organic compounds
(E)-3-(2,3,4,5,6-Pentafluorostyryl)thiophene
aLaboratoire de Chimie des Polymères, CP206/1 Université Libre de Bruxelles, Boulevard du Triomphe, Faculté des Sciences, 1050 Bruxelles, Belgium, bLaboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons UMONS, Place du Parc 23, 7000 Mons, Belgium, cDepartment of Chemistry, Youngstown State University, One University Plaza, Youngstown, OH 44555-3663, USA, and dDepartment of Applied Engineering, Karel de Grote University College, Salesianenlaan 30, 2660 Antwerp, Belgium
*Correspondence e-mail: christophe.vandevelde@kdg.be
The reaction of thiophene-3-carboxaldehyde and perfluorobenzyltriphenylphosphonium bromide in the presence of sodium hydride gave the title compound, C12H5F5S, in 70% yield. The thiophene and perfluorophenyl groups form a dihedral angle of 5.4 (2)°. The structure is characterized by a head-to-tail organization in a columnar arrangement due to π–π interactions between the thiophene and pentafluorophenyl rings with centroid–centroid distances in the range 3.698 (2)–3.802 (2) Å.
Related literature
For electronic materials with high conductivity due to complementary groups, see: Yamamoto et al. (2009); Hoeben et al. (2005). For a bottom-up approach to rational design of electronic materials, see: Lu & Lieber (2007). For thiophene derivatives used in solar cells or oLEDs, see: Osaka & McCullough (2008); Mishra et al. (2009). For the structure of 2,5-dibromo-3-(2,3,4,5,6-pentafluorostyryl)thiophene, see: Clément et al. (2010).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810009992/sj2740sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810009992/sj2740Isup2.hkl
Perfluorobenzyltriphenylphosphonium bromide (800 mg,1.53 mmol) and sodium hydride (80 mg, 2 mmol) are stirred in 5 ml of DMF during15 min. Then, thiophenecarboxaldehyde (0.13 ml, 1.53 mmol) is added and the mixture is heated at 50 °C. After 16 h, the reaction is hydrolyzed and the solid residue is filtered off. The compound is purified by
on silica gel with hexane/CH2Cl2 (4:1) to give (E)-3-(perfluorostyryl)thiophene in 70% yield. Crystals of 1 were obtained by slow evaporation of a saturated dichloromethane solution. 1H NMR (300 MHz, CDCl3):d7.43 (d, 1 H, CH=, 3JH—H= 16.5, vinyl-H), 7.37 (m, 3 H,3 Har), 6.82 (d, 1 H, CH=, 3JH—H = 16.5, vinyl-H);13C{1H} NMR (CDCl3): d 145.7(C-8, C-12), 142.3 (C-10), 138.8 (C-9, C-11), 130.5, 126.1, 124.3, 123.8 (C-1, C-2, C-3, C-4, C-5, C-6); 111.8 (C-7); 19F NMR (CDCl3): d -140.9 (2 F, Fortho), -154.4 (1 F, Fpara), -162.9 (2 F, Fmeta); ESI-MS (m/z): 276(100, M+), 257 (92, M+ -F).All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93 Å, Uiso = 1.2Ueq (C).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).Fig. 1. The structure of 1 with displacement ellipsoids drawn at the 50% probablity level. | |
Fig. 2. A view of the packing of 1. |
C12H5F5S | F(000) = 552 |
Mr = 276.22 | Dx = 1.761 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2814 reflections |
a = 5.8097 (15) Å | θ = 2.9–31.1° |
b = 24.581 (6) Å | µ = 0.36 mm−1 |
c = 7.3224 (18) Å | T = 100 K |
β = 94.953 (4)° | Plate, colourless |
V = 1041.8 (4) Å3 | 0.31 × 0.21 × 0.05 mm |
Z = 4 |
Bruker SMART APEX area-detector diffractometer | 3056 independent reflections |
Radiation source: fine-focus sealed tube | 2513 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ω scans | θmax = 31.2°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −5→8 |
Tmin = 0.637, Tmax = 0.746 | k = −25→35 |
5781 measured reflections | l = −10→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.086 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.186 | H-atom parameters constrained |
S = 1.21 | w = 1/[σ2(Fo2) + (0.0193P)2 + 5.9694P] where P = (Fo2 + 2Fc2)/3 |
3056 reflections | (Δ/σ)max < 0.001 |
163 parameters | Δρmax = 0.73 e Å−3 |
0 restraints | Δρmin = −0.58 e Å−3 |
3 constraints |
C12H5F5S | V = 1041.8 (4) Å3 |
Mr = 276.22 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.8097 (15) Å | µ = 0.36 mm−1 |
b = 24.581 (6) Å | T = 100 K |
c = 7.3224 (18) Å | 0.31 × 0.21 × 0.05 mm |
β = 94.953 (4)° |
Bruker SMART APEX area-detector diffractometer | 3056 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2513 reflections with I > 2σ(I) |
Tmin = 0.637, Tmax = 0.746 | Rint = 0.031 |
5781 measured reflections |
R[F2 > 2σ(F2)] = 0.086 | 0 restraints |
wR(F2) = 0.186 | H-atom parameters constrained |
S = 1.21 | Δρmax = 0.73 e Å−3 |
3056 reflections | Δρmin = −0.58 e Å−3 |
163 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.22542 (18) | 0.54717 (4) | 0.56342 (15) | 0.0219 (2) | |
F9 | −0.0433 (4) | 0.80297 (10) | 0.4285 (3) | 0.0200 (5) | |
F10 | −0.0888 (4) | 0.91035 (10) | 0.4229 (3) | 0.0211 (5) | |
F12 | 0.6511 (4) | 0.93050 (10) | 0.7310 (3) | 0.0218 (5) | |
F13 | 0.6987 (4) | 0.82233 (10) | 0.7475 (3) | 0.0205 (5) | |
F11 | 0.2579 (5) | 0.97589 (10) | 0.5694 (4) | 0.0244 (5) | |
C4 | 0.4895 (7) | 0.62804 (17) | 0.6462 (5) | 0.0181 (7) | |
H4 | 0.6168 | 0.6489 | 0.6883 | 0.022* | |
C13 | 0.5023 (6) | 0.84305 (17) | 0.6626 (5) | 0.0160 (7) | |
C3 | 0.2770 (6) | 0.65098 (16) | 0.5703 (5) | 0.0154 (7) | |
C8 | 0.3328 (6) | 0.80732 (16) | 0.5885 (5) | 0.0154 (7) | |
C12 | 0.4805 (6) | 0.89877 (16) | 0.6571 (5) | 0.0162 (7) | |
C11 | 0.2808 (7) | 0.92176 (16) | 0.5756 (5) | 0.0188 (8) | |
C9 | 0.1336 (7) | 0.83262 (16) | 0.5062 (5) | 0.0161 (7) | |
C6 | 0.2239 (7) | 0.70861 (16) | 0.5483 (5) | 0.0183 (7) | |
H6 | 0.0793 | 0.7182 | 0.4934 | 0.022* | |
C10 | 0.1082 (7) | 0.88846 (17) | 0.5015 (5) | 0.0185 (8) | |
C7 | 0.3708 (7) | 0.74870 (16) | 0.6022 (5) | 0.0178 (7) | |
H7 | 0.5149 | 0.7378 | 0.6548 | 0.021* | |
C2 | 0.1186 (7) | 0.61079 (17) | 0.5195 (5) | 0.0179 (7) | |
H2 | −0.0301 | 0.6177 | 0.4670 | 0.022* | |
C5 | 0.4880 (7) | 0.57227 (17) | 0.6512 (5) | 0.0177 (7) | |
H5 | 0.6123 | 0.5509 | 0.6961 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0228 (5) | 0.0195 (5) | 0.0229 (5) | −0.0009 (4) | −0.0003 (4) | −0.0008 (4) |
F9 | 0.0164 (11) | 0.0213 (12) | 0.0216 (12) | −0.0008 (9) | −0.0019 (9) | −0.0022 (9) |
F10 | 0.0163 (11) | 0.0242 (13) | 0.0219 (12) | 0.0053 (9) | −0.0039 (9) | 0.0004 (10) |
F12 | 0.0203 (11) | 0.0239 (13) | 0.0210 (12) | −0.0070 (10) | −0.0004 (9) | −0.0039 (10) |
F13 | 0.0150 (10) | 0.0257 (13) | 0.0199 (12) | 0.0008 (9) | −0.0033 (9) | −0.0005 (9) |
F11 | 0.0309 (13) | 0.0179 (12) | 0.0240 (13) | 0.0007 (10) | 0.0003 (10) | −0.0014 (10) |
C4 | 0.0169 (16) | 0.0215 (19) | 0.0159 (16) | −0.0013 (14) | 0.0018 (13) | −0.0014 (15) |
C13 | 0.0131 (15) | 0.024 (2) | 0.0107 (15) | 0.0005 (14) | 0.0010 (12) | 0.0007 (14) |
C3 | 0.0158 (16) | 0.0196 (19) | 0.0107 (15) | 0.0011 (13) | 0.0010 (13) | −0.0002 (13) |
C8 | 0.0136 (16) | 0.0198 (19) | 0.0133 (16) | 0.0009 (13) | 0.0035 (13) | 0.0000 (14) |
C12 | 0.0150 (16) | 0.0206 (19) | 0.0129 (16) | −0.0048 (14) | 0.0013 (13) | −0.0023 (14) |
C11 | 0.026 (2) | 0.0166 (19) | 0.0137 (17) | 0.0001 (15) | 0.0035 (15) | −0.0014 (14) |
C9 | 0.0158 (16) | 0.0185 (19) | 0.0141 (16) | −0.0014 (14) | 0.0013 (13) | 0.0011 (14) |
C6 | 0.0206 (17) | 0.0199 (19) | 0.0148 (17) | 0.0032 (15) | 0.0028 (13) | 0.0011 (14) |
C10 | 0.0163 (17) | 0.023 (2) | 0.0170 (17) | 0.0047 (14) | 0.0036 (14) | 0.0018 (15) |
C7 | 0.0201 (17) | 0.0189 (19) | 0.0144 (16) | 0.0018 (14) | 0.0010 (14) | −0.0002 (14) |
C2 | 0.0156 (17) | 0.022 (2) | 0.0152 (16) | −0.0009 (14) | −0.0018 (13) | −0.0003 (14) |
C5 | 0.0170 (17) | 0.022 (2) | 0.0133 (16) | 0.0035 (14) | −0.0020 (13) | −0.0002 (14) |
S1—C2 | 1.703 (4) | C3—C2 | 1.380 (5) |
S1—C5 | 1.718 (4) | C3—C6 | 1.456 (5) |
F9—C9 | 1.345 (4) | C8—C9 | 1.403 (5) |
F10—C10 | 1.348 (4) | C8—C7 | 1.460 (5) |
F12—C12 | 1.338 (4) | C12—C11 | 1.379 (6) |
F13—C13 | 1.350 (4) | C11—C10 | 1.370 (6) |
F11—C11 | 1.338 (5) | C9—C10 | 1.381 (6) |
C4—C5 | 1.371 (6) | C6—C7 | 1.341 (6) |
C4—C3 | 1.425 (5) | C6—H6 | 0.9300 |
C4—H4 | 0.9300 | C7—H7 | 0.9300 |
C13—C12 | 1.376 (6) | C2—H2 | 0.9300 |
C13—C8 | 1.394 (5) | C5—H5 | 0.9300 |
S1···S1i | 3.5611 (17) | F10···H5iii | 2.49 |
F9···F13ii | 2.921 (3) | H5···F11iv | 2.59 |
F10···F12ii | 2.865 (3) | H2···F13iii | 2.61 |
F10···C12ii | 3.166 (4) | C3···C9v | 3.392 (5) |
F10···C5iii | 3.056 (5) | C3···C13vi | 3.365 (5) |
C2—S1—C5 | 92.19 (19) | F9—C9—C10 | 116.9 (3) |
C5—C4—C3 | 113.5 (4) | F9—C9—C8 | 120.9 (3) |
C5—C4—H4 | 123.3 | C10—C9—C8 | 122.3 (4) |
C3—C4—H4 | 123.3 | C7—C6—C3 | 124.0 (4) |
F13—C13—C12 | 117.4 (3) | C7—C6—H6 | 118.0 |
F13—C13—C8 | 118.8 (4) | C3—C6—H6 | 118.0 |
C12—C13—C8 | 123.7 (4) | F10—C10—C11 | 119.8 (4) |
C2—C3—C4 | 110.9 (4) | F10—C10—C9 | 119.5 (4) |
C2—C3—C6 | 122.5 (4) | C11—C10—C9 | 120.7 (4) |
C4—C3—C6 | 126.6 (4) | C6—C7—C8 | 128.1 (4) |
C13—C8—C9 | 114.6 (4) | C6—C7—H7 | 116.0 |
C13—C8—C7 | 119.8 (3) | C8—C7—H7 | 116.0 |
C9—C8—C7 | 125.5 (4) | C3—C2—S1 | 112.5 (3) |
F12—C12—C13 | 120.3 (3) | C3—C2—H2 | 123.7 |
F12—C12—C11 | 120.2 (4) | S1—C2—H2 | 123.7 |
C13—C12—C11 | 119.5 (4) | C4—C5—S1 | 110.9 (3) |
F11—C11—C10 | 120.9 (4) | C4—C5—H5 | 124.6 |
F11—C11—C12 | 120.0 (4) | S1—C5—H5 | 124.6 |
C10—C11—C12 | 119.1 (4) | ||
C5—C4—C3—C2 | 0.0 (5) | C2—C3—C6—C7 | 177.5 (4) |
C5—C4—C3—C6 | 179.3 (4) | C4—C3—C6—C7 | −1.7 (6) |
F13—C13—C8—C9 | 178.9 (3) | F11—C11—C10—F10 | −0.7 (6) |
C12—C13—C8—C9 | −0.1 (6) | C12—C11—C10—F10 | 179.4 (3) |
F13—C13—C8—C7 | −0.6 (5) | F11—C11—C10—C9 | 179.2 (4) |
C12—C13—C8—C7 | −179.6 (4) | C12—C11—C10—C9 | −0.6 (6) |
F13—C13—C12—F12 | 1.1 (5) | F9—C9—C10—F10 | 0.7 (5) |
C8—C13—C12—F12 | −179.9 (3) | C8—C9—C10—F10 | −179.0 (3) |
F13—C13—C12—C11 | −178.5 (3) | F9—C9—C10—C11 | −179.3 (3) |
C8—C13—C12—C11 | 0.5 (6) | C8—C9—C10—C11 | 1.1 (6) |
F12—C12—C11—F11 | 0.4 (6) | C3—C6—C7—C8 | −179.1 (4) |
C13—C12—C11—F11 | −180.0 (4) | C13—C8—C7—C6 | 176.1 (4) |
F12—C12—C11—C10 | −179.7 (4) | C9—C8—C7—C6 | −3.3 (7) |
C13—C12—C11—C10 | −0.1 (6) | C4—C3—C2—S1 | 0.1 (4) |
C13—C8—C9—F9 | 179.7 (3) | C6—C3—C2—S1 | −179.2 (3) |
C7—C8—C9—F9 | −0.9 (6) | C5—S1—C2—C3 | −0.2 (3) |
C13—C8—C9—C10 | −0.7 (6) | C3—C4—C5—S1 | −0.2 (4) |
C7—C8—C9—C10 | 178.8 (4) | C2—S1—C5—C4 | 0.2 (3) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y, z; (iii) x−1, −y+3/2, z−1/2; (iv) −x+1, y−1/2, −z+3/2; (v) x, −y+3/2, z+1/2; (vi) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C12H5F5S |
Mr | 276.22 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 5.8097 (15), 24.581 (6), 7.3224 (18) |
β (°) | 94.953 (4) |
V (Å3) | 1041.8 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.36 |
Crystal size (mm) | 0.31 × 0.21 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART APEX area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.637, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5781, 3056, 2513 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.729 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.086, 0.186, 1.21 |
No. of reflections | 3056 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.73, −0.58 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Acknowledgements
The authors thank Roberto Lazzaroni (Laboratory of Chemistry for Novel Materials, CIRMAP, UMONS), Yves Geerts (Laboratoire de Chimie des Polymères, ULB) and Philippe Dubois (Laboratory of Polymeric and Composite Materials, CIRMAP, UMONS) for fruitful discussions related to thiophene chemistry. This work was supported by the "Revêtement Fonctionnels" program (SMARTFILM project) of the Région Wallonne and the European Commission (FEDER, FSE). CIRMAP is also very grateful for their general financial support in the frame of Objectif 1-Hainaut: Materia Nova, as well as the Belgian Federal Government Office of Science Policy (PAI 6/27). We thank the Laboratoire de Physico-chimie des Polymères et des Interfaces (University of Cergy Pontoize, France) for the 19F NMR spectra. The diffractometer was funded by NSF grant 0087210, by Ohio board of regents grant CAP-491, and by YSU. OC is a Research Associate of the Belgian National Fund for Scientific Research (FRS–FNRS).
References
Bruker (2007). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2008). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clément, S., Meyer, F., De Winter, J., Coulembier, O., Vande Velde, C. M. L., Zeller, M., Gerbaux, P., Balandier, J.-Y., Sergeyev, S., Lazzaroni, R., Geerts, Y. & Dubois, P. (2010). J. Org. Chem. 75, 1561–1568. Web of Science PubMed Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hoeben, F. J. M., Jonkheijm, P., Meijer, E. W. & Schenning, A. P. H. J. (2005). Chem. Rev. 105, 1491–1546. Web of Science CrossRef PubMed CAS Google Scholar
Lu, W. & Lieber, C. M. (2007). Nat. Mater., 6, 841–850. Web of Science CrossRef PubMed CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mishra, A., Ma, C.-Q. & Bauerle, P. (2009). Chem. Soc. Rev. 109, 1141–1276. CrossRef CAS Google Scholar
Osaka, I. & McCullough, R. D. (2008). Acc. Chem. Res. 41, 1202–1214. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamamoto, T., Sato, T., Lijima, T., Abe, M., Fukumoto, H., Koizumi, T., Usui, M., Nakamura, Y., Yagi, T., Tajima, H., Okada, T., Sasaki, S., Kishida, H., Nakamura, A., Fukuda, T., Emoto, A., Ushijima, H., Kurosaki, C. & Hirota, H. (2009). Bull. Chem. Soc. Jpn, 82, 896–909. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The development of new electronic devices is currently performed through the engineering of organic electronic materials composed of π-conjugated polymers. The incorporation of unsaturated systems with complementary groups takes advantage of high electronic conductivity supplemented by a supramolecular organization at the nanoscale (Yamamoto et al., 2009, Hoeben et al., 2005). Therefore, the rational design of new building blocks has arisen as an essential pathway to fulfill the bottom-up approach (Lu & Lieber, 2007). As a preliminary milestone, we report the structure of (E)-3-(perfluorostyryl)thiophene (1), an intermediate aiming at the preparation of polythiophenes with self-complementary groups. These thiophene derivatives could find applications in electronic devices with solar cell or organic light emitting diode (oLED) properties (Osaka & McCullough, 2008; Mishra et al., 2009). The structure of 1 is shown in Figure 1.
(E)-3-(perfluorostyryl)thiophene crystallizes in the space group P21/c and exhibits an almost planar molecular geometry - a slight rotation of 5.4 (2)° between the L.S. planes of the thiophene and perfluorophenyl groups is observed. The π-π stacking between the aromatic rings arranges the unsaturated compound in alternating orientations within one column due to opposite dipole moments. The distance between the thiophene-perfluorophenyl centres for successive pairs is in the range 3.698 (2)-3.802 (2) Å.
The orientation of the double bonds of successive molecules in the columns is perpendicular, in contrast with 2,5-dibromo-3-(perfluorostyryl)thiophene (Clément et al., 2010), where they are parallel, due to a different arrangement of the molecules with regard to the symmetry elements in the cell, although the space group is identical.
Neighboring columns in 1 are closely packed, with the molecules in neigboring columns shifted up or down by approximately half the intermolecular distance. Between columns, there are also short S—S contacts and 2 F—F interactions. For a list of short contacts, see the "Geometric parameters" table.