.39 (17) | C6—C7—H7A | 119.8 |
C3—C2—C7 | 119.59 (18) | C2—C7—H7A | 119.8 |
C3—C2—C1 | 120.18 (17) | Cd1—O1W—H1WA | 123.7 |
O1i—Cd1—O1—C1 | 21.30 (11) | O2—C1—C2—C7 | −178.09 (17) |
O1W—Cd1—O1—C1 | −158.70 (11) | C7—C2—C3—C4 | 1.4 (3) |
O2ii—Cd1—O1—C1 | 115.23 (12) | C1—C2—C3—C4 | −176.33 (18) |
O2iii—Cd1—O1—C1 | −70.77 (12) | C2—C3—C4—C5 | −0.6 (3) |
Cd1—O1—C1—O2 | 14.4 (2) | C3—C4—C5—C6 | −0.9 (3) |
Cd1—O1—C1—C2 | −162.92 (13) | C3—C4—C5—Cl1 | 177.43 (16) |
Cd1iii—O2—C1—O1 | 92.47 (18) | C4—C5—C6—C7 | 1.6 (3) |
Cd1iii—O2—C1—C2 | −90.19 (17) | Cl1—C5—C6—C7 | −176.69 (16) |
O1—C1—C2—C3 | 176.98 (18) | C5—C6—C7—C2 | −0.8 (3) |
O2—C1—C2—C3 | −0.4 (3) | C3—C2—C7—C6 | −0.6 (3) |
O1—C1—C2—C7 | −0.7 (3) | C1—C2—C7—C6 | 177.07 (18) |
Symmetry codes: (i) −x, y, −z+1/2; (ii) x, −y, z−1/2; (iii) −x, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O2iv | 0.89 | 1.88 | 2.699 (2) | 153 |
Symmetry code: (iv) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cd(C7H4ClO2)2(H2O)] |
Mr | 441.52 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 32.525 (2), 6.4769 (5), 7.1419 (6) |
β (°) | 98.883 (3) |
V (Å3) | 1486.48 (19) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.85 |
Crystal size (mm) | 0.4 × 0.3 × 0.2 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.567, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9459, 1334, 1308 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.016, 0.042, 1.12 |
No. of reflections | 1334 |
No. of parameters | 101 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.34 |
Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Cd1—O1i | 2.2210 (14) | Cd1—O2ii | 2.3896 (14) |
Cd1—O1W | 2.233 (2) |
Symmetry codes: (i) −x, y, −z+1/2; (ii) x, −y, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WA···O2iii | 0.89 | 1.88 | 2.699 (2) | 152.74 |
Symmetry code: (iii) x, y−1, z. |
Acknowledgements
The authors are grateful for financial support from the Science and Technology program, Beijing Municipal Education Commission.
References
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cao, R., Shi, Q., Sun, D.-F., Hong, M.-C., Bi, W. H. & Zhao, Y.-J. (2002). Inorg. Chem. 41, 6161–6168. Web of Science CSD CrossRef PubMed CAS Google Scholar
Rodesiler, P. F., Griffith, E. A. H., Charles, N. G. & Amma, E. L. (1985). Acta Cryst. C41, 673–678. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Turpeinen, U., Hämälänen, R. & Mutikainen, I. (1999). Acta Cryst. C55, 50–52. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Xue, L., Che, Y.-X. & Zheng, J.-M. (2006). Acta Cryst. E62, m2750–m2752. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, J.-J., Sheng, T.-L., Xia, S.-Q., Leibeling, G., Meyer, F., Hu, S.-M., Fu, R.-B., Xiang, S.-C. & Wu, X.-T. (2004). Inorg. Chem. 43, 5472–5478. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhao, B., Cheng, B., Dai, Y., Cheng, C., Liao, D., Yan, S., Jiang, Z. & Wang, G. (2003). Angew. Chem. Int. Ed. 42, 934–936. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Organic acids are widely used as versatile building blocks in many metal- organic frameworks with diverse structural motifs (Zhao et al., 2003; Cao et al., 2002; Zhang et al., 2004). In metal complexes the 4-chlorobenzoato anion can function both to balance charge and as a bridging ligand. Several structures incorporating this ligand have been investigated (Turpeinen, et al., 1999; Xue et al., 2006).
Herein we report a new compound [Cd(C7H4ClO2)2.H2O]∞ derived from 4-chlorobenzoic acid, which exhibits an one-dimensional infinite chain structure. In the title complex the CdII atom lies on a two-fold axis and adopts a square pyramidal coordination geometry (Fig. 1). The water molecule occupies the axial site with oxygen atoms from four different 4-chlorobenzoato ligands in the equatorial plane. The Cd—O1W bond length is 2.233 (2)Å and the Cd—O(acetate) distances lie in the range 2.221 (1)-2.390 (1) Å, Table 1. Pairs of 4-chlorobenzoato ligands bridge two adjacent CdII ions generating an infinite chain structure along the c axis. Parallel polymeric chains are further interconnected through O1W—H1WA···O2 hydrogen bonds forming layers in the bc plane (Fig. 2, Table 2), with an O1W···O2 (D···A) distance of 2.699 (2) Å. This structure is entirely different from that of [Cd(C7H4ClO2)2.(H2O)2], in which the CdII ion adopts a distorted six-coordination geometry (Rodesiler et al., 1985).