organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o896-o897

(E)-3-(2,3,4,5,6-Penta­fluoro­styr­yl)thio­phene

aLaboratoire de Chimie des Polymères, CP206/1 Université Libre de Bruxelles, Boulevard du Triomphe, Faculté des Sciences, 1050 Bruxelles, Belgium, bLaboratory of Polymeric and Composite Materials, Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons UMONS, Place du Parc 23, 7000 Mons, Belgium, cDepartment of Chemistry, Youngstown State University, One University Plaza, Youngstown, OH 44555-3663, USA, and dDepartment of Applied Engineering, Karel de Grote University College, Salesianenlaan 30, 2660 Antwerp, Belgium
*Correspondence e-mail: christophe.vandevelde@kdg.be

(Received 28 February 2010; accepted 17 March 2010; online 24 March 2010)

The reaction of thio­phene-3-carboxaldehyde and perfluoro­benzyl­triphenyl­phospho­nium bromide in the presence of sodium hydride gave the title compound, C12H5F5S, in 70% yield. The thiophene and perfluorophenyl groups form a dihedral angle of 5.4 (2)°. The structure is characterized by a head-to-tail organization in a columnar arrangement due to ππ inter­actions between the thio­phene and penta­fluoro­phenyl rings with centroid–centroid distances in the range 3.698 (2)–3.802 (2) Å.

Related literature

For electronic materials with high conductivity due to complementary groups, see: Yamamoto et al. (2009[Yamamoto, T., Sato, T., Lijima, T., Abe, M., Fukumoto, H., Koizumi, T., Usui, M., Nakamura, Y., Yagi, T., Tajima, H., Okada, T., Sasaki, S., Kishida, H., Nakamura, A., Fukuda, T., Emoto, A., Ushijima, H., Kurosaki, C. & Hirota, H. (2009). Bull. Chem. Soc. Jpn, 82, 896-909.]); Hoeben et al. (2005[Hoeben, F. J. M., Jonkheijm, P., Meijer, E. W. & Schenning, A. P. H. J. (2005). Chem. Rev. 105, 1491-1546.]). For a bottom-up approach to rational design of electronic materials, see: Lu & Lieber (2007[Lu, W. & Lieber, C. M. (2007). Nat. Mater., 6, 841-850.]). For thio­phene derivatives used in solar cells or oLEDs, see: Osaka & McCullough (2008[Osaka, I. & McCullough, R. D. (2008). Acc. Chem. Res. 41, 1202-1214.]); Mishra et al. (2009[Mishra, A., Ma, C.-Q. & Bauerle, P. (2009). Chem. Soc. Rev. 109, 1141-1276.]). For the structure of 2,5-dibromo-3-(2,3,4,5,6-penta­fluoro­styr­yl)thio­phene, see: Clément et al. (2010[Clément, S., Meyer, F., De Winter, J., Coulembier, O., Vande Velde, C. M. L., Zeller, M., Gerbaux, P., Balandier, J.-Y., Sergeyev, S., Lazzaroni, R., Geerts, Y. & Dubois, P. (2010). J. Org. Chem. 75, 1561-1568.]).

[Scheme 1]

Experimental

Crystal data
  • C12H5F5S

  • Mr = 276.22

  • Monoclinic, P 21 /c

  • a = 5.8097 (15) Å

  • b = 24.581 (6) Å

  • c = 7.3224 (18) Å

  • β = 94.953 (4)°

  • V = 1041.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 100 K

  • 0.31 × 0.21 × 0.05 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.637, Tmax = 0.746

  • 5781 measured reflections

  • 3056 independent reflections

  • 2513 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.086

  • wR(F2) = 0.186

  • S = 1.21

  • 3056 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The development of new electronic devices is currently performed through the engineering of organic electronic materials composed of π-conjugated polymers. The incorporation of unsaturated systems with complementary groups takes advantage of high electronic conductivity supplemented by a supramolecular organization at the nanoscale (Yamamoto et al., 2009, Hoeben et al., 2005). Therefore, the rational design of new building blocks has arisen as an essential pathway to fulfill the bottom-up approach (Lu & Lieber, 2007). As a preliminary milestone, we report the structure of (E)-3-(perfluorostyryl)thiophene (1), an intermediate aiming at the preparation of polythiophenes with self-complementary groups. These thiophene derivatives could find applications in electronic devices with solar cell or organic light emitting diode (oLED) properties (Osaka & McCullough, 2008; Mishra et al., 2009). The structure of 1 is shown in Figure 1.

(E)-3-(perfluorostyryl)thiophene crystallizes in the space group P21/c and exhibits an almost planar molecular geometry - a slight rotation of 5.4 (2)° between the L.S. planes of the thiophene and perfluorophenyl groups is observed. The π-π stacking between the aromatic rings arranges the unsaturated compound in alternating orientations within one column due to opposite dipole moments. The distance between the thiophene-perfluorophenyl centres for successive pairs is in the range 3.698 (2)-3.802 (2) Å.

The orientation of the double bonds of successive molecules in the columns is perpendicular, in contrast with 2,5-dibromo-3-(perfluorostyryl)thiophene (Clément et al., 2010), where they are parallel, due to a different arrangement of the molecules with regard to the symmetry elements in the cell, although the space group is identical.

Neighboring columns in 1 are closely packed, with the molecules in neigboring columns shifted up or down by approximately half the intermolecular distance. Between columns, there are also short S—S contacts and 2 F—F interactions. For a list of short contacts, see the "Geometric parameters" table.

Related literature top

For electronic materials with high conductivity due to complementary groups, see: Yamamoto et al. (2009); Hoeben et al. (2005). For a bottom-up approach to the rational design of electronic materials, see: Lu & Lieber (2007). For thiophene derivatives used in solar cells or oLEDs, see: Osaka & McCullough (2008); Mishra et al. (2009). For the structure of 2,5-dibromo-3-(2,3,4,5,6-pentafluorostyryl)thiophene, see: Clément et al. (2010).

Experimental top

Perfluorobenzyltriphenylphosphonium bromide (800 mg,1.53 mmol) and sodium hydride (80 mg, 2 mmol) are stirred in 5 ml of DMF during15 min. Then, thiophenecarboxaldehyde (0.13 ml, 1.53 mmol) is added and the mixture is heated at 50 °C. After 16 h, the reaction is hydrolyzed and the solid residue is filtered off. The compound is purified by chromatography on silica gel with hexane/CH2Cl2 (4:1) to give (E)-3-(perfluorostyryl)thiophene in 70% yield. Crystals of 1 were obtained by slow evaporation of a saturated dichloromethane solution. 1H NMR (300 MHz, CDCl3):d7.43 (d, 1 H, CH=, 3JH—H= 16.5, vinyl-H), 7.37 (m, 3 H,3 Har), 6.82 (d, 1 H, CH=, 3JH—H = 16.5, vinyl-H);13C{1H} NMR (CDCl3): d 145.7(C-8, C-12), 142.3 (C-10), 138.8 (C-9, C-11), 130.5, 126.1, 124.3, 123.8 (C-1, C-2, C-3, C-4, C-5, C-6); 111.8 (C-7); 19F NMR (CDCl3): d -140.9 (2 F, Fortho), -154.4 (1 F, Fpara), -162.9 (2 F, Fmeta); ESI-MS (m/z): 276(100, M+), 257 (92, M+ -F).

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93 Å, Uiso = 1.2Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of 1 with displacement ellipsoids drawn at the 50% probablity level.
[Figure 2] Fig. 2. A view of the packing of 1.
(E)-3-(2,3,4,5,6-Pentafluorostyryl)thiophene top
Crystal data top
C12H5F5SF(000) = 552
Mr = 276.22Dx = 1.761 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2814 reflections
a = 5.8097 (15) Åθ = 2.9–31.1°
b = 24.581 (6) ŵ = 0.36 mm1
c = 7.3224 (18) ÅT = 100 K
β = 94.953 (4)°Plate, colourless
V = 1041.8 (4) Å30.31 × 0.21 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX area-detector
diffractometer
3056 independent reflections
Radiation source: fine-focus sealed tube2513 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 31.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 58
Tmin = 0.637, Tmax = 0.746k = 2535
5781 measured reflectionsl = 108
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.086Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0193P)2 + 5.9694P]
where P = (Fo2 + 2Fc2)/3
3056 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.58 e Å3
3 constraints
Crystal data top
C12H5F5SV = 1041.8 (4) Å3
Mr = 276.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8097 (15) ŵ = 0.36 mm1
b = 24.581 (6) ÅT = 100 K
c = 7.3224 (18) Å0.31 × 0.21 × 0.05 mm
β = 94.953 (4)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
3056 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2513 reflections with I > 2σ(I)
Tmin = 0.637, Tmax = 0.746Rint = 0.031
5781 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0860 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.21Δρmax = 0.73 e Å3
3056 reflectionsΔρmin = 0.58 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22542 (18)0.54717 (4)0.56342 (15)0.0219 (2)
F90.0433 (4)0.80297 (10)0.4285 (3)0.0200 (5)
F100.0888 (4)0.91035 (10)0.4229 (3)0.0211 (5)
F120.6511 (4)0.93050 (10)0.7310 (3)0.0218 (5)
F130.6987 (4)0.82233 (10)0.7475 (3)0.0205 (5)
F110.2579 (5)0.97589 (10)0.5694 (4)0.0244 (5)
C40.4895 (7)0.62804 (17)0.6462 (5)0.0181 (7)
H40.61680.64890.68830.022*
C130.5023 (6)0.84305 (17)0.6626 (5)0.0160 (7)
C30.2770 (6)0.65098 (16)0.5703 (5)0.0154 (7)
C80.3328 (6)0.80732 (16)0.5885 (5)0.0154 (7)
C120.4805 (6)0.89877 (16)0.6571 (5)0.0162 (7)
C110.2808 (7)0.92176 (16)0.5756 (5)0.0188 (8)
C90.1336 (7)0.83262 (16)0.5062 (5)0.0161 (7)
C60.2239 (7)0.70861 (16)0.5483 (5)0.0183 (7)
H60.07930.71820.49340.022*
C100.1082 (7)0.88846 (17)0.5015 (5)0.0185 (8)
C70.3708 (7)0.74870 (16)0.6022 (5)0.0178 (7)
H70.51490.73780.65480.021*
C20.1186 (7)0.61079 (17)0.5195 (5)0.0179 (7)
H20.03010.61770.46700.022*
C50.4880 (7)0.57227 (17)0.6512 (5)0.0177 (7)
H50.61230.55090.69610.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0228 (5)0.0195 (5)0.0229 (5)0.0009 (4)0.0003 (4)0.0008 (4)
F90.0164 (11)0.0213 (12)0.0216 (12)0.0008 (9)0.0019 (9)0.0022 (9)
F100.0163 (11)0.0242 (13)0.0219 (12)0.0053 (9)0.0039 (9)0.0004 (10)
F120.0203 (11)0.0239 (13)0.0210 (12)0.0070 (10)0.0004 (9)0.0039 (10)
F130.0150 (10)0.0257 (13)0.0199 (12)0.0008 (9)0.0033 (9)0.0005 (9)
F110.0309 (13)0.0179 (12)0.0240 (13)0.0007 (10)0.0003 (10)0.0014 (10)
C40.0169 (16)0.0215 (19)0.0159 (16)0.0013 (14)0.0018 (13)0.0014 (15)
C130.0131 (15)0.024 (2)0.0107 (15)0.0005 (14)0.0010 (12)0.0007 (14)
C30.0158 (16)0.0196 (19)0.0107 (15)0.0011 (13)0.0010 (13)0.0002 (13)
C80.0136 (16)0.0198 (19)0.0133 (16)0.0009 (13)0.0035 (13)0.0000 (14)
C120.0150 (16)0.0206 (19)0.0129 (16)0.0048 (14)0.0013 (13)0.0023 (14)
C110.026 (2)0.0166 (19)0.0137 (17)0.0001 (15)0.0035 (15)0.0014 (14)
C90.0158 (16)0.0185 (19)0.0141 (16)0.0014 (14)0.0013 (13)0.0011 (14)
C60.0206 (17)0.0199 (19)0.0148 (17)0.0032 (15)0.0028 (13)0.0011 (14)
C100.0163 (17)0.023 (2)0.0170 (17)0.0047 (14)0.0036 (14)0.0018 (15)
C70.0201 (17)0.0189 (19)0.0144 (16)0.0018 (14)0.0010 (14)0.0002 (14)
C20.0156 (17)0.022 (2)0.0152 (16)0.0009 (14)0.0018 (13)0.0003 (14)
C50.0170 (17)0.022 (2)0.0133 (16)0.0035 (14)0.0020 (13)0.0002 (14)
Geometric parameters (Å, º) top
S1—C21.703 (4)C3—C21.380 (5)
S1—C51.718 (4)C3—C61.456 (5)
F9—C91.345 (4)C8—C91.403 (5)
F10—C101.348 (4)C8—C71.460 (5)
F12—C121.338 (4)C12—C111.379 (6)
F13—C131.350 (4)C11—C101.370 (6)
F11—C111.338 (5)C9—C101.381 (6)
C4—C51.371 (6)C6—C71.341 (6)
C4—C31.425 (5)C6—H60.9300
C4—H40.9300C7—H70.9300
C13—C121.376 (6)C2—H20.9300
C13—C81.394 (5)C5—H50.9300
S1···S1i3.5611 (17)F10···H5iii2.49
F9···F13ii2.921 (3)H5···F11iv2.59
F10···F12ii2.865 (3)H2···F13iii2.61
F10···C12ii3.166 (4)C3···C9v3.392 (5)
F10···C5iii3.056 (5)C3···C13vi3.365 (5)
C2—S1—C592.19 (19)F9—C9—C10116.9 (3)
C5—C4—C3113.5 (4)F9—C9—C8120.9 (3)
C5—C4—H4123.3C10—C9—C8122.3 (4)
C3—C4—H4123.3C7—C6—C3124.0 (4)
F13—C13—C12117.4 (3)C7—C6—H6118.0
F13—C13—C8118.8 (4)C3—C6—H6118.0
C12—C13—C8123.7 (4)F10—C10—C11119.8 (4)
C2—C3—C4110.9 (4)F10—C10—C9119.5 (4)
C2—C3—C6122.5 (4)C11—C10—C9120.7 (4)
C4—C3—C6126.6 (4)C6—C7—C8128.1 (4)
C13—C8—C9114.6 (4)C6—C7—H7116.0
C13—C8—C7119.8 (3)C8—C7—H7116.0
C9—C8—C7125.5 (4)C3—C2—S1112.5 (3)
F12—C12—C13120.3 (3)C3—C2—H2123.7
F12—C12—C11120.2 (4)S1—C2—H2123.7
C13—C12—C11119.5 (4)C4—C5—S1110.9 (3)
F11—C11—C10120.9 (4)C4—C5—H5124.6
F11—C11—C12120.0 (4)S1—C5—H5124.6
C10—C11—C12119.1 (4)
C5—C4—C3—C20.0 (5)C2—C3—C6—C7177.5 (4)
C5—C4—C3—C6179.3 (4)C4—C3—C6—C71.7 (6)
F13—C13—C8—C9178.9 (3)F11—C11—C10—F100.7 (6)
C12—C13—C8—C90.1 (6)C12—C11—C10—F10179.4 (3)
F13—C13—C8—C70.6 (5)F11—C11—C10—C9179.2 (4)
C12—C13—C8—C7179.6 (4)C12—C11—C10—C90.6 (6)
F13—C13—C12—F121.1 (5)F9—C9—C10—F100.7 (5)
C8—C13—C12—F12179.9 (3)C8—C9—C10—F10179.0 (3)
F13—C13—C12—C11178.5 (3)F9—C9—C10—C11179.3 (3)
C8—C13—C12—C110.5 (6)C8—C9—C10—C111.1 (6)
F12—C12—C11—F110.4 (6)C3—C6—C7—C8179.1 (4)
C13—C12—C11—F11180.0 (4)C13—C8—C7—C6176.1 (4)
F12—C12—C11—C10179.7 (4)C9—C8—C7—C63.3 (7)
C13—C12—C11—C100.1 (6)C4—C3—C2—S10.1 (4)
C13—C8—C9—F9179.7 (3)C6—C3—C2—S1179.2 (3)
C7—C8—C9—F90.9 (6)C5—S1—C2—C30.2 (3)
C13—C8—C9—C100.7 (6)C3—C4—C5—S10.2 (4)
C7—C8—C9—C10178.8 (4)C2—S1—C5—C40.2 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z; (iii) x1, y+3/2, z1/2; (iv) x+1, y1/2, z+3/2; (v) x, y+3/2, z+1/2; (vi) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H5F5S
Mr276.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.8097 (15), 24.581 (6), 7.3224 (18)
β (°) 94.953 (4)
V3)1041.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.31 × 0.21 × 0.05
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.637, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
5781, 3056, 2513
Rint0.031
(sin θ/λ)max1)0.729
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.086, 0.186, 1.21
No. of reflections3056
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.58

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank Roberto Lazzaroni (Laboratory of Chemistry for Novel Materials, CIRMAP, UMONS), Yves Geerts (Laboratoire de Chimie des Polymères, ULB) and Philippe Dubois (Laboratory of Polymeric and Composite Materials, CIRMAP, UMONS) for fruitful discussions related to thiophene chemistry. This work was supported by the "Revêtement Fonctionnels" program (SMARTFILM project) of the Région Wallonne and the European Commission (FEDER, FSE). CIRMAP is also very grateful for their general financial support in the frame of Objectif 1-Hainaut: Materia Nova, as well as the Belgian Federal Government Office of Science Policy (PAI 6/27). We thank the Laboratoire de Physico-chimie des Polymères et des Inter­faces (University of Cergy Pontoize, France) for the 19F NMR spectra. The diffractometer was funded by NSF grant 0087210, by Ohio board of regents grant CAP-491, and by YSU. OC is a Research Associate of the Belgian National Fund for Scientific Research (FRS–FNRS).

References

First citationBruker (2007). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2008). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClément, S., Meyer, F., De Winter, J., Coulembier, O., Vande Velde, C. M. L., Zeller, M., Gerbaux, P., Balandier, J.-Y., Sergeyev, S., Lazzaroni, R., Geerts, Y. & Dubois, P. (2010). J. Org. Chem. 75, 1561–1568.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHoeben, F. J. M., Jonkheijm, P., Meijer, E. W. & Schenning, A. P. H. J. (2005). Chem. Rev. 105, 1491–1546.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLu, W. & Lieber, C. M. (2007). Nat. Mater., 6, 841–850.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMishra, A., Ma, C.-Q. & Bauerle, P. (2009). Chem. Soc. Rev. 109, 1141–1276.  CrossRef CAS Google Scholar
First citationOsaka, I. & McCullough, R. D. (2008). Acc. Chem. Res. 41, 1202–1214.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamamoto, T., Sato, T., Lijima, T., Abe, M., Fukumoto, H., Koizumi, T., Usui, M., Nakamura, Y., Yagi, T., Tajima, H., Okada, T., Sasaki, S., Kishida, H., Nakamura, A., Fukuda, T., Emoto, A., Ushijima, H., Kurosaki, C. & Hirota, H. (2009). Bull. Chem. Soc. Jpn, 82, 896–909.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o896-o897
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds