organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o724-o725

4-[(2,4-Di­methyl-1,3-oxazol-5-yl)meth­yl]-4-hydr­­oxy-2-methyl­iso­quinoline-1,3(2H,4H)-dione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my

(Received 24 February 2010; accepted 26 February 2010; online 3 March 2010)

In the title isoquinolinedione derivative, C16H16N2O4, the piperidine ring in the tetra­hydro­isoquinoline unit adopts a half-boat conformation. The essentially planar oxazole ring [maximum deviation = 0.004 (2) Å] is inclined at a dihedral angle of 36.00 (8)° to the tetra­hydro­isoquinoline unit. In the crystal structure, pairs of inter­molecular C—H⋯O and O—H⋯N inter­actions link the mol­ecules into chains incorporating R22(9) ring motifs. Two neighbouring chains are further inter­connected by inter­molecular C—H⋯O inter­actions into chains two mol­ecules wide along the a axis.

Related literature

For general background to and applications of the title isoquinoline compound, see: Chen et al. (2006[Chen, Y.-H., Zhang, Y.-H., Zhang, H.-J., Liu, D.-Z., Gu, M., Li, J.-Y., Wu, F., Zhu, X.-Z., Li, J. & Nan, F.-J. (2006). J. Med. Chem. 49, 1613-1623.]); Hall et al. (1994[Hall, I. H., Chapman, J. M. & Wong, O. T. (1994). Anticancer Drugs, 5, 75-82.]); Malamas & Hohman (1994[Malamas, M. S. & Hohman, T. C. (1994). J. Med. Chem. 37, 2043-2058.]); Mitchell et al. (1995[Mitchell, G., Clarke, E. D., Ridley, S. M., Greenhow, D. T., Gillen, K. J., Vohra, S. K. & Wardman, P. (1995). Pestic. Sci. 44, 49-58.], 2000[Mitchell, G., Clarke, E. D., Ridley, S. M., Bartlett, D. W., Gillen, K. J., Vohra, S. K., Greenhow, D. T., Ormrod, J. C. & Wardman, P. (2000). Pest. Manag. Sci. 56, 120-126.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Subbiah Pandi et al. (2002[Subbiah Pandi, A., Rajakannan, V., Velmurugan, D., Parvez, M., Kim, M.-J., Senthilvelan, A. & Narasinga Rao, S. (2002). Acta Cryst. C58, o164-o167.]); Wang et al. (2000[Wang, X.-L., Tian, J.-Z., Ling, K.-Q. & Xu, J.-H. (2000). Res. Chem. Intermed. 26, 679-689.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O4

  • Mr = 300.31

  • Triclinic, [P \overline 1]

  • a = 8.3866 (5) Å

  • b = 8.8044 (5) Å

  • c = 10.6734 (7) Å

  • α = 103.997 (3)°

  • β = 90.025 (3)°

  • γ = 112.663 (2)°

  • V = 701.80 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.24 × 0.19 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.992

  • 6623 measured reflections

  • 3198 independent reflections

  • 2401 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.135

  • S = 1.04

  • 3198 reflections

  • 263 parameters

  • All H-atom parameters refined

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯N2i 0.87 (3) 2.04 (3) 2.847 (2) 153 (3)
C16—H16A⋯O1ii 0.96 (3) 2.28 (3) 3.162 (2) 153 (2)
C16—H16B⋯O1iii 1.01 (3) 2.50 (3) 3.270 (2) 132.9 (19)
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

A series of isoquinoline-1,3,4-trione derivatives were identified as novel and potent inhibitors of caspase-3 through structural modification of the original compounds from high-throughput screening (Chen et al., 2006). Moreover, the series of isoquinoline-1,3,4-triones were found to be fast-acting post-emergence herbicides, producing symptoms of desiccation (Mitchell et al., 2000). These redox-active compounds are very potent stimulators of the light-dependent consumption of oxygen at photosystem in isolated chloroplasts (Mitchell et al., 1995). Isoquinoline-1,3,4-trione derivatives have a variety of biological activities and are synthetic precursors for many naturally occuring alkaloids (Hall et al., 1994; Malamas & Hohman, 1994). The crystal structure of the related Z-2-methyl-3'-phenyl-spiro[isoquinoline-4,2'-oxirane]-1,3-dione has been reported (Wang et al., 2000).

In the title isoquinoline-1,3-dione compound (Fig. 1), the piperidine ring (C1/N1/C2/C3/C8/C9) in the 1,2,3,4-tetrahydroisoquinolin moiety adopts a half-boat conformation (Cremer & Pople, 1975) with puckering parameters of Q = 0.3114 (19) Å, θ = 71.4 (3)° and ϕ = 114.9 (4)°. The oxazole ring (C11/C12/N2/C13/O4) is essentially planar with maximum deviation of -0.004 (2) Å at atom C13. The oxazole ring is inclined at a dihedral angle of 36.00 (8)° with the mean plane through 1,2,3,4-tetrahydroisoquinolin moiety. Bond lengths (Allen et al., 1987) and angles are normal and comparable to those related isoquinoline-1,3-dione structures (Wang et al., 2000; Subbiah Pandi et al., 2002).

In the crystal structure (Fig. 2), intermolecular O3—H1O3···N2 and C16—H16A···O1 hydrogen bonds (Table 1) link the molecules into one-dimensional chains along a axis incorporating R22(9) ring motifs (Bernstein et al., 1995). Two neighbouring chains are further interconnected by intermolecular C16—H16B···O1 hydrogen bonds into two-molecule-wide chains along the same axis.

Related literature top

For general background to and applications of the title isoquinoline compound, see: Chen et al. (2006); Hall et al. (1994); Malamas & Hohman (1994); Mitchell et al. (1995, 2000). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Subbiah Pandi et al. (2002); Wang et al. (2000). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was obtained in the reaction between 1,3,4(2H)-isoquinolinetrione and 2,4,5-trimethyloxazole. The compound was purified by flash column chromatography in ethyl acetate and petroleum ether. X-ray quality single crystals of the title compound were obtained from slow evaporation of a chloroform solution. M.p. 434–436 K.

Refinement top

All the H atoms were located from difference Fourier map [range of C—H = 0.91 (2) - 1.01 (3) Å] and allowed to refine freely.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal structure of the title compound, showing two-molecule-wide chain along the a axis. H atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
4-[(2,4-Dimethyl-1,3-oxazol-5-yl)methyl]-4-hydroxy-2-methylisoquinoline- 1,3(2H,4H)-dione top
Crystal data top
C16H16N2O4Z = 2
Mr = 300.31F(000) = 316
Triclinic, P1Dx = 1.421 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3866 (5) ÅCell parameters from 1833 reflections
b = 8.8044 (5) Åθ = 4.4–32.7°
c = 10.6734 (7) ŵ = 0.10 mm1
α = 103.997 (3)°T = 100 K
β = 90.025 (3)°Block, colourless
γ = 112.663 (2)°0.24 × 0.19 × 0.08 mm
V = 701.80 (7) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3198 independent reflections
Radiation source: fine-focus sealed tube2401 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.976, Tmax = 0.992k = 1111
6623 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0731P)2 + 0.0844P]
where P = (Fo2 + 2Fc2)/3
3198 reflections(Δ/σ)max < 0.001
263 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C16H16N2O4γ = 112.663 (2)°
Mr = 300.31V = 701.80 (7) Å3
Triclinic, P1Z = 2
a = 8.3866 (5) ÅMo Kα radiation
b = 8.8044 (5) ŵ = 0.10 mm1
c = 10.6734 (7) ÅT = 100 K
α = 103.997 (3)°0.24 × 0.19 × 0.08 mm
β = 90.025 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3198 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2401 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.992Rint = 0.034
6623 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.135All H-atom parameters refined
S = 1.04Δρmax = 0.40 e Å3
3198 reflectionsΔρmin = 0.28 e Å3
263 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.23014 (16)0.40877 (16)0.32581 (13)0.0234 (3)
O20.76462 (17)0.27268 (17)0.04028 (14)0.0269 (3)
O31.13932 (17)0.07862 (17)0.33591 (13)0.0224 (3)
O40.78937 (15)0.36205 (15)0.40053 (12)0.0185 (3)
N10.99911 (18)0.34315 (18)0.18332 (15)0.0175 (3)
N20.50707 (18)0.22071 (19)0.33559 (15)0.0186 (3)
C11.0928 (2)0.3023 (2)0.26656 (17)0.0175 (4)
C20.8503 (2)0.2243 (2)0.10092 (18)0.0187 (4)
C30.8116 (2)0.0419 (2)0.08846 (17)0.0175 (4)
C40.6900 (2)0.0817 (2)0.01212 (19)0.0217 (4)
C50.6559 (2)0.2517 (3)0.0275 (2)0.0249 (4)
C60.7436 (3)0.3003 (2)0.0555 (2)0.0249 (4)
C70.8637 (2)0.1782 (2)0.15593 (19)0.0209 (4)
C80.8972 (2)0.0063 (2)0.17380 (17)0.0171 (4)
C91.0118 (2)0.1260 (2)0.29105 (18)0.0175 (4)
C100.8979 (2)0.1419 (3)0.40732 (18)0.0191 (4)
C110.7513 (2)0.1891 (2)0.38373 (17)0.0172 (4)
C120.5796 (2)0.1033 (2)0.34423 (17)0.0180 (4)
C130.6360 (2)0.3692 (2)0.36869 (17)0.0179 (4)
C141.0594 (3)0.5246 (2)0.1865 (2)0.0238 (4)
C150.4717 (3)0.0836 (2)0.3101 (2)0.0238 (4)
C160.6387 (2)0.5395 (2)0.3724 (2)0.0216 (4)
H1O31.243 (4)0.142 (3)0.321 (3)0.054 (8)*
H4A0.637 (3)0.043 (3)0.065 (2)0.033 (6)*
H5A0.574 (3)0.336 (3)0.097 (2)0.031 (6)*
H6A0.722 (3)0.420 (3)0.045 (2)0.029 (6)*
H7A0.924 (3)0.208 (2)0.217 (2)0.019 (5)*
H10A0.855 (3)0.032 (3)0.430 (2)0.024 (5)*
H10B0.979 (3)0.226 (3)0.484 (2)0.024 (5)*
H14A1.064 (3)0.595 (3)0.277 (3)0.045 (7)*
H14B0.985 (3)0.538 (3)0.127 (3)0.048 (7)*
H14C1.175 (4)0.565 (3)0.154 (3)0.052 (8)*
H15A0.436 (3)0.124 (3)0.215 (3)0.037 (6)*
H15B0.530 (3)0.148 (3)0.337 (2)0.040 (7)*
H15C0.360 (3)0.114 (3)0.349 (3)0.047 (7)*
H16A0.526 (3)0.529 (3)0.344 (2)0.037 (6)*
H16B0.682 (3)0.622 (3)0.461 (3)0.039 (6)*
H16C0.718 (4)0.594 (3)0.314 (3)0.053 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0134 (6)0.0238 (7)0.0300 (8)0.0053 (5)0.0010 (5)0.0053 (6)
O20.0215 (7)0.0300 (8)0.0333 (8)0.0113 (6)0.0025 (6)0.0136 (6)
O30.0105 (6)0.0283 (7)0.0340 (8)0.0096 (6)0.0033 (5)0.0151 (6)
O40.0104 (6)0.0223 (7)0.0219 (7)0.0072 (5)0.0009 (5)0.0026 (5)
N10.0133 (7)0.0185 (7)0.0224 (8)0.0073 (6)0.0023 (6)0.0070 (6)
N20.0116 (7)0.0221 (8)0.0226 (8)0.0077 (6)0.0020 (6)0.0052 (6)
C10.0132 (8)0.0217 (9)0.0203 (9)0.0095 (7)0.0049 (7)0.0063 (7)
C20.0126 (8)0.0260 (9)0.0204 (9)0.0092 (7)0.0053 (7)0.0088 (7)
C30.0113 (8)0.0210 (9)0.0203 (9)0.0062 (7)0.0045 (7)0.0057 (7)
C40.0157 (9)0.0290 (10)0.0205 (9)0.0086 (8)0.0036 (7)0.0073 (8)
C50.0167 (9)0.0267 (10)0.0240 (10)0.0045 (8)0.0035 (8)0.0004 (8)
C60.0225 (10)0.0201 (10)0.0315 (11)0.0087 (8)0.0095 (8)0.0055 (8)
C70.0167 (9)0.0220 (9)0.0271 (10)0.0098 (8)0.0055 (7)0.0086 (8)
C80.0115 (8)0.0212 (9)0.0203 (9)0.0075 (7)0.0058 (7)0.0070 (7)
C90.0112 (8)0.0249 (9)0.0210 (9)0.0102 (7)0.0026 (7)0.0090 (7)
C100.0122 (8)0.0270 (10)0.0199 (9)0.0086 (7)0.0022 (7)0.0079 (8)
C110.0133 (8)0.0224 (9)0.0162 (9)0.0075 (7)0.0033 (7)0.0047 (7)
C120.0143 (8)0.0236 (9)0.0174 (9)0.0087 (7)0.0025 (7)0.0055 (7)
C130.0108 (8)0.0256 (10)0.0169 (9)0.0080 (7)0.0009 (6)0.0036 (7)
C140.0230 (10)0.0190 (9)0.0302 (11)0.0084 (8)0.0015 (8)0.0077 (8)
C150.0157 (9)0.0219 (10)0.0333 (12)0.0055 (8)0.0027 (8)0.0099 (8)
C160.0139 (9)0.0216 (9)0.0285 (11)0.0067 (7)0.0011 (8)0.0059 (8)
Geometric parameters (Å, º) top
O1—C11.219 (2)C6—H6A0.98 (2)
O2—C21.219 (2)C7—C81.392 (2)
O3—C91.4096 (19)C7—H7A0.97 (2)
O3—H1O30.87 (3)C8—C91.510 (2)
O4—C131.3590 (19)C9—C101.579 (3)
O4—C111.395 (2)C10—C111.481 (2)
N1—C11.381 (2)C10—H10A0.99 (2)
N1—C21.405 (2)C10—H10B1.00 (2)
N1—C141.469 (2)C11—C121.352 (2)
N2—C131.300 (2)C12—C151.491 (3)
N2—C121.407 (2)C13—C161.481 (3)
C1—C91.524 (2)C14—H14A1.01 (3)
C2—C31.482 (2)C14—H14B0.94 (3)
C3—C81.395 (2)C14—H14C0.99 (3)
C3—C41.398 (3)C15—H15A1.00 (3)
C4—C51.379 (3)C15—H15B0.97 (2)
C4—H4A0.91 (2)C15—H15C0.99 (3)
C5—C61.391 (3)C16—H16A0.95 (2)
C5—H5A0.96 (2)C16—H16B1.01 (3)
C6—C71.388 (3)C16—H16C0.98 (3)
C9—O3—H1O3111.7 (18)C1—C9—C10106.39 (14)
C13—O4—C11105.09 (13)C11—C10—C9115.98 (15)
C1—N1—C2124.28 (14)C11—C10—H10A110.1 (12)
C1—N1—C14116.33 (15)C9—C10—H10A106.9 (13)
C2—N1—C14119.36 (14)C11—C10—H10B111.0 (12)
C13—N2—C12105.17 (14)C9—C10—H10B106.8 (12)
O1—C1—N1120.67 (16)H10A—C10—H10B105.3 (17)
O1—C1—C9121.09 (15)C12—C11—O4107.30 (14)
N1—C1—C9118.01 (15)C12—C11—C10135.61 (17)
O2—C2—N1120.21 (16)O4—C11—C10117.05 (15)
O2—C2—C3123.36 (17)C11—C12—N2108.95 (15)
N1—C2—C3116.36 (14)C11—C12—C15129.76 (17)
C8—C3—C4120.28 (16)N2—C12—C15121.29 (15)
C8—C3—C2120.80 (16)N2—C13—O4113.49 (15)
C4—C3—C2118.91 (16)N2—C13—C16129.41 (16)
C5—C4—C3119.75 (18)O4—C13—C16117.08 (15)
C5—C4—H4A123.9 (14)N1—C14—H14A110.5 (14)
C3—C4—H4A116.4 (14)N1—C14—H14B109.2 (15)
C4—C5—C6120.24 (18)H14A—C14—H14B112 (2)
C4—C5—H5A119.7 (13)N1—C14—H14C110.9 (15)
C6—C5—H5A120.0 (13)H14A—C14—H14C110 (2)
C7—C6—C5120.25 (18)H14B—C14—H14C104 (2)
C7—C6—H6A118.6 (13)C12—C15—H15A108.7 (13)
C5—C6—H6A121.1 (13)C12—C15—H15B112.9 (14)
C6—C7—C8120.05 (18)H15A—C15—H15B111 (2)
C6—C7—H7A122.2 (12)C12—C15—H15C113.7 (15)
C8—C7—H7A117.7 (12)H15A—C15—H15C104 (2)
C7—C8—C3119.42 (17)H15B—C15—H15C106 (2)
C7—C8—C9120.71 (16)C13—C16—H16A110.0 (14)
C3—C8—C9119.63 (15)C13—C16—H16B112.3 (13)
O3—C9—C8112.25 (14)H16A—C16—H16B111 (2)
O3—C9—C1111.38 (14)C13—C16—H16C112.0 (16)
C8—C9—C1111.91 (14)H16A—C16—H16C106 (2)
O3—C9—C10105.32 (14)H16B—C16—H16C105 (2)
C8—C9—C10109.17 (14)
C2—N1—C1—O1172.69 (16)C3—C8—C9—C129.7 (2)
C14—N1—C1—O19.2 (3)C7—C8—C9—C1086.56 (19)
C2—N1—C1—C912.7 (2)C3—C8—C9—C1087.76 (19)
C14—N1—C1—C9165.40 (16)O1—C1—C9—O327.0 (2)
C1—N1—C2—O2172.40 (17)N1—C1—C9—O3158.35 (15)
C14—N1—C2—O25.6 (3)O1—C1—C9—C8153.60 (16)
C1—N1—C2—C310.5 (2)N1—C1—C9—C831.8 (2)
C14—N1—C2—C3171.54 (16)O1—C1—C9—C1087.24 (19)
O2—C2—C3—C8170.30 (17)N1—C1—C9—C1087.39 (18)
N1—C2—C3—C812.7 (2)O3—C9—C10—C11179.26 (15)
O2—C2—C3—C411.0 (3)C8—C9—C10—C1158.5 (2)
N1—C2—C3—C4166.05 (16)C1—C9—C10—C1162.40 (19)
C8—C3—C4—C50.6 (3)C13—O4—C11—C120.42 (18)
C2—C3—C4—C5178.13 (17)C13—O4—C11—C10177.85 (15)
C3—C4—C5—C60.8 (3)C9—C10—C11—C1295.1 (3)
C4—C5—C6—C71.1 (3)C9—C10—C11—O482.6 (2)
C5—C6—C7—C80.1 (3)O4—C11—C12—N20.00 (19)
C6—C7—C8—C31.3 (3)C10—C11—C12—N2177.81 (19)
C6—C7—C8—C9173.05 (17)O4—C11—C12—C15178.81 (18)
C4—C3—C8—C71.6 (3)C10—C11—C12—C151.0 (4)
C2—C3—C8—C7177.07 (16)C13—N2—C12—C110.4 (2)
C4—C3—C8—C9172.78 (16)C13—N2—C12—C15178.48 (17)
C2—C3—C8—C98.5 (3)C12—N2—C13—O40.7 (2)
C7—C8—C9—O329.8 (2)C12—N2—C13—C16177.28 (19)
C3—C8—C9—O3155.84 (15)C11—O4—C13—N20.75 (19)
C7—C8—C9—C1155.93 (16)C11—O4—C13—C16177.54 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···N2i0.87 (3)2.04 (3)2.847 (2)153 (3)
C16—H16A···O1ii0.96 (3)2.28 (3)3.162 (2)153 (2)
C16—H16B···O1iii1.01 (3)2.50 (3)3.270 (2)132.9 (19)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H16N2O4
Mr300.31
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.3866 (5), 8.8044 (5), 10.6734 (7)
α, β, γ (°)103.997 (3), 90.025 (3), 112.663 (2)
V3)701.80 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.24 × 0.19 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.976, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
6623, 3198, 2401
Rint0.034
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.135, 1.04
No. of reflections3198
No. of parameters263
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.40, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···N2i0.87 (3)2.04 (3)2.847 (2)153 (3)
C16—H16A···O1ii0.96 (3)2.28 (3)3.162 (2)153 (2)
C16—H16B···O1iii1.01 (3)2.50 (3)3.270 (2)132.9 (19)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+2, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7576-2009.

Acknowledgements

Financial support from the Ministry of Science and Technology of China of the Austria–China Cooperation project (2007DFA41590) is acknowledged. HKF and JHG thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-H., Zhang, Y.-H., Zhang, H.-J., Liu, D.-Z., Gu, M., Li, J.-Y., Wu, F., Zhu, X.-Z., Li, J. & Nan, F.-J. (2006). J. Med. Chem. 49, 1613–1623.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHall, I. H., Chapman, J. M. & Wong, O. T. (1994). Anticancer Drugs, 5, 75–82.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMalamas, M. S. & Hohman, T. C. (1994). J. Med. Chem. 37, 2043–2058.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationMitchell, G., Clarke, E. D., Ridley, S. M., Bartlett, D. W., Gillen, K. J., Vohra, S. K., Greenhow, D. T., Ormrod, J. C. & Wardman, P. (2000). Pest. Manag. Sci. 56, 120–126.  CrossRef CAS Google Scholar
First citationMitchell, G., Clarke, E. D., Ridley, S. M., Greenhow, D. T., Gillen, K. J., Vohra, S. K. & Wardman, P. (1995). Pestic. Sci. 44, 49–58.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubbiah Pandi, A., Rajakannan, V., Velmurugan, D., Parvez, M., Kim, M.-J., Senthilvelan, A. & Narasinga Rao, S. (2002). Acta Cryst. C58, o164–o167.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-L., Tian, J.-Z., Ling, K.-Q. & Xu, J.-H. (2000). Res. Chem. Intermed. 26, 679–689.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o724-o725
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds