organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o737-o738

Methyl 2-acetamido-2-(1-acetyl-3-hydr­­oxy-2-oxoindolin-3-yl)propanoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China.
*Correspondence e-mail: hkfun@usm.my

(Received 23 February 2010; accepted 25 February 2010; online 3 March 2010)

In the title isatin compound, C16H18N2O6, the pyrrolidine ring adopts an envelope conformation and is inclined at a dihedral angle of 7.31 (5)° with respect to the benzene ring. The acetyl group is disordered over two positions with refined occupancies of 0.503 (4) and 0.497 (4). These groups make dihedral angles of 12.6 (6) and 19.6 (7)° with the pyrrolidine ring. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link neighbouring mol­ecules into infinite chains along the b axis. These chains are further inter­connected by inter­molecular O—H⋯O hydrogen bonds into two-dimensional arrays parallel to the bc plane. Weak inter­molecular C—H⋯π inter­actions further stabilize the crystal structure.

Related literature

For general background to and applications of isatin derivatives, see: Chu et al. (2007[Chu, W., Rothfuss, J., d'Avignon, A., Zeng, C., Zhou, D., Hotchkiss, R. S. & Mach, R. H. (2007). J. Med. Chem. 50, 3751-3755.]); Glover & Bhattacharya (1991[Glover, V. & Bhattacharya, S. K. (1991). Indian J. Exp. Biol. 29, 1-5.]); Gursoy & Karali (1996[Gursoy, A. & Karali, N. (1996). Farmaco, 51, 437-442.]); Pandeya et al. (1998[Pandeya, S. N., Sriram, D., Clercq, E. D., Pannecouque, C. & Witvrouw, M. (1998). Indian J. Pharm. Sci. 60, 207-212.]); Patel et al. (2006[Patel, A., Bari, S., Talele, G., Patel, J. & Sarangapani, M. (2006). Iranian J. Pharm. Res. 4, 249-254.]); Popp (1975[Popp, F. D. (1975). Adv. Heterocycl. Chem. 18, 1-58.]); Shvekhgeimer (1996[Shvekhgeimer, M.-G. A. (1996). Chem. Heterocycl. Compd, 345, 291-323.]); Sriram et al. (2006[Sriram, D., Yogeeswari, P. & Meena, K. (2006). Pharmazie, 61, 274-277.]); Verma et al. (2004[Verma, M., Pandeya, S. N., Singh, K. N. & Stables, J. P. (2004). Acta Pharm. 54, 49-56.]); Vine et al. (2007[Vine, K. L., Locke, J. M., Ranson, M., Pyne, S. G. & Bremmer, J. B. (2007). J. Med. Chem. 50, 5109-5117.]). For photoreactions of N-acetyl­isatin, see: Zhang et al. (2004[Zhang, Y., Wang, L., Zhang, M., Fun, H.-K. & Xu, J.-H. (2004). Org. Lett. 6, 4893-4893.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Usman et al. (2001[Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhang, Y. & Xu, J.-H. (2001). Acta Cryst. E57, o1070-o1072.], 2002a[Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhang, Y. & Xu, J.-H. (2002a). Acta Cryst. E58, o37-o39.],b[Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhao, B.-G. & Xu, J.-H. (2002b). Acta Cryst. C58, o24-o25.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18N2O6

  • Mr = 334.32

  • Monoclinic, C 2/c

  • a = 28.4345 (6) Å

  • b = 8.3396 (2) Å

  • c = 14.3779 (3) Å

  • β = 114.351 (2)°

  • V = 3106.15 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.47 × 0.37 × 0.26 mm

Data collection
  • Bruker SMART APEX Duo CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.972

  • 39997 measured reflections

  • 5705 independent reflections

  • 4854 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.126

  • S = 1.03

  • 5705 reflections

  • 258 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O6i 0.875 (17) 1.769 (17) 2.6391 (10) 172 (2)
C3—H3A⋯O1ii 0.93 2.58 3.4098 (12) 150
C15—H15CCg1iii 0.96 2.96 3.9104 (11) 169
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) x, y-1, z; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isatin (1H-indole-2,3-dione) was first discovered by Erdmann and Laurent in 1841 (Popp, 1975). Isatin and its derivatives are versatile molecules and possess a wide range of activities, especially in the biological and pharmaceutical fields. They are also basic structural units and important synthetic precursors of many naturally occuring alkaloids (Shvekhgeimer, 1996). Several of its derivatives were reported to exhibit a wide range of promising pharmacodynamic profiles displaying anti-convulsant (Gursoy & Karali, 1996; Verma et al., 2004), anti-HIV (Pandeya et al., 1998), cytotoxic (Vine et al., 2007), tuberculostatic (Sriram et al., 2006) and anti-microbial (Patel et al., 2006) activities. At millimolar concentrations, isatin has been found to inhibit different enzymes, an effect that may contribute to its anti-infective actions (Glover & Bhattacharya, 1991). Recently, a number of isatin-based compounds are reported as inhibitors of caspase-3 and caspase-7 (Chu et al., 2007). Photoreactions of N-acetylisatin with various species have also been of research interest (Zhang et al. 2004). Due to the importance of the isatin derivatives, the crystal structure of the biologically active title compound is reported in this paper.

In the title isatin compound (Fig. 1), atoms C7 and C11 are chiral centers. The indoline moiety is not planar, which is inconsistent with those related structures previously studied (Usman et al., 2001, 2002a,b). The pyrrolidine ring (N1/C1/C6-C8) of the indoline moiety adopts an envelope conformation, with puckering parameters of Q = 0.1013 (10) Å and ϕ = 132.3 (6)° (Cremer & Pople, 1975) and is inclined at a dihedral angle of 7.31 (5) with the (C1-C6) benzene ring. The acetyl group is disordered over two positions with a refined occupancy ratio of 0.503 (4):0.497 (4). The major (O3A/C9A/C10A) and minor (O3B/C9B/C10B) disorder components make dihedral angles of 12.6 (6) and 19.6 (7)°, respectively, to the attached pyrrolidine ring. The bond lengths are within normal ranges and agree well with those in related indoline structures (Usman et al., 2001, 2002a,b).

In the crystal structure (Fig. 2), intermolecular C3—H3A···O1 hydrogen bonds (Table 1) link neighbouring molecules into infinite chains along the b axis. These chains are further interconnected by intermolecular O1—H1O1···O6 hydrogen bonds (Table 1) into two-dimensional arrays parallel to the bc plane. Weak intermolecular C15—H15C···Cg1 interactions (Table 1) involving the centroid of C1-C6 benzene ring further stabilize the crystal structure.

Related literature top

For general background to and applications of isatin derivatives, see: Chu et al. (2007); Glover & Bhattacharya (1991); Gursoy & Karali (1996); Pandeya et al. (1998); Patel et al. (2006); Popp (1975); Shvekhgeimer (1996); Sriram et al. (2006); Verma et al. (2004); Vine et al. (2007). For photoreactions of N-acetylisatin, see: Zhang et al. (2004). For ring conformations, see: Cremer & Pople (1975). For related structures, see: Usman et al. (2001, 2002a,b). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was obtained in the reaction between N-acetylisatin and 2,4-dimethyl-5-methyloxy-oxazole. The compound was purified by flash column chromatography. X-ray quality single crystals of the title compound were obtained from slow evaporation of a solution of chloroform and petroleum ether (1:3; v:v). M.p. 431–434 K.

Refinement top

Atoms H1O1 and H1N1 were located from difference Fourier map and allowed to refine freely. All other hydrogen atoms were placed in their calculated positions, with C—H = 0.93 or 0.96 Å, and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). The acetyl group is disordered over two positions with a refined occupancy ratio of 0.503 (4):0.497 (4). Three short intermolecular interactions involving the major disordered components [C9A···C9A = 3.027 (6) Å, C9A···C10A = 2.913 (4) Å, C10A···C10A = 2.621 (3) Å] which are shorter than the sum of the van der Waals radius of the carbon atom are observed.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008; molecular graphics: SHELXTL (Sheldrick, 2008; software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Bonds to atoms of the minor disordered component are drawn as open lines.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis, showing a two-dimensional array parallel to the bc plane. Only the major disordered components are shown. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
Methyl 2-acetamido-2-(1-acetyl-3-hydroxy-2-oxoindolin-3-yl)propanoate top
Crystal data top
C16H18N2O6F(000) = 1408
Mr = 334.32Dx = 1.430 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9185 reflections
a = 28.4345 (6) Åθ = 2.6–32.6°
b = 8.3396 (2) ŵ = 0.11 mm1
c = 14.3779 (3) ÅT = 100 K
β = 114.351 (2)°Block, colourless
V = 3106.15 (12) Å30.47 × 0.37 × 0.26 mm
Z = 8
Data collection top
Bruker SMART APEX Duo CCD area-detector
diffractometer
5705 independent reflections
Radiation source: fine-focus sealed tube4854 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 32.7°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 4243
Tmin = 0.950, Tmax = 0.972k = 1212
39997 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0685P)2 + 1.8239P]
where P = (Fo2 + 2Fc2)/3
5705 reflections(Δ/σ)max < 0.001
258 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C16H18N2O6V = 3106.15 (12) Å3
Mr = 334.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.4345 (6) ŵ = 0.11 mm1
b = 8.3396 (2) ÅT = 100 K
c = 14.3779 (3) Å0.47 × 0.37 × 0.26 mm
β = 114.351 (2)°
Data collection top
Bruker SMART APEX Duo CCD area-detector
diffractometer
5705 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4854 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.972Rint = 0.033
39997 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.48 e Å3
5705 reflectionsΔρmin = 0.36 e Å3
258 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.18064 (3)0.48686 (8)0.01504 (5)0.02081 (14)
O20.07223 (3)0.53296 (9)0.06871 (6)0.02680 (16)
O40.16093 (3)0.21913 (9)0.24294 (6)0.02902 (17)
O50.08943 (3)0.35325 (9)0.14131 (6)0.02432 (15)
O60.15655 (4)0.58921 (10)0.29251 (6)0.03130 (18)
N10.07133 (3)0.25274 (11)0.07079 (8)0.0300 (2)
N20.15337 (3)0.59960 (9)0.13473 (6)0.01608 (14)
C10.11099 (4)0.13422 (11)0.04580 (7)0.01937 (17)
C20.10601 (4)0.02706 (11)0.07223 (7)0.02217 (18)
H2A0.07370.07460.10520.027*
C30.15133 (4)0.11480 (11)0.04742 (7)0.02182 (18)
H3A0.14920.22300.06430.026*
C40.19967 (4)0.04441 (11)0.00189 (8)0.02254 (18)
H4A0.22930.10540.01690.027*
C50.20390 (4)0.11744 (11)0.02897 (7)0.01982 (17)
H5A0.23610.16500.06210.024*
C60.15917 (3)0.20604 (10)0.00553 (6)0.01592 (15)
C70.15271 (3)0.38261 (10)0.02069 (6)0.01522 (15)
C80.09386 (4)0.40548 (11)0.04325 (7)0.02089 (17)
O3A0.0031 (3)0.0870 (9)0.1455 (7)0.068 (2)0.503 (4)
C9A0.01989 (9)0.2274 (3)0.1348 (3)0.0290 (5)0.503 (4)
C10A0.01576 (8)0.3669 (3)0.17624 (17)0.0287 (5)0.503 (4)
H10A0.04880.32930.22420.043*0.503 (4)
H10B0.00160.43930.20990.043*0.503 (4)
H10C0.01980.42160.12120.043*0.503 (4)
O3B0.0045 (3)0.0780 (10)0.1114 (8)0.097 (3)0.497 (4)
C9B0.01733 (9)0.2087 (3)0.0877 (3)0.0343 (6)0.497 (4)
C10B0.01742 (8)0.3377 (3)0.0815 (2)0.0339 (6)0.497 (4)
H10D0.03470.38700.14730.051*0.497 (4)
H10E0.00260.41690.03280.051*0.497 (4)
H10F0.04250.29240.06050.051*0.497 (4)
C110.16854 (3)0.43179 (10)0.13503 (6)0.01508 (14)
C120.14032 (4)0.32345 (11)0.18209 (7)0.01931 (16)
C130.05969 (6)0.25468 (15)0.18069 (14)0.0438 (3)
H13A0.02360.27690.14340.066*
H13B0.06960.27850.25160.066*
H13C0.06610.14350.17310.066*
C140.15038 (3)0.66917 (11)0.21616 (7)0.01811 (16)
C150.13850 (4)0.84545 (11)0.20910 (8)0.02441 (19)
H15A0.15770.89500.27410.037*
H15B0.10220.86060.19010.037*
H15C0.14800.89340.15860.037*
C160.22685 (4)0.41480 (12)0.19614 (7)0.02257 (18)
H16A0.23630.45570.26390.034*
H16B0.24460.47430.16320.034*
H16C0.23630.30370.19970.034*
H1O10.1751 (7)0.467 (2)0.0785 (13)0.043 (4)*
H1N20.1491 (6)0.658 (2)0.0803 (13)0.037 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0311 (3)0.0154 (3)0.0206 (3)0.0004 (2)0.0154 (3)0.0001 (2)
O20.0279 (4)0.0212 (3)0.0225 (3)0.0096 (3)0.0016 (3)0.0024 (3)
O40.0417 (4)0.0207 (3)0.0283 (4)0.0071 (3)0.0181 (3)0.0091 (3)
O50.0234 (3)0.0183 (3)0.0349 (4)0.0014 (2)0.0156 (3)0.0029 (3)
O60.0504 (5)0.0266 (4)0.0169 (3)0.0064 (3)0.0138 (3)0.0000 (3)
N10.0182 (4)0.0203 (4)0.0376 (5)0.0029 (3)0.0025 (3)0.0127 (3)
N20.0207 (3)0.0119 (3)0.0159 (3)0.0007 (2)0.0078 (3)0.0004 (2)
C10.0213 (4)0.0154 (4)0.0192 (4)0.0019 (3)0.0061 (3)0.0038 (3)
C20.0280 (4)0.0162 (4)0.0220 (4)0.0012 (3)0.0099 (3)0.0047 (3)
C30.0344 (5)0.0127 (3)0.0223 (4)0.0018 (3)0.0157 (4)0.0003 (3)
C40.0289 (4)0.0154 (4)0.0277 (4)0.0062 (3)0.0162 (4)0.0022 (3)
C50.0221 (4)0.0163 (4)0.0232 (4)0.0034 (3)0.0114 (3)0.0008 (3)
C60.0194 (4)0.0129 (3)0.0154 (3)0.0019 (3)0.0072 (3)0.0005 (3)
C70.0176 (3)0.0124 (3)0.0147 (3)0.0015 (3)0.0058 (3)0.0008 (3)
C80.0203 (4)0.0183 (4)0.0178 (4)0.0034 (3)0.0015 (3)0.0054 (3)
O3A0.031 (2)0.0249 (15)0.107 (3)0.0043 (12)0.012 (2)0.0154 (19)
C9A0.0171 (9)0.0259 (10)0.0374 (14)0.0030 (7)0.0044 (9)0.0101 (10)
C10A0.0171 (8)0.0334 (11)0.0279 (10)0.0015 (7)0.0014 (7)0.0044 (8)
O3B0.024 (2)0.050 (3)0.204 (9)0.0125 (18)0.035 (4)0.065 (4)
C9B0.0188 (9)0.0314 (12)0.0486 (17)0.0025 (8)0.0096 (11)0.0163 (12)
C10B0.0182 (9)0.0401 (13)0.0380 (12)0.0013 (8)0.0063 (8)0.0151 (10)
C110.0167 (3)0.0129 (3)0.0143 (3)0.0010 (3)0.0051 (3)0.0006 (3)
C120.0261 (4)0.0140 (3)0.0201 (4)0.0012 (3)0.0119 (3)0.0001 (3)
C130.0427 (7)0.0260 (5)0.0786 (10)0.0036 (5)0.0409 (7)0.0095 (6)
C140.0189 (4)0.0166 (4)0.0173 (4)0.0010 (3)0.0060 (3)0.0042 (3)
C150.0282 (4)0.0160 (4)0.0318 (5)0.0007 (3)0.0152 (4)0.0060 (3)
C160.0175 (4)0.0238 (4)0.0207 (4)0.0022 (3)0.0021 (3)0.0036 (3)
Geometric parameters (Å, º) top
O1—C71.4095 (11)C7—C81.5533 (12)
O1—H1O10.875 (18)C7—C111.5695 (12)
O2—C81.2070 (11)O3A—C9A1.250 (8)
O4—C121.2013 (11)C9A—C10A1.496 (3)
O5—C121.3416 (12)C10A—H10A0.9600
O5—C131.4514 (13)C10A—H10B0.9600
O6—C141.2336 (12)C10A—H10C0.9600
N1—C9A1.386 (2)O3B—C9B1.156 (9)
N1—C81.4074 (13)C9B—C10B1.488 (3)
N1—C11.4295 (12)C10B—H10D0.9600
N1—C9B1.498 (3)C10B—H10E0.9600
N2—C141.3404 (11)C10B—H10F0.9600
N2—C111.4639 (11)C11—C161.5298 (12)
N2—H1N20.888 (17)C11—C121.5379 (12)
C1—C21.3890 (12)C13—H13A0.9600
C1—C61.3952 (12)C13—H13B0.9600
C2—C31.3944 (14)C13—H13C0.9600
C2—H2A0.9300C14—C151.5025 (13)
C3—C41.3904 (14)C15—H15A0.9600
C3—H3A0.9300C15—H15B0.9600
C4—C51.3962 (13)C15—H15C0.9600
C4—H4A0.9300C16—H16A0.9600
C5—C61.3871 (12)C16—H16B0.9600
C5—H5A0.9300C16—H16C0.9600
C6—C71.5109 (11)
C7—O1—H1O1111.9 (12)N1—C9A—C10A120.17 (19)
C12—O5—C13114.94 (9)O3B—C9B—C10B124.2 (4)
C9A—N1—C8123.92 (13)O3B—C9B—N1117.2 (4)
C9A—N1—C1124.67 (12)C10B—C9B—N1118.4 (2)
C8—N1—C1109.55 (8)C9B—C10B—H10D109.5
C9A—N1—C9B28.89 (14)C9B—C10B—H10E109.5
C8—N1—C9B125.78 (12)H10D—C10B—H10E109.5
C1—N1—C9B121.41 (14)C9B—C10B—H10F109.5
C14—N2—C11122.41 (7)H10D—C10B—H10F109.5
C14—N2—H1N2119.8 (11)H10E—C10B—H10F109.5
C11—N2—H1N2117.5 (11)N2—C11—C16109.79 (7)
C2—C1—C6121.84 (8)N2—C11—C12110.88 (7)
C2—C1—N1128.31 (9)C16—C11—C12109.35 (7)
C6—C1—N1109.69 (8)N2—C11—C7106.85 (7)
C1—C2—C3117.32 (9)C16—C11—C7110.62 (7)
C1—C2—H2A121.3C12—C11—C7109.33 (7)
C3—C2—H2A121.3O4—C12—O5124.52 (9)
C4—C3—C2121.60 (9)O4—C12—C11124.03 (9)
C4—C3—H3A119.2O5—C12—C11111.30 (7)
C2—C3—H3A119.2O5—C13—H13A109.5
C3—C4—C5120.25 (9)O5—C13—H13B109.5
C3—C4—H4A119.9H13A—C13—H13B109.5
C5—C4—H4A119.9O5—C13—H13C109.5
C6—C5—C4118.84 (9)H13A—C13—H13C109.5
C6—C5—H5A120.6H13B—C13—H13C109.5
C4—C5—H5A120.6O6—C14—N2120.42 (8)
C5—C6—C1120.13 (8)O6—C14—C15122.31 (9)
C5—C6—C7129.64 (8)N2—C14—C15117.26 (8)
C1—C6—C7110.08 (7)C14—C15—H15A109.5
O1—C7—C6115.36 (7)C14—C15—H15B109.5
O1—C7—C8109.87 (7)H15A—C15—H15B109.5
C6—C7—C8101.52 (7)C14—C15—H15C109.5
O1—C7—C11105.03 (7)H15A—C15—H15C109.5
C6—C7—C11113.98 (7)H15B—C15—H15C109.5
C8—C7—C11111.19 (7)C11—C16—H16A109.5
O2—C8—N1126.58 (9)C11—C16—H16B109.5
O2—C8—C7125.27 (9)H16A—C16—H16B109.5
N1—C8—C7108.05 (7)C11—C16—H16C109.5
O3A—C9A—N1118.0 (4)H16A—C16—H16C109.5
O3A—C9A—C10A121.2 (4)H16B—C16—H16C109.5
C9A—N1—C1—C25.6 (3)C8—N1—C9A—O3A173.0 (6)
C8—N1—C1—C2170.47 (10)C1—N1—C9A—O3A24.2 (7)
C9B—N1—C1—C228.8 (2)C9B—N1—C9A—O3A69.1 (6)
C9A—N1—C1—C6169.8 (2)C8—N1—C9A—C10A2.2 (4)
C8—N1—C1—C64.91 (12)C1—N1—C9A—C10A165.0 (2)
C9B—N1—C1—C6155.78 (19)C9B—N1—C9A—C10A101.7 (4)
C6—C1—C2—C31.38 (14)C9A—N1—C9B—O3B82.3 (7)
N1—C1—C2—C3173.51 (10)C8—N1—C9B—O3B179.1 (6)
C1—C2—C3—C40.06 (14)C1—N1—C9B—O3B23.5 (7)
C2—C3—C4—C50.73 (15)C9A—N1—C9B—C10B92.8 (5)
C3—C4—C5—C60.20 (14)C8—N1—C9B—C10B4.0 (4)
C4—C5—C6—C11.09 (13)C1—N1—C9B—C10B161.4 (2)
C4—C5—C6—C7176.31 (9)C14—N2—C11—C1675.49 (10)
C2—C1—C6—C51.93 (14)C14—N2—C11—C1245.45 (11)
N1—C1—C6—C5173.81 (9)C14—N2—C11—C7164.50 (8)
C2—C1—C6—C7178.01 (8)O1—C7—C11—N260.42 (8)
N1—C1—C6—C72.27 (11)C6—C7—C11—N2172.37 (7)
C5—C6—C7—O149.26 (12)C8—C7—C11—N258.36 (9)
C1—C6—C7—O1126.33 (8)O1—C7—C11—C1659.04 (9)
C5—C6—C7—C8167.97 (9)C6—C7—C11—C1668.17 (9)
C1—C6—C7—C87.62 (9)C8—C7—C11—C16177.83 (7)
C5—C6—C7—C1172.40 (12)O1—C7—C11—C12179.52 (7)
C1—C6—C7—C11112.01 (8)C6—C7—C11—C1252.31 (9)
C9A—N1—C8—O21.6 (3)C8—C7—C11—C1261.69 (9)
C1—N1—C8—O2166.66 (10)C13—O5—C12—O43.57 (15)
C9B—N1—C8—O233.7 (3)C13—O5—C12—C11179.33 (9)
C9A—N1—C8—C7174.8 (2)N2—C11—C12—O4135.23 (9)
C1—N1—C8—C79.79 (12)C16—C11—C12—O414.03 (12)
C9B—N1—C8—C7149.9 (2)C7—C11—C12—O4107.22 (10)
O1—C7—C8—O243.51 (12)N2—C11—C12—O548.98 (10)
C6—C7—C8—O2166.08 (10)C16—C11—C12—O5170.18 (7)
C11—C7—C8—O272.33 (12)C7—C11—C12—O568.56 (9)
O1—C7—C8—N1133.01 (9)C11—N2—C14—O65.74 (14)
C6—C7—C8—N110.43 (10)C11—N2—C14—C15175.23 (8)
C11—C7—C8—N1111.16 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O6i0.875 (17)1.769 (17)2.6391 (10)172 (2)
C3—H3A···O1ii0.932.583.4098 (12)150
C15—H15C···Cg1iii0.962.963.9104 (11)169
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H18N2O6
Mr334.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)28.4345 (6), 8.3396 (2), 14.3779 (3)
β (°) 114.351 (2)
V3)3106.15 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.47 × 0.37 × 0.26
Data collection
DiffractometerBruker SMART APEX Duo CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.950, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
39997, 5705, 4854
Rint0.033
(sin θ/λ)max1)0.761
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.126, 1.03
No. of reflections5705
No. of parameters258
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.36

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O6i0.875 (17)1.769 (17)2.6391 (10)172 (2)
C3—H3A···O1ii0.93002.58003.4098 (12)150.00
C15—H15C···Cg1iii0.96002.963.9104 (11)169
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y1, z; (iii) x, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7576-2009.

Acknowledgements

Financial support from the Fok Ying Tung Education Foundation (114012) is acknowledged. HKF and JHG thank Universiti Sains Malaysia (USM) for a Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChu, W., Rothfuss, J., d'Avignon, A., Zeng, C., Zhou, D., Hotchkiss, R. S. & Mach, R. H. (2007). J. Med. Chem. 50, 3751–3755.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGlover, V. & Bhattacharya, S. K. (1991). Indian J. Exp. Biol. 29, 1–5.  PubMed CAS Web of Science Google Scholar
First citationGursoy, A. & Karali, N. (1996). Farmaco, 51, 437–442.  CAS PubMed Web of Science Google Scholar
First citationPandeya, S. N., Sriram, D., Clercq, E. D., Pannecouque, C. & Witvrouw, M. (1998). Indian J. Pharm. Sci. 60, 207–212.  CAS Google Scholar
First citationPatel, A., Bari, S., Talele, G., Patel, J. & Sarangapani, M. (2006). Iranian J. Pharm. Res. 4, 249–254.  Google Scholar
First citationPopp, F. D. (1975). Adv. Heterocycl. Chem. 18, 1–58.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShvekhgeimer, M.-G. A. (1996). Chem. Heterocycl. Compd, 345, 291–323.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P. & Meena, K. (2006). Pharmazie, 61, 274–277.  Web of Science PubMed CAS Google Scholar
First citationUsman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhang, Y. & Xu, J.-H. (2001). Acta Cryst. E57, o1070–o1072.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUsman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhang, Y. & Xu, J.-H. (2002a). Acta Cryst. E58, o37–o39.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUsman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhao, B.-G. & Xu, J.-H. (2002b). Acta Cryst. C58, o24–o25.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationVerma, M., Pandeya, S. N., Singh, K. N. & Stables, J. P. (2004). Acta Pharm. 54, 49–56.  PubMed CAS Google Scholar
First citationVine, K. L., Locke, J. M., Ranson, M., Pyne, S. G. & Bremmer, J. B. (2007). J. Med. Chem. 50, 5109–5117.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, Y., Wang, L., Zhang, M., Fun, H.-K. & Xu, J.-H. (2004). Org. Lett. 6, 4893–4893.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o737-o738
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds