organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o817-o818

Vieillardiixanthone B

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 14 February 2010; accepted 24 February 2010; online 13 March 2010)

The title compound [systematic name: 1,5-dihydr­oxy-3,6-dimeth­oxy-4-(2-methyl­but-3-en-2-yl)-9H-xanthen-9-one], C20H20O6, is a xanthone, which was isolated from the roots of Cratoxylum formosum ssp. pruniflorum. The three rings in the mol­ecule are approximately coplanar, with an r.m.s. deviation of 0.0372 (2) Å for the plane through the 14 non-H atoms. The O atoms of the two hydr­oxy substituents also lie close to this plane with deviations of 0.0669 (2) and 0.1122 (2) Å, respectively. The 1,1-dimethyl-2-propenyl substituent is in a (−)-anti­clinal conformation. Intra­molecular O—H⋯O hydrogen bonds generate S(5) and S(6) ring motifs. In the crystal, mol­ecules are linked into infinite chains along [010] by O—H⋯O hydrogen bonds and weak C—H⋯O inter­actions. ππ inter­actions with centroid–centroid distances of 3.6172 (10) and 3.6815 (10) Å are also observed.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to xanthones and their biological activity, see: Boonnak, Karalai et al. (2006[Boonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Fun, H.-K., Kanjana-Opas, A. & Laphookhieo, S. (2006). Tetrahedron, 62, 8850-8859.], 2007[Boonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Kanjana-Opas, A., Chantrapromma, K. & Fun, H.-K. (2007). Can. J. Chem. 85, 341-345.], 2009[Boonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Fun, H.-K., Kanjana-Opas, A., Chantrapromma, K. & Kato, S. (2009). Tetrahedron, 65, 3003-3013.]); Hay et al. (2008[Hay, A. E., Merza, J., Landreau, A., Litaudon, M., Pagniez, F., Pape, P. L. & Richomme, P. (2008). Fitoterapia, 79, 42-46.]). For a related structure, see: Boonnak, Chantrapromma & Fun (2006[Boonnak, N., Chantrapromma, S. & Fun, H.-K. (2006). Acta Cryst. E62, o2034-o2036.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20O6

  • Mr = 356.36

  • Monoclinic, P 21 /c

  • a = 12.1500 (4) Å

  • b = 14.7396 (4) Å

  • c = 9.5177 (3) Å

  • β = 90.208 (2)°

  • V = 1704.48 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.50 × 0.23 × 0.22 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.978

  • 37868 measured reflections

  • 3906 independent reflections

  • 2682 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.133

  • S = 1.03

  • 3906 reflections

  • 259 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O2 0.95 (3) 1.65 (3) 2.5573 (18) 160 (2)
O5—H1O5⋯O6 0.83 (2) 2.25 (2) 2.7019 (19) 115 (2)
O5—H1O5⋯O2i 0.83 (2) 1.98 (2) 2.7520 (18) 155 (2)
C8—H8A⋯O5ii 0.93 2.54 3.413 (2) 157
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

During the course of our studies into the chemical constituents and bioactive compounds from Thai medicinal plants, we previously reported the isolation of xanthones from the Cratoxylum formosum ssp. pruniflorum. We found that several isolated xanthones showed antibacterial, antifungal and cytotoxic activities (Boonnak, Karalai et al., 2006; 2007; 2009). Further isolation of materials from the roots of this plant resulted in the title xanthone known as vieillardiixanthone B (Hay et al., 2008). It was tested against both Gram-positive and Gram-negative bacteria i.e. Bacillus subtilis, Staphylococcus aureus TISTR517, Enterococcus faecalis TISTR459, Methicillin-Resistant Staphylococcus aureus (MRSA) ATCC43300, Vancomycin-Risistant Enterococcus faecalis (VRE) ATCC 51299, Streptococcus faecalis, Salmonella typhi, Shigella sonei and Pseudomonas aeruginosa. Our results showed that the title compound has no antibacterial action against these pathogens. Herein we report the crystal structure of the title xanthone (I).

In compound (I) (Fig. 1), the three ring system [C1–C13/O1] is essentially planar with an r.m.s. deviation of 0.0372 (2) Å from the plane through all non-hydrogen atoms of the three rings and with a maximum deviation of -0.100 (2) Å for atom C4. The O3 and O5 hydroxyl O atoms lie close to this plane with deviations +0.0669 (2) for O3 and +0.1122 (2) Å for O5. The two methoxy groups lie close to the planes of their benzene rings with torsion angles C14–O4–C3–C2 = 3.8 (3)° and C20–O6–C6–C7 = -7.4 (3)°. The 1,1-dimethyl-2-propenyl [C15–C19] substituent is in a (-)-anticlinal conformation as indicated by the torsion angle C4–C15–C18–C19 = -132.1 (2)°. Intramolecular O3—H1O3···O2 and O5—H1O5..O6 hydrogen bonds (Table 1) generate S(6) and S(5) ring motifs, respectively (Bernstein et al., 1995). The bond distances in (I) are within normal ranges (Allen et al., 1987) and comparable to those in a related structure (Boonnak, Chantrapromma & Fun, 2006).

The crystal packing of (I) is stabilized by intermolecular O—H···O hydrogen bonds and weak C—H···O interactions (Table 1). The molecules are linked into infinite one dimensional chains along [010] by O—H···O and C—H···O hydrogen bonds (Fig. 2 and Table 1). ππ interactions with distances Cg1···Cg2 = 3.6172 (10) Å (symmetry code: x, 1/2-y, z) and Cg1···Cg3 = 3.6815 (10) Å (symmetry code: x, 1/2-y, -1/2+z) were also observed; Cg1, Cg2 and Cg3 are the centroids of O1/C9–C13, C1–C4/C10–C11 and C5–C8/C12–C13 rings, respectively.

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For background to xanthones and their biological activity, see: Boonnak, Karalai et al. (2006, 2007, 2009); Hay et al. (2008). For a related structure, see: Boonnak, Chantrapromma & Fun (2006). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Experimental top

The air-dried roots of C. formosum ssp. pruniflorum (5.00 kg) was extracted with CH2Cl2 (2 x 20 L, for a week) at room temperature and was further evaporated under reduced pressure to afford a deep green crude CH2Cl2 extract (58.87 g), which was subjected to QCC (Quick Column Chromatography) on silica gel using n-hexane as a first eluent and then increasing the polarity with acetone to give 12 fractions (F1-F12). Fractions F8-F11 were combined and separated by QCC eluting with 30% EtOAc-n-hexane to give 8 subfractions (F8A-F8H). Subfractions F8E and F8F were combined and separated by QCC and eluted with 30% EtOAc-n-hexane to obtain 20 subfractions (F8E1-F8E20). Subfractions F8E10-F8E12 were combined and separated by QCC and eluted with a gradient of CH2Cl2-n-hexane to give 12 subfractions (F8E10A-F8E10L). Subfraction F8E10D was separated by CC (Column Chromatography) eluting with 10% acetone-n-hexane to give 8 subfractions (F8E10D1-F8E10D8). Subfraction F8E10D5 was further purified by CC and eluted with a gradient of CH2Cl2-n-hexane to give the title compound as a yellow solid (3.5 mg). Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from acetone/CH3OH (9.5:0.5, v/v) after several days (M.p. 486-488 K).

Refinement top

Hydroxy H atoms attached to O3 and O5 and H atoms attached to C18 and C19 were located from the difference map and refined isotropically. The remaining H atoms were placed in calculated positions with d(C—H) = 0.93 Å for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.72 Å from C15 and the deepest hole is located at 0.72 Å from C5.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the a axis, showing one dimensional chains along the [010] direction. Hydrogen bonds are shown as dashed lines.
1,5-dihydroxy-3,6-dimethoxy-4-(2-methylbut-3-en-2-yl)-9H-xanthen-9-one top
Crystal data top
C20H20O6F(000) = 752
Mr = 356.36Dx = 1.389 Mg m3
Monoclinic, P21/cMelting point = 486–488 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.1500 (4) ÅCell parameters from 3906 reflections
b = 14.7396 (4) Åθ = 2.2–27.5°
c = 9.5177 (3) ŵ = 0.10 mm1
β = 90.208 (2)°T = 100 K
V = 1704.48 (9) Å3Block, yellow
Z = 40.50 × 0.23 × 0.22 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3906 independent reflections
Radiation source: sealed tube2682 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
ϕ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1515
Tmin = 0.951, Tmax = 0.978k = 1919
37868 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.5536P]
where P = (Fo2 + 2Fc2)/3
3906 reflections(Δ/σ)max < 0.001
259 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C20H20O6V = 1704.48 (9) Å3
Mr = 356.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1500 (4) ŵ = 0.10 mm1
b = 14.7396 (4) ÅT = 100 K
c = 9.5177 (3) Å0.50 × 0.23 × 0.22 mm
β = 90.208 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3906 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2682 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.978Rint = 0.071
37868 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.27 e Å3
3906 reflectionsΔρmin = 0.27 e Å3
259 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.35090 (10)0.13014 (8)0.63535 (13)0.0187 (3)
O20.37354 (10)0.40673 (8)0.61270 (13)0.0207 (3)
O30.21931 (11)0.40714 (8)0.42914 (14)0.0230 (3)
H1O30.278 (2)0.4208 (18)0.491 (3)0.055 (8)*
O40.07417 (11)0.12110 (9)0.29203 (14)0.0257 (3)
O50.46803 (11)0.02998 (8)0.80738 (14)0.0202 (3)
H1O50.522 (2)0.0062 (16)0.847 (2)0.038 (7)*
O60.62914 (11)0.10303 (8)0.96779 (14)0.0222 (3)
C10.21969 (15)0.31542 (12)0.43964 (19)0.0186 (4)
C20.14722 (15)0.26604 (12)0.35834 (19)0.0195 (4)
H2A0.09860.29560.29810.023*
C30.14717 (15)0.17086 (12)0.36683 (19)0.0187 (4)
C40.22012 (14)0.12173 (12)0.45343 (19)0.0176 (4)
C50.48867 (15)0.12058 (11)0.80499 (19)0.0174 (4)
C60.56984 (15)0.16161 (12)0.88664 (19)0.0188 (4)
C70.58547 (16)0.25558 (12)0.8834 (2)0.0201 (4)
H7A0.64000.28220.93850.024*
C80.51960 (15)0.30887 (12)0.79793 (19)0.0202 (4)
H8A0.52910.37150.79720.024*
C90.36821 (15)0.32157 (11)0.62009 (18)0.0171 (4)
C100.29140 (14)0.27097 (11)0.53441 (19)0.0168 (4)
C110.28714 (14)0.17552 (12)0.53963 (19)0.0166 (4)
C120.42547 (14)0.17531 (12)0.71676 (18)0.0166 (4)
C130.43899 (15)0.26940 (11)0.71284 (19)0.0174 (4)
C140.00024 (16)0.16425 (14)0.1967 (2)0.0265 (5)
H14A0.03970.11900.14490.040*
H14B0.04110.20150.13280.040*
H14C0.05050.20130.24830.040*
C150.22616 (15)0.01618 (12)0.45818 (19)0.0184 (4)
C160.34762 (16)0.01610 (12)0.4569 (2)0.0221 (4)
H16A0.35050.07890.43050.033*
H16B0.37910.00870.54880.033*
H16C0.38850.01930.39040.033*
C170.16997 (17)0.01792 (12)0.5923 (2)0.0250 (4)
H17A0.09270.00440.58790.038*
H17B0.20200.01160.67260.038*
H17C0.18010.08230.60040.038*
C180.17864 (16)0.02757 (12)0.3267 (2)0.0223 (4)
H180.2133 (17)0.0069 (14)0.240 (2)0.028 (6)*
C190.10821 (18)0.09584 (14)0.3216 (3)0.0316 (5)
H19B0.0844 (17)0.1203 (14)0.231 (2)0.030 (6)*
H19A0.0703 (18)0.1196 (15)0.407 (2)0.038 (6)*
C200.72165 (16)0.13735 (13)1.0432 (2)0.0256 (5)
H20A0.75650.08881.09370.038*
H20B0.69770.18301.10820.038*
H20C0.77310.16340.97840.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0254 (7)0.0110 (6)0.0195 (7)0.0006 (5)0.0059 (6)0.0008 (5)
O20.0294 (7)0.0091 (6)0.0236 (7)0.0007 (5)0.0048 (6)0.0011 (5)
O30.0304 (8)0.0116 (6)0.0270 (8)0.0018 (5)0.0076 (6)0.0025 (6)
O40.0277 (8)0.0176 (7)0.0317 (8)0.0013 (5)0.0153 (6)0.0021 (6)
O50.0266 (8)0.0089 (6)0.0251 (7)0.0005 (5)0.0072 (6)0.0011 (5)
O60.0281 (7)0.0123 (6)0.0259 (7)0.0004 (5)0.0115 (6)0.0017 (5)
C10.0246 (10)0.0113 (8)0.0199 (10)0.0003 (7)0.0024 (8)0.0016 (7)
C20.0219 (10)0.0171 (9)0.0195 (10)0.0023 (7)0.0041 (8)0.0029 (7)
C30.0220 (10)0.0165 (9)0.0177 (9)0.0014 (7)0.0019 (8)0.0002 (7)
C40.0214 (10)0.0131 (8)0.0183 (9)0.0001 (7)0.0005 (8)0.0013 (7)
C50.0233 (10)0.0100 (8)0.0188 (9)0.0000 (7)0.0004 (8)0.0003 (7)
C60.0229 (10)0.0150 (9)0.0185 (10)0.0016 (7)0.0042 (8)0.0008 (7)
C70.0254 (10)0.0130 (9)0.0219 (10)0.0024 (7)0.0048 (8)0.0023 (8)
C80.0280 (10)0.0100 (8)0.0225 (10)0.0003 (7)0.0009 (8)0.0002 (7)
C90.0225 (10)0.0125 (8)0.0164 (9)0.0002 (7)0.0017 (8)0.0001 (7)
C100.0210 (9)0.0117 (8)0.0177 (9)0.0007 (7)0.0011 (8)0.0007 (7)
C110.0199 (9)0.0132 (8)0.0167 (9)0.0020 (7)0.0011 (8)0.0024 (7)
C120.0195 (9)0.0141 (9)0.0162 (9)0.0010 (7)0.0022 (7)0.0023 (7)
C130.0228 (10)0.0122 (8)0.0172 (9)0.0003 (7)0.0008 (8)0.0010 (7)
C140.0279 (11)0.0258 (10)0.0256 (11)0.0033 (8)0.0101 (9)0.0040 (9)
C150.0234 (10)0.0118 (8)0.0201 (10)0.0012 (7)0.0023 (8)0.0008 (7)
C160.0289 (11)0.0115 (8)0.0258 (10)0.0002 (7)0.0029 (8)0.0021 (8)
C170.0343 (11)0.0147 (9)0.0262 (10)0.0024 (8)0.0029 (9)0.0020 (8)
C180.0259 (10)0.0155 (9)0.0255 (10)0.0021 (8)0.0032 (9)0.0012 (8)
C190.0346 (12)0.0218 (10)0.0384 (13)0.0040 (9)0.0087 (11)0.0066 (10)
C200.0266 (11)0.0205 (10)0.0295 (11)0.0007 (8)0.0121 (9)0.0006 (8)
Geometric parameters (Å, º) top
O1—C121.364 (2)C8—H8A0.9300
O1—C111.368 (2)C9—C101.445 (2)
O2—C91.259 (2)C9—C131.451 (2)
O3—C11.356 (2)C10—C111.409 (2)
O3—H1O30.94 (3)C12—C131.397 (2)
O4—C31.352 (2)C14—H14A0.9600
O4—C141.424 (2)C14—H14B0.9600
O5—C51.359 (2)C14—H14C0.9600
O5—H1O50.83 (3)C15—C181.520 (3)
O6—C61.363 (2)C15—C171.535 (3)
O6—C201.424 (2)C15—C161.551 (3)
C1—C21.378 (3)C16—H16A0.9600
C1—C101.413 (2)C16—H16B0.9600
C2—C31.405 (2)C16—H16C0.9600
C2—H2A0.9300C17—H17A0.9600
C3—C41.409 (2)C17—H17B0.9600
C4—C111.400 (2)C17—H17C0.9600
C4—C151.558 (2)C18—C191.322 (3)
C5—C61.392 (3)C18—H180.97 (2)
C5—C121.393 (2)C19—H19B0.98 (2)
C6—C71.398 (2)C19—H19A1.00 (2)
C7—C81.383 (3)C20—H20A0.9600
C7—H7A0.9300C20—H20B0.9600
C8—C131.396 (3)C20—H20C0.9600
C12—O1—C11120.87 (13)C5—C12—C13121.75 (16)
C1—O3—H1O399.5 (16)C8—C13—C12118.73 (16)
C3—O4—C14120.28 (15)C8—C13—C9123.04 (16)
C5—O5—H1O5106.1 (16)C12—C13—C9118.23 (16)
C6—O6—C20118.38 (13)O4—C14—H14A109.5
O3—C1—C2118.90 (16)O4—C14—H14B109.5
O3—C1—C10120.77 (16)H14A—C14—H14B109.5
C2—C1—C10120.32 (16)O4—C14—H14C109.5
C1—C2—C3119.70 (17)H14A—C14—H14C109.5
C1—C2—H2A120.2H14B—C14—H14C109.5
C3—C2—H2A120.2C18—C15—C17112.15 (15)
O4—C3—C2120.79 (16)C18—C15—C16102.82 (14)
O4—C3—C4116.07 (15)C17—C15—C16109.42 (15)
C2—C3—C4123.13 (17)C18—C15—C4112.47 (15)
C11—C4—C3114.54 (16)C17—C15—C4109.27 (14)
C11—C4—C15121.41 (15)C16—C15—C4110.54 (14)
C3—C4—C15124.04 (16)C15—C16—H16A109.5
O5—C5—C6123.24 (16)C15—C16—H16B109.5
O5—C5—C12118.53 (16)H16A—C16—H16B109.5
C6—C5—C12118.23 (16)C15—C16—H16C109.5
O6—C6—C5114.41 (15)H16A—C16—H16C109.5
O6—C6—C7124.65 (16)H16B—C16—H16C109.5
C5—C6—C7120.93 (17)C15—C17—H17A109.5
C8—C7—C6119.81 (17)C15—C17—H17B109.5
C8—C7—H7A120.1H17A—C17—H17B109.5
C6—C7—H7A120.1C15—C17—H17C109.5
C7—C8—C13120.51 (16)H17A—C17—H17C109.5
C7—C8—H8A119.7H17B—C17—H17C109.5
C13—C8—H8A119.7C19—C18—C15126.7 (2)
O2—C9—C10121.10 (16)C19—C18—H18119.3 (12)
O2—C9—C13122.15 (16)C15—C18—H18113.4 (12)
C10—C9—C13116.75 (15)C18—C19—H19B120.2 (13)
C11—C10—C1117.58 (16)C18—C19—H19A122.6 (13)
C11—C10—C9121.29 (16)H19B—C19—H19A116.8 (18)
C1—C10—C9121.10 (15)O6—C20—H20A109.5
O1—C11—C4116.11 (15)O6—C20—H20B109.5
O1—C11—C10119.40 (15)H20A—C20—H20B109.5
C4—C11—C10124.49 (16)O6—C20—H20C109.5
O1—C12—C5115.05 (15)H20A—C20—H20C109.5
O1—C12—C13123.19 (16)H20B—C20—H20C109.5
O3—C1—C2—C3179.39 (16)C3—C4—C11—C105.7 (3)
C10—C1—C2—C32.0 (3)C15—C4—C11—C10175.57 (17)
C14—O4—C3—C23.8 (3)C1—C10—C11—O1176.47 (15)
C14—O4—C3—C4177.21 (16)C9—C10—C11—O15.1 (3)
C1—C2—C3—O4177.55 (16)C1—C10—C11—C42.8 (3)
C1—C2—C3—C41.4 (3)C9—C10—C11—C4175.67 (17)
O4—C3—C4—C11174.00 (15)C11—O1—C12—C5177.07 (15)
C2—C3—C4—C115.0 (3)C11—O1—C12—C132.6 (2)
O4—C3—C4—C154.7 (3)O5—C5—C12—O12.9 (2)
C2—C3—C4—C15176.34 (17)C6—C5—C12—O1177.22 (15)
C20—O6—C6—C5173.27 (16)O5—C5—C12—C13177.41 (16)
C20—O6—C6—C77.4 (3)C6—C5—C12—C132.5 (3)
O5—C5—C6—O61.3 (3)C7—C8—C13—C120.6 (3)
C12—C5—C6—O6178.80 (15)C7—C8—C13—C9179.37 (17)
O5—C5—C6—C7178.04 (17)O1—C12—C13—C8178.41 (16)
C12—C5—C6—C71.8 (3)C5—C12—C13—C81.3 (3)
O6—C6—C7—C8179.31 (17)O1—C12—C13—C91.6 (3)
C5—C6—C7—C80.0 (3)C5—C12—C13—C9178.73 (16)
C6—C7—C8—C131.2 (3)O2—C9—C13—C81.6 (3)
O3—C1—C10—C11179.96 (16)C10—C9—C13—C8177.72 (16)
C2—C1—C10—C111.3 (3)O2—C9—C13—C12178.43 (17)
O3—C1—C10—C91.6 (3)C10—C9—C13—C122.3 (2)
C2—C1—C10—C9179.76 (17)C11—C4—C15—C18160.22 (17)
O2—C9—C10—C11178.32 (17)C3—C4—C15—C1821.2 (2)
C13—C9—C10—C111.0 (3)C11—C4—C15—C1774.6 (2)
O2—C9—C10—C10.1 (3)C3—C4—C15—C17104.0 (2)
C13—C9—C10—C1179.36 (16)C11—C4—C15—C1645.9 (2)
C12—O1—C11—C4174.78 (15)C3—C4—C15—C16135.50 (18)
C12—O1—C11—C105.9 (2)C17—C15—C18—C198.8 (3)
C3—C4—C11—O1173.53 (15)C16—C15—C18—C19108.6 (2)
C15—C4—C11—O15.2 (2)C4—C15—C18—C19132.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O20.95 (3)1.65 (3)2.5573 (18)160 (2)
O5—H1O5···O60.83 (2)2.25 (2)2.7019 (19)115 (2)
O5—H1O5···O2i0.83 (2)1.98 (2)2.7520 (18)155 (2)
C8—H8A···O5ii0.932.543.413 (2)157
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H20O6
Mr356.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.1500 (4), 14.7396 (4), 9.5177 (3)
β (°) 90.208 (2)
V3)1704.48 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.50 × 0.23 × 0.22
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.951, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
37868, 3906, 2682
Rint0.071
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.133, 1.03
No. of reflections3906
No. of parameters259
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.27

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O20.95 (3)1.65 (3)2.5573 (18)160 (2)
O5—H1O5···O60.83 (2)2.25 (2)2.7019 (19)115 (2)
O5—H1O5···O2i0.83 (2)1.98 (2)2.7520 (18)155 (2)
C8—H8A···O5ii0.932.543.413 (2)157
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.
 

Footnotes

This paper is dedicated to His Majesty King Bhumibol Adulyadej of Thailand (King Rama IX) for his sustainable development of the country.

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Thailand Research Fund (TRF) for research grant (RSA 5280033) and the Prince of Songkla University for financial support. They also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. NB thanks the Development and Promotion of Science and Technology Talents Project for a fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoonnak, N., Chantrapromma, S. & Fun, H.-K. (2006). Acta Cryst. E62, o2034–o2036.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBoonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Fun, H.-K., Kanjana-Opas, A., Chantrapromma, K. & Kato, S. (2009). Tetrahedron, 65, 3003–3013.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Fun, H.-K., Kanjana-Opas, A. & Laphookhieo, S. (2006). Tetrahedron, 62, 8850–8859.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoonnak, N., Karalai, C., Chantrapromma, S., Ponglimanont, C., Kanjana-Opas, A., Chantrapromma, K. & Fun, H.-K. (2007). Can. J. Chem. 85, 341–345.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHay, A. E., Merza, J., Landreau, A., Litaudon, M., Pagniez, F., Pape, P. L. & Richomme, P. (2008). Fitoterapia, 79, 42–46.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o817-o818
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds