metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dibrom­ido(4′-phenyl-2,2′:6′,2′′-terpyrid­yl)copper(II) hemihydrate

aSchool of Chemistry and Chemical Engineering, Guangxi University, Guangxi 530004, People's Republic of China, and bFujian Institute of Research on the Structure of Matter, Fuzhou, Fujian, 350002, People's Republic of China
*Correspondence e-mail: mzmz2009@sohu.com

(Received 1 March 2010; accepted 21 March 2010; online 27 March 2010)

The title CuII complex, [CuBr2(C21H15N3)]·0.5H2O, was obtained by the hydro­thermal reaction of copper(II) bromide, 4′-phenyl-2,2′:6′,2′′-terpyridyl (4′-Ph-terpy or L) and sodium citrate in water in 31% yield. There are two unique complex mol­ecules and a water mol­ecule in the asymmetric unit. The CuII cation is ligated by three N atoms of L and two bromide anions, forming an irregular CuN3Br2 polyhedron with a distorted square-pyramidal coordination geometry. In the crystal structure, O—H⋯Br hydrogen bonds link the mol­ecules in a three-dimensional network.

Related literature

For the structures, properties and applications of MLX2 compounds (M = transition metal, L = terpyridine, X = halogen), see: Arriortua et al. (1988[Arriortua, M. I., Mesa, J. L., Rojo, T., Debaerdemaeker, T., Beltran-Porter, D., Stratemeier, H. & Reinen, D. (1988). Inorg. Chem. 27, 2976-2981.]); Bugarcic et al. (2004[Bugarcic, Z. D., Heinemann, F. W. & Eldik, R. V. (2004). Dalton Trans. pp. 279-286.]); Kickelbick et al. (2002[Kickelbick, G., Pintauer, T. & Matyjaszewski, K. (2002). New J. Chem. 26, 462-468.]); Koo et al. (2003[Koo, B.-K., Bewley, L., Golub, V., Rarig, R. S., Burkholder, E., O'Cornor, C. J. & Zubieta, J. (2003). Inorg. Chim. Acta, 351, 167-176.]); Ma et al. (2009[Ma, Z., Liu, B. Q., Yang, H., Xing, Y. P., Hu, M. & Sun, J. (2009). J. Coord. Chem. 62, 3314-3323.]); Yam et al. (2003[Yam, V. W.-W., Wong, K. M.-C. & Zhu, N. (2003). Angew. Chem. Int. Ed. 42, 1400-1403.]). For the preparation of the ligand, see Constable et al. (1990[Constable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47-54.]).

[Scheme 1]

Experimental

Crystal data
  • [CuBr2(C21H15N3)]·0.5H2O

  • Mr = 541.73

  • Triclinic, [P \overline 1]

  • a = 10.1369 (16) Å

  • b = 10.8131 (17) Å

  • c = 18.688 (3) Å

  • α = 73.629 (3)°

  • β = 77.088 (4)°

  • γ = 87.567 (5)°

  • V = 1915.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.33 mm−1

  • T = 130 K

  • 0.35 × 0.25 × 0.10 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.543, Tmax = 1.000

  • 14948 measured reflections

  • 8650 independent reflections

  • 7545 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.079

  • S = 1.02

  • 8650 reflections

  • 496 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H01⋯Br1i 0.85 2.89 3.520 (2) 133
O1—H01⋯Br2i 0.85 2.85 3.549 (2) 141
O1—H02⋯Br3ii 0.86 2.59 3.414 (2) 160
Symmetry codes: (i) x-1, y-1, z+1; (ii) -x, -y, -z+2.

Data collection: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design and synthesis of photo-luminescent metal coordination compounds bearing terpy ligands have attracted a considerable interest. Examples include various terpy complexes of Pd(II), Pt(II), Zn(II) and Ag(I), (Bugarcic et al., 2004; Ma et al., 2009; Yam et al., 2003). Despite a preparative route which involves the presence of sodium citrate in the hydrothermal reaction mixture, the single crystal structure of the title complex exhibits a neutral mononuclear unit with a copper(II) cation, one 4'-Ph-terpy ligand and two bromide ions in its coordination sphere. There is no evidence of coordination by the citrate anion to the central metal ion.

There are two independent complex molecules of [CuBr2(C21H15N3)]2.H2O in the asymmetric unit of the triclinic unit cell (Figure 1). Each copper (II) cation is coordinated by the three nitrogen atoms of the 4'-phenyl-2,2':6',2''-terpyridyl ligand, L, and two bromide anions, forming an irregular distorted square pyramidal CuN3Br2 polyhedron. In both unique molecules, the two bromide ions occupy the apical [Br(2) and Br(4)] and equatorial [Br(1) and Br(3)] positions. The other three basal coordination positions are occupied by the three nitrogen atoms of L. This geometry is confirmed by the angles between the ligand donor atoms in the equatorial plane of the square pyramid (Table 1). The angles between the two apical bromide ions and the three terpy nitrogen atoms are in the range 95.37 - 101.39 ° for one molecule and 94.30 - 102.29 ° for the other. The terpyridyl molecules in the two compounds are nearly planar (with RMS deviations 0.1446 for one compound and 0.0292 for the other). The phenyl rings of the terpy ligands are twisted to make angles of 17.1 (1) and 25.3 (2) ° respectively with the CuN3 coordination planes. Similar irregular CuN3Br2 polyhedra have been found in other copper(II) complexes (Arriortua et al., 1988; Kickelbick et al., 2002; Koo et al., 2003). A lattice water is contained in the asymmetric unit, which originates from water used in the synthesis and is also involved in weak Cu—Br···H2O hydrogen bonding with the neighboring bromide ligands (Br(1), Br(2)) and Br(3)), respectively.

Related literature top

For the structures, properties and applications of MLX2 compounds (M = transition metal, L = terpyridine, X = halogen), see: Arriortua et al. (1988); Bugarcic et al. (2004); Kickelbick et al. (2002); Koo et al. (2003); Ma et al. (2009); Yam et al. (2003). For the preparation of the ligand, see Constable et al. (1990).

Experimental top

Free L was prepared by a reported procedure. (Constable et al., 1990). The title compound was synthesized by reaction of copper(II) bromide, sodium citrate and L in hydrothermal conditions as follows: A mixture of CuBr2.4H2O (0.044 g, 0.14 mmol), L (0.040 g, 0.071 mmol), sodium citrate (Na3C6H5O7.2H2O) (0.021 g, 0.071 mmol), and distilled water (20 ml) was sealed in a 25 ml stainless steel reactor with a Teflon liner and heated at 110 °C for 3 days. Blue crystals of 1, suitable for X-ray characterization, were isolated by mechanical separation from a mixture which included an unidentified powder. The yield of 1 was 31 % based on the ligand.

Refinement top

Hydrogen atoms bonded to the ligands were positioned geometrically and refined using a riding model with C—H = 0.93 - 0.97 Å and with Uiso(H) = 1.2 times Ueq(C).These hydrogen atoms were assigned isotropic thermal parameters and allowed to ride on their respective parent atoms before the final cycle of least-squares refinement. Oxygen-bound hydrogen atoms were located in difference Fourier maps and and were fixed in these positions with O—H = 0.84 - 0.87 Å and Uiso(H) = 1.2 times Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title complex, showing the atom labeling scheme with 50 % probability displacement ellipsoids. H atoms have been omitted for clarity. Cu-ligand bonds are indicated by full lines.
[Figure 2] Fig. 2. A view of the crystal packing along the a axis, showing the hydrogen bonding scheme. Hydrogen bonds are represented by dashed lines.
Dibromoido(4'-phenyl-2,2':6',2''-terpyridyl)copper(II) monohydrate top
Crystal data top
[CuBr2(C21H15N3)]·0.5H2OZ = 4
Mr = 541.73F(000) = 1064
Triclinic, P1Dx = 1.879 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1369 (16) ÅCell parameters from 5787 reflections
b = 10.8131 (17) Åθ = 2.3–27.5°
c = 18.688 (3) ŵ = 5.33 mm1
α = 73.629 (3)°T = 130 K
β = 77.088 (4)°Prism, blue
γ = 87.567 (5)°0.35 × 0.25 × 0.10 mm
V = 1915.2 (5) Å3
Data collection top
Rigaku Mercury CCD
diffractometer
8650 independent reflections
Radiation source: fine-focus sealed tube7545 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
h = 139
Tmin = 0.543, Tmax = 1.000k = 1314
14948 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.2526P]
where P = (Fo2 + 2Fc2)/3
8650 reflections(Δ/σ)max = 0.001
496 parametersΔρmax = 0.96 e Å3
2 restraintsΔρmin = 0.55 e Å3
Crystal data top
[CuBr2(C21H15N3)]·0.5H2Oγ = 87.567 (5)°
Mr = 541.73V = 1915.2 (5) Å3
Triclinic, P1Z = 4
a = 10.1369 (16) ÅMo Kα radiation
b = 10.8131 (17) ŵ = 5.33 mm1
c = 18.688 (3) ÅT = 130 K
α = 73.629 (3)°0.35 × 0.25 × 0.10 mm
β = 77.088 (4)°
Data collection top
Rigaku Mercury CCD
diffractometer
8650 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
7545 reflections with I > 2σ(I)
Tmin = 0.543, Tmax = 1.000Rint = 0.021
14948 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0322 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.02Δρmax = 0.96 e Å3
8650 reflectionsΔρmin = 0.55 e Å3
496 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.63419 (3)0.83649 (3)0.492085 (19)0.01705 (8)
Cu20.06492 (3)0.37614 (3)0.841659 (19)0.01615 (8)
Br10.65556 (3)1.05162 (3)0.408556 (16)0.02060 (7)
Br20.84123 (3)0.72331 (3)0.421510 (16)0.02066 (7)
Br40.28069 (3)0.49110 (3)0.885676 (16)0.02110 (7)
Br30.14953 (3)0.18948 (3)0.817675 (17)0.02307 (8)
N10.7268 (2)0.8644 (2)0.57309 (13)0.0167 (5)
N20.5554 (2)0.6933 (2)0.58000 (13)0.0153 (5)
N30.4908 (2)0.7691 (2)0.45004 (13)0.0174 (5)
N40.0272 (2)0.4935 (2)0.73239 (13)0.0173 (5)
N50.0774 (2)0.4906 (2)0.84456 (13)0.0147 (5)
N60.0299 (2)0.2903 (2)0.94745 (13)0.0162 (5)
C10.8147 (3)0.9591 (3)0.56399 (18)0.0225 (6)
H1A0.83951.01900.51630.027*
C20.8705 (3)0.9714 (3)0.62327 (18)0.0232 (6)
H2A0.93261.03740.61530.028*
C30.8317 (3)0.8836 (3)0.69411 (18)0.0242 (7)
H3A0.86680.89060.73480.029*
C40.7403 (3)0.7848 (3)0.70467 (16)0.0196 (6)
H4A0.71280.72540.75230.024*
C50.6909 (3)0.7763 (3)0.64275 (16)0.0162 (6)
C60.5956 (3)0.6742 (3)0.64545 (15)0.0148 (5)
C70.5468 (3)0.5692 (3)0.70736 (15)0.0162 (6)
H7A0.57500.55680.75290.019*
C80.4545 (3)0.4817 (3)0.70085 (15)0.0149 (5)
C90.4111 (3)0.5083 (3)0.63204 (15)0.0162 (6)
H9A0.34860.45350.62610.019*
C100.4615 (3)0.6166 (3)0.57290 (15)0.0143 (5)
C110.4198 (3)0.6642 (3)0.49925 (15)0.0157 (6)
C120.3101 (3)0.6132 (3)0.48241 (16)0.0202 (6)
H12A0.26340.53990.51600.024*
C130.2724 (3)0.6742 (3)0.41448 (17)0.0240 (7)
H13A0.19600.64540.40360.029*
C140.3482 (3)0.7778 (3)0.36288 (17)0.0237 (6)
H14A0.32690.81670.31590.028*
C150.4572 (3)0.8224 (3)0.38314 (16)0.0225 (6)
H15A0.50870.89210.34870.027*
C160.4027 (3)0.3679 (3)0.76587 (15)0.0155 (5)
C170.4695 (3)0.3253 (3)0.82606 (17)0.0219 (6)
H17A0.55000.36600.82360.026*
C180.4175 (3)0.2235 (3)0.88931 (17)0.0264 (7)
H18A0.46310.19650.92890.032*
C190.2969 (3)0.1618 (3)0.89349 (17)0.0242 (7)
H19A0.26000.09530.93650.029*
C200.2329 (3)0.2004 (3)0.83316 (18)0.0229 (6)
H20A0.15370.15780.83520.027*
C210.2845 (3)0.3015 (3)0.76964 (16)0.0186 (6)
H21A0.24040.32540.72930.022*
C220.0885 (3)0.4862 (3)0.67800 (17)0.0233 (6)
H22A0.14910.41810.68790.028*
C230.0655 (3)0.5767 (3)0.60657 (16)0.0217 (6)
H23A0.11000.56900.56950.026*
C240.0240 (3)0.6776 (3)0.59162 (16)0.0203 (6)
H24A0.04070.73930.54430.024*
C250.0895 (3)0.6862 (3)0.64823 (16)0.0196 (6)
H25A0.15080.75340.63920.024*
C260.0616 (3)0.5933 (3)0.71805 (16)0.0154 (5)
C270.1234 (3)0.5903 (3)0.78325 (15)0.0151 (5)
C280.2202 (3)0.6760 (3)0.78426 (16)0.0167 (6)
H28A0.25060.74550.74170.020*
C290.2718 (3)0.6571 (3)0.84986 (16)0.0152 (5)
C300.2229 (3)0.5513 (3)0.91277 (16)0.0168 (6)
H30A0.25530.53630.95720.020*
C310.1251 (3)0.4689 (3)0.90799 (15)0.0138 (5)
C320.0636 (3)0.3526 (3)0.96800 (15)0.0148 (5)
C330.0957 (3)0.3085 (3)1.03846 (16)0.0183 (6)
H33A0.15870.35311.05170.022*
C340.0331 (3)0.1969 (3)1.08938 (17)0.0226 (6)
H34A0.05460.16501.13700.027*
C350.0619 (3)0.1330 (3)1.06902 (17)0.0240 (7)
H35A0.10480.05761.10230.029*
C360.0912 (3)0.1843 (3)0.99793 (17)0.0222 (6)
H36A0.15690.14310.98470.027*
C370.3745 (3)0.7477 (3)0.85416 (16)0.0166 (6)
C380.3848 (3)0.8757 (3)0.80805 (16)0.0213 (6)
H38A0.32810.90380.77410.026*
C390.4792 (3)0.9602 (3)0.81301 (17)0.0242 (7)
H39A0.48411.04550.78320.029*
C400.5666 (3)0.9183 (3)0.86238 (18)0.0252 (7)
H40A0.63110.97470.86490.030*
C410.5568 (3)0.7923 (3)0.90762 (19)0.0259 (7)
H41A0.61470.76400.94090.031*
C420.4609 (3)0.7071 (3)0.90382 (17)0.0214 (6)
H42A0.45470.62260.93480.026*
O10.0871 (2)0.0022 (2)1.26009 (13)0.0310 (5)
H020.04360.06511.24660.037*
H010.13320.03811.30450.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01946 (18)0.01659 (18)0.01346 (17)0.00567 (13)0.00481 (13)0.00024 (14)
Cu20.01875 (18)0.01616 (18)0.01344 (16)0.00551 (13)0.00630 (13)0.00099 (14)
Br10.02448 (15)0.01631 (14)0.01733 (14)0.00374 (11)0.00329 (11)0.00075 (11)
Br20.02321 (15)0.02044 (15)0.01647 (14)0.00003 (11)0.00341 (11)0.00287 (11)
Br40.02085 (15)0.02517 (16)0.02032 (15)0.00127 (11)0.00863 (11)0.00809 (12)
Br30.02623 (16)0.01969 (15)0.02563 (16)0.00648 (12)0.00917 (12)0.00636 (12)
N10.0159 (11)0.0163 (12)0.0176 (12)0.0036 (9)0.0051 (9)0.0026 (10)
N20.0147 (11)0.0169 (12)0.0136 (11)0.0007 (9)0.0026 (9)0.0034 (9)
N30.0198 (12)0.0164 (12)0.0147 (11)0.0032 (9)0.0050 (9)0.0007 (10)
N40.0221 (12)0.0164 (12)0.0131 (11)0.0037 (9)0.0053 (9)0.0020 (9)
N50.0152 (11)0.0147 (11)0.0139 (11)0.0008 (9)0.0048 (9)0.0022 (9)
N60.0169 (12)0.0165 (12)0.0142 (11)0.0025 (9)0.0047 (9)0.0013 (10)
C10.0219 (15)0.0198 (15)0.0233 (15)0.0050 (12)0.0053 (12)0.0008 (12)
C20.0222 (15)0.0212 (16)0.0274 (16)0.0081 (12)0.0071 (12)0.0059 (13)
C30.0259 (16)0.0267 (17)0.0247 (16)0.0006 (13)0.0120 (12)0.0095 (14)
C40.0191 (14)0.0219 (15)0.0170 (14)0.0020 (11)0.0050 (11)0.0028 (12)
C50.0162 (13)0.0150 (14)0.0170 (14)0.0008 (11)0.0020 (10)0.0051 (11)
C60.0123 (13)0.0169 (14)0.0164 (13)0.0019 (10)0.0043 (10)0.0061 (11)
C70.0171 (13)0.0210 (15)0.0117 (13)0.0019 (11)0.0046 (10)0.0048 (11)
C80.0146 (13)0.0144 (13)0.0139 (13)0.0001 (10)0.0017 (10)0.0023 (11)
C90.0162 (13)0.0167 (14)0.0162 (13)0.0018 (11)0.0025 (10)0.0059 (11)
C100.0144 (13)0.0158 (13)0.0137 (13)0.0002 (10)0.0025 (10)0.0061 (11)
C110.0184 (14)0.0148 (14)0.0135 (13)0.0007 (11)0.0012 (10)0.0055 (11)
C120.0249 (15)0.0199 (15)0.0173 (14)0.0076 (12)0.0053 (11)0.0058 (12)
C130.0254 (16)0.0285 (17)0.0224 (15)0.0058 (13)0.0117 (12)0.0080 (13)
C140.0325 (17)0.0258 (17)0.0150 (14)0.0029 (13)0.0104 (12)0.0046 (13)
C150.0265 (16)0.0234 (16)0.0154 (14)0.0053 (12)0.0049 (11)0.0009 (12)
C160.0164 (13)0.0149 (14)0.0147 (13)0.0000 (10)0.0035 (10)0.0032 (11)
C170.0233 (15)0.0238 (16)0.0207 (15)0.0047 (12)0.0100 (12)0.0048 (13)
C180.0365 (18)0.0242 (17)0.0191 (15)0.0028 (13)0.0123 (13)0.0018 (13)
C190.0335 (17)0.0162 (15)0.0181 (15)0.0052 (12)0.0030 (12)0.0018 (12)
C200.0201 (15)0.0183 (15)0.0279 (16)0.0057 (12)0.0032 (12)0.0033 (13)
C210.0192 (14)0.0176 (14)0.0183 (14)0.0001 (11)0.0063 (11)0.0023 (12)
C220.0296 (16)0.0237 (16)0.0191 (15)0.0060 (13)0.0115 (12)0.0041 (13)
C230.0276 (16)0.0242 (16)0.0162 (14)0.0012 (12)0.0103 (12)0.0059 (12)
C240.0213 (14)0.0239 (16)0.0125 (13)0.0015 (12)0.0046 (11)0.0006 (12)
C250.0190 (14)0.0190 (15)0.0202 (14)0.0051 (11)0.0051 (11)0.0033 (12)
C260.0143 (13)0.0169 (14)0.0162 (13)0.0010 (10)0.0023 (10)0.0071 (11)
C270.0171 (13)0.0127 (13)0.0132 (13)0.0002 (10)0.0011 (10)0.0015 (11)
C280.0172 (14)0.0145 (13)0.0167 (13)0.0023 (11)0.0034 (10)0.0013 (11)
C290.0117 (13)0.0168 (14)0.0175 (14)0.0006 (10)0.0035 (10)0.0053 (11)
C300.0167 (14)0.0196 (15)0.0151 (13)0.0009 (11)0.0062 (10)0.0043 (12)
C310.0151 (13)0.0137 (13)0.0125 (12)0.0017 (10)0.0044 (10)0.0027 (11)
C320.0139 (13)0.0150 (14)0.0152 (13)0.0010 (10)0.0034 (10)0.0037 (11)
C330.0202 (14)0.0187 (14)0.0165 (14)0.0016 (11)0.0062 (11)0.0037 (12)
C340.0286 (16)0.0223 (16)0.0159 (14)0.0020 (12)0.0085 (12)0.0009 (12)
C350.0284 (16)0.0192 (15)0.0179 (15)0.0080 (12)0.0016 (12)0.0036 (12)
C360.0254 (16)0.0202 (15)0.0199 (15)0.0057 (12)0.0071 (12)0.0014 (12)
C370.0152 (13)0.0176 (14)0.0161 (13)0.0045 (11)0.0001 (10)0.0051 (11)
C380.0237 (15)0.0222 (16)0.0173 (14)0.0061 (12)0.0053 (11)0.0028 (12)
C390.0305 (17)0.0214 (16)0.0178 (14)0.0083 (13)0.0018 (12)0.0050 (12)
C400.0208 (15)0.0306 (18)0.0249 (16)0.0102 (13)0.0007 (12)0.0120 (14)
C410.0171 (15)0.0342 (18)0.0313 (17)0.0008 (13)0.0095 (12)0.0138 (15)
C420.0189 (14)0.0217 (15)0.0227 (15)0.0031 (12)0.0057 (11)0.0034 (13)
O10.0309 (12)0.0354 (14)0.0227 (12)0.0052 (10)0.0039 (9)0.0025 (10)
Geometric parameters (Å, º) top
Cu1—N21.955 (2)C16—C211.402 (4)
Cu1—N12.044 (2)C17—C181.387 (4)
Cu1—N32.046 (2)C17—H17A0.9300
Cu1—Br12.3957 (5)C18—C191.394 (4)
Cu1—Br22.6640 (5)C18—H18A0.9300
Cu2—N51.960 (2)C19—C201.380 (4)
Cu2—N62.037 (2)C19—H19A0.9300
Cu2—N42.039 (2)C20—C211.384 (4)
Cu2—Br32.4164 (5)C20—H20A0.9300
Cu2—Br42.5588 (5)C21—H21A0.9300
N1—C11.336 (3)C22—C231.392 (4)
N1—C51.361 (4)C22—H22A0.9300
N2—C61.333 (3)C23—C241.375 (4)
N2—C101.340 (3)C23—H23A0.9300
N3—C151.333 (4)C24—C251.393 (4)
N3—C111.354 (3)C24—H24A0.9300
N4—C221.326 (4)C25—C261.383 (4)
N4—C261.362 (3)C25—H25A0.9300
N5—C311.336 (3)C26—C271.482 (4)
N5—C271.342 (3)C27—C281.384 (4)
N6—C361.334 (4)C28—C291.398 (4)
N6—C321.365 (3)C28—H28A0.9300
C1—C21.391 (4)C29—C301.402 (4)
C1—H1A0.9300C29—C371.489 (4)
C2—C31.378 (4)C30—C311.393 (4)
C2—H2A0.9300C30—H30A0.9300
C3—C41.387 (4)C31—C321.479 (4)
C3—H3A0.9300C32—C331.375 (4)
C4—C51.386 (4)C33—C341.383 (4)
C4—H4A0.9300C33—H33A0.9300
C5—C61.481 (4)C34—C351.385 (4)
C6—C71.387 (4)C34—H34A0.9300
C7—C81.406 (4)C35—C361.382 (4)
C7—H7A0.9300C35—H35A0.9300
C8—C91.401 (4)C36—H36A0.9300
C8—C161.481 (4)C37—C421.386 (4)
C9—C101.387 (4)C37—C381.403 (4)
C9—H9A0.9300C38—C391.387 (4)
C10—C111.476 (4)C38—H38A0.9300
C11—C121.395 (4)C39—C401.392 (4)
C12—C131.384 (4)C39—H39A0.9300
C12—H12A0.9300C40—C411.381 (5)
C13—C141.381 (4)C40—H40A0.9300
C13—H13A0.9300C41—C421.394 (4)
C14—C151.390 (4)C41—H41A0.9300
C14—H14A0.9300C42—H42A0.9300
C15—H15A0.9300O1—H020.8614
C16—C171.399 (4)O1—H010.8485
N2—Cu1—N179.16 (9)C17—C16—C21118.2 (3)
N2—Cu1—N379.46 (9)C17—C16—C8120.7 (2)
N1—Cu1—N3157.20 (9)C21—C16—C8121.1 (2)
N2—Cu1—Br1157.21 (7)C18—C17—C16121.1 (3)
N1—Cu1—Br198.89 (7)C18—C17—H17A119.4
N3—Cu1—Br197.74 (7)C16—C17—H17A119.4
N2—Cu1—Br2101.40 (7)C17—C18—C19119.9 (3)
N1—Cu1—Br296.53 (7)C17—C18—H18A120.0
N3—Cu1—Br295.37 (7)C19—C18—H18A120.0
Br1—Cu1—Br2101.382 (17)C20—C19—C18119.3 (3)
N5—Cu2—N679.17 (9)C20—C19—H19A120.4
N5—Cu2—N478.98 (9)C18—C19—H19A120.4
N6—Cu2—N4157.13 (9)C19—C20—C21121.1 (3)
N5—Cu2—Br3154.40 (7)C19—C20—H20A119.4
N6—Cu2—Br398.60 (7)C21—C20—H20A119.4
N4—Cu2—Br398.17 (7)C20—C21—C16120.3 (3)
N5—Cu2—Br4102.28 (7)C20—C21—H21A119.9
N6—Cu2—Br496.87 (7)C16—C21—H21A119.9
N4—Cu2—Br494.28 (7)N4—C22—C23122.4 (3)
Br3—Cu2—Br4103.308 (18)N4—C22—H22A118.8
C1—N1—C5118.9 (2)C23—C22—H22A118.8
C1—N1—Cu1126.6 (2)C24—C23—C22119.0 (3)
C5—N1—Cu1114.48 (17)C24—C23—H23A120.5
C6—N2—C10121.6 (2)C22—C23—H23A120.5
C6—N2—Cu1119.57 (18)C23—C24—C25119.1 (3)
C10—N2—Cu1118.86 (18)C23—C24—H24A120.4
C15—N3—C11119.2 (2)C25—C24—H24A120.4
C15—N3—Cu1126.59 (19)C26—C25—C24118.9 (3)
C11—N3—Cu1114.09 (18)C26—C25—H25A120.5
C22—N4—C26118.9 (2)C24—C25—H25A120.5
C22—N4—Cu2125.79 (19)N4—C26—C25121.6 (2)
C26—N4—Cu2115.06 (18)N4—C26—C27113.7 (2)
C31—N5—C27121.3 (2)C25—C26—C27124.7 (2)
C31—N5—Cu2119.32 (18)N5—C27—C28121.0 (3)
C27—N5—Cu2119.37 (18)N5—C27—C26112.5 (2)
C36—N6—C32118.2 (2)C28—C27—C26126.5 (2)
C36—N6—Cu2126.87 (19)C27—C28—C29119.4 (3)
C32—N6—Cu2114.85 (18)C27—C28—H28A120.3
N1—C1—C2122.4 (3)C29—C28—H28A120.3
N1—C1—H1A118.8C28—C29—C30118.4 (2)
C2—C1—H1A118.8C28—C29—C37121.4 (2)
C3—C2—C1118.6 (3)C30—C29—C37120.2 (2)
C3—C2—H2A120.7C31—C30—C29119.3 (3)
C1—C2—H2A120.7C31—C30—H30A120.4
C2—C3—C4119.9 (3)C29—C30—H30A120.4
C2—C3—H3A120.1N5—C31—C30120.6 (2)
C4—C3—H3A120.1N5—C31—C32112.7 (2)
C5—C4—C3118.6 (3)C30—C31—C32126.6 (2)
C5—C4—H4A120.7N6—C32—C33121.8 (2)
C3—C4—H4A120.7N6—C32—C31113.8 (2)
N1—C5—C4121.6 (2)C33—C32—C31124.4 (2)
N1—C5—C6114.1 (2)C32—C33—C34119.1 (3)
C4—C5—C6124.3 (3)C32—C33—H33A120.5
N2—C6—C7120.7 (2)C34—C33—H33A120.5
N2—C6—C5112.6 (2)C33—C34—C35119.5 (3)
C7—C6—C5126.7 (2)C33—C34—H34A120.2
C6—C7—C8119.6 (2)C35—C34—H34A120.2
C6—C7—H7A120.2C36—C35—C34118.2 (3)
C8—C7—H7A120.2C36—C35—H35A120.9
C9—C8—C7117.7 (2)C34—C35—H35A120.9
C9—C8—C16121.8 (2)N6—C36—C35123.1 (3)
C7—C8—C16120.5 (2)N6—C36—H36A118.5
C10—C9—C8119.8 (2)C35—C36—H36A118.5
C10—C9—H9A120.1C42—C37—C38119.1 (3)
C8—C9—H9A120.1C42—C37—C29120.6 (3)
N2—C10—C9120.4 (2)C38—C37—C29120.3 (3)
N2—C10—C11112.6 (2)C39—C38—C37120.2 (3)
C9—C10—C11126.9 (2)C39—C38—H38A119.9
N3—C11—C12121.4 (3)C37—C38—H38A119.9
N3—C11—C10114.6 (2)C38—C39—C40120.4 (3)
C12—C11—C10123.8 (2)C38—C39—H39A119.8
C13—C12—C11118.4 (3)C40—C39—H39A119.8
C13—C12—H12A120.8C41—C40—C39119.5 (3)
C11—C12—H12A120.8C41—C40—H40A120.3
C14—C13—C12120.0 (3)C39—C40—H40A120.3
C14—C13—H13A120.0C40—C41—C42120.5 (3)
C12—C13—H13A120.0C40—C41—H41A119.7
C13—C14—C15118.2 (3)C42—C41—H41A119.7
C13—C14—H14A120.9C37—C42—C41120.4 (3)
C15—C14—H14A120.9C37—C42—H42A119.8
N3—C15—C14122.5 (3)C41—C42—H42A119.8
N3—C15—H15A118.7H02—O1—H01103.3
C14—C15—H15A118.7
N2—Cu1—N1—C1179.0 (3)Cu1—N3—C11—C101.4 (3)
N3—Cu1—N1—C1158.4 (3)N2—C10—C11—N35.2 (3)
Br1—Cu1—N1—C122.1 (3)C9—C10—C11—N3176.8 (3)
Br2—Cu1—N1—C180.6 (2)N2—C10—C11—C12170.2 (2)
N2—Cu1—N1—C50.08 (19)C9—C10—C11—C127.8 (4)
N3—Cu1—N1—C520.7 (4)N3—C11—C12—C131.6 (4)
Br1—Cu1—N1—C5157.03 (18)C10—C11—C12—C13173.5 (3)
Br2—Cu1—N1—C5100.32 (19)C11—C12—C13—C144.2 (5)
N1—Cu1—N2—C62.8 (2)C12—C13—C14—C153.5 (5)
N3—Cu1—N2—C6174.9 (2)C11—N3—C15—C142.7 (4)
Br1—Cu1—N2—C690.0 (3)Cu1—N3—C15—C14172.7 (2)
Br2—Cu1—N2—C691.7 (2)C13—C14—C15—N30.0 (5)
N1—Cu1—N2—C10176.9 (2)C9—C8—C16—C17164.4 (3)
N3—Cu1—N2—C104.9 (2)C7—C8—C16—C1717.5 (4)
Br1—Cu1—N2—C1089.8 (3)C9—C8—C16—C2116.9 (4)
Br2—Cu1—N2—C1088.5 (2)C7—C8—C16—C21161.2 (3)
N2—Cu1—N3—C15174.0 (3)C21—C16—C17—C182.6 (4)
N1—Cu1—N3—C15153.4 (3)C8—C16—C17—C18176.2 (3)
Br1—Cu1—N3—C1516.9 (3)C16—C17—C18—C190.1 (5)
Br2—Cu1—N3—C1585.4 (2)C17—C18—C19—C202.1 (5)
N2—Cu1—N3—C111.62 (19)C18—C19—C20—C211.7 (5)
N1—Cu1—N3—C1122.2 (4)C19—C20—C21—C160.8 (5)
Br1—Cu1—N3—C11158.71 (18)C17—C16—C21—C202.9 (4)
Br2—Cu1—N3—C1199.01 (19)C8—C16—C21—C20175.9 (3)
N5—Cu2—N4—C22180.0 (3)C26—N4—C22—C230.0 (4)
N6—Cu2—N4—C22162.6 (3)Cu2—N4—C22—C23174.3 (2)
Br3—Cu2—N4—C2225.8 (3)N4—C22—C23—C240.0 (5)
Br4—Cu2—N4—C2278.3 (3)C22—C23—C24—C250.2 (4)
N5—Cu2—N4—C265.53 (19)C23—C24—C25—C260.4 (4)
N6—Cu2—N4—C2622.9 (4)C22—N4—C26—C250.3 (4)
Br3—Cu2—N4—C26159.71 (18)Cu2—N4—C26—C25175.2 (2)
Br4—Cu2—N4—C2696.17 (19)C22—N4—C26—C27179.9 (3)
N6—Cu2—N5—C312.8 (2)Cu2—N4—C26—C275.2 (3)
N4—Cu2—N5—C31176.0 (2)C24—C25—C26—N40.5 (4)
Br3—Cu2—N5—C3190.1 (2)C24—C25—C26—C27180.0 (3)
Br4—Cu2—N5—C3192.0 (2)C31—N5—C27—C281.4 (4)
N6—Cu2—N5—C27178.3 (2)Cu2—N5—C27—C28177.5 (2)
N4—Cu2—N5—C275.1 (2)C31—N5—C27—C26177.4 (2)
Br3—Cu2—N5—C2790.9 (3)Cu2—N5—C27—C263.6 (3)
Br4—Cu2—N5—C2787.0 (2)N4—C26—C27—N51.2 (3)
N5—Cu2—N6—C36179.8 (3)C25—C26—C27—N5179.2 (3)
N4—Cu2—N6—C36162.4 (2)N4—C26—C27—C28177.5 (3)
Br3—Cu2—N6—C3625.7 (2)C25—C26—C27—C282.1 (5)
Br4—Cu2—N6—C3678.9 (2)N5—C27—C28—C290.9 (4)
N5—Cu2—N6—C322.47 (19)C26—C27—C28—C29177.8 (3)
N4—Cu2—N6—C3219.8 (4)C27—C28—C29—C300.2 (4)
Br3—Cu2—N6—C32156.58 (18)C27—C28—C29—C37179.1 (2)
Br4—Cu2—N6—C3298.78 (18)C28—C29—C30—C310.0 (4)
C5—N1—C1—C20.3 (4)C37—C29—C30—C31178.9 (2)
Cu1—N1—C1—C2178.7 (2)C27—N5—C31—C301.2 (4)
N1—C1—C2—C31.0 (5)Cu2—N5—C31—C30177.7 (2)
C1—C2—C3—C40.9 (5)C27—N5—C31—C32178.6 (2)
C2—C3—C4—C50.6 (5)Cu2—N5—C31—C322.5 (3)
C1—N1—C5—C41.8 (4)C29—C30—C31—N50.5 (4)
Cu1—N1—C5—C4177.3 (2)C29—C30—C31—C32179.2 (3)
C1—N1—C5—C6178.5 (2)C36—N6—C32—C330.3 (4)
Cu1—N1—C5—C62.3 (3)Cu2—N6—C32—C33178.3 (2)
C3—C4—C5—N12.0 (4)C36—N6—C32—C31179.8 (2)
C3—C4—C5—C6178.5 (3)Cu2—N6—C32—C311.9 (3)
C10—N2—C6—C73.8 (4)N5—C31—C32—N60.3 (3)
Cu1—N2—C6—C7176.5 (2)C30—C31—C32—N6179.9 (3)
C10—N2—C6—C5175.0 (2)N5—C31—C32—C33179.6 (3)
Cu1—N2—C6—C54.8 (3)C30—C31—C32—C330.2 (5)
N1—C5—C6—N24.5 (3)N6—C32—C33—C341.0 (4)
C4—C5—C6—N2175.1 (3)C31—C32—C33—C34178.8 (3)
N1—C5—C6—C7176.9 (3)C32—C33—C34—C351.0 (4)
C4—C5—C6—C73.5 (5)C33—C34—C35—C360.4 (5)
N2—C6—C7—C80.3 (4)C32—N6—C36—C351.8 (4)
C5—C6—C7—C8178.9 (3)Cu2—N6—C36—C35179.4 (2)
C6—C7—C8—C92.7 (4)C34—C35—C36—N61.8 (5)
C6—C7—C8—C16179.1 (2)C28—C29—C37—C42155.7 (3)
C7—C8—C9—C101.3 (4)C30—C29—C37—C4225.4 (4)
C16—C8—C9—C10179.5 (2)C28—C29—C37—C3824.5 (4)
C6—N2—C10—C95.3 (4)C30—C29—C37—C38154.4 (3)
Cu1—N2—C10—C9175.0 (2)C42—C37—C38—C390.7 (4)
C6—N2—C10—C11172.9 (2)C29—C37—C38—C39179.1 (3)
Cu1—N2—C10—C116.9 (3)C37—C38—C39—C401.5 (4)
C8—C9—C10—N22.6 (4)C38—C39—C40—C411.3 (4)
C8—C9—C10—C11175.2 (3)C39—C40—C41—C420.4 (5)
C15—N3—C11—C121.9 (4)C38—C37—C42—C410.2 (4)
Cu1—N3—C11—C12174.1 (2)C29—C37—C42—C41180.0 (3)
C15—N3—C11—C10177.4 (3)C40—C41—C42—C370.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H01···Br1i0.852.893.520 (2)133
O1—H01···Br2i0.852.853.549 (2)141
O1—H02···Br3ii0.862.593.414 (2)160
Symmetry codes: (i) x1, y1, z+1; (ii) x, y, z+2.

Experimental details

Crystal data
Chemical formula[CuBr2(C21H15N3)]·0.5H2O
Mr541.73
Crystal system, space groupTriclinic, P1
Temperature (K)130
a, b, c (Å)10.1369 (16), 10.8131 (17), 18.688 (3)
α, β, γ (°)73.629 (3), 77.088 (4), 87.567 (5)
V3)1915.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)5.33
Crystal size (mm)0.35 × 0.25 × 0.10
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2002)
Tmin, Tmax0.543, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14948, 8650, 7545
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.079, 1.02
No. of reflections8650
No. of parameters496
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.96, 0.55

Computer programs: CrystalClear (Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H01···Br1i0.852.893.520 (2)133.0
O1—H01···Br2i0.852.853.549 (2)140.8
O1—H02···Br3ii0.862.593.414 (2)159.8
Symmetry codes: (i) x1, y1, z+1; (ii) x, y, z+2.
 

Acknowledgements

The authors are grateful for financial support from the Scientific Fund of Guangxi University (X061144) and the Innovation Fund of Fujian Province (2003 J044).

References

First citationArriortua, M. I., Mesa, J. L., Rojo, T., Debaerdemaeker, T., Beltran-Porter, D., Stratemeier, H. & Reinen, D. (1988). Inorg. Chem. 27, 2976–2981.  CSD CrossRef CAS Web of Science Google Scholar
First citationBugarcic, Z. D., Heinemann, F. W. & Eldik, R. V. (2004). Dalton Trans. pp. 279–286.  Web of Science CSD CrossRef Google Scholar
First citationConstable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47–54.  CSD CrossRef CAS Web of Science Google Scholar
First citationKickelbick, G., Pintauer, T. & Matyjaszewski, K. (2002). New J. Chem. 26, 462–468.  Web of Science CSD CrossRef CAS Google Scholar
First citationKoo, B.-K., Bewley, L., Golub, V., Rarig, R. S., Burkholder, E., O'Cornor, C. J. & Zubieta, J. (2003). Inorg. Chim. Acta, 351, 167–176.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Liu, B. Q., Yang, H., Xing, Y. P., Hu, M. & Sun, J. (2009). J. Coord. Chem. 62, 3314–3323.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYam, V. W.-W., Wong, K. M.-C. & Zhu, N. (2003). Angew. Chem. Int. Ed. 42, 1400–1403.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds