organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Butyl-4-methyl-6-phenyl­pyrimidin-2-amine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my

(Received 8 March 2010; accepted 12 March 2010; online 20 March 2010)

In the title compound, C15H19N3, the pyrimidine ring is approximately planar [maximum deviation = 0.007 (1) Å] and forms a dihedral angle of 3.15 (6)° with the benzene ring. In the crystal packing, inter­molecular N—H⋯N hydrogen bonds link pairs of neighbouring mol­ecules into dimers with R22(8) ring motifs. These dimers are stacked along the b axis.

Related literature

For the biological importance of substituted amino pyrimidines, see: Katrizky (1982[Katrizky, A. R. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 153-158.]); Brown & Lyall (1964[Brown, D. J. & Lyall, M. J. (1964). Aust. J. Chem. 17, 794-802.]); Jonckers et al. (2001[Jonckers, T. H. M., Maes, B. U. W., Lemiere, G. L. F. & Dommisse, R. (2001). Tetrahedron, 57, 7027-7034.]). For their synthesis by microwave processes, see: Goswami et al. (2009[Goswami, S., Hazra, A. & Jana, S. (2009). Bull. Chem. Soc. Jpn, 82, 1175-1181.]). For a related structure, see: Fun et al. (2006[Fun, H.-K., Goswami, S., Jana, S. & Chantrapromma, S. (2006). Acta Cryst. E62, o5332-o5334.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C15H19N3

  • Mr = 241.33

  • Monoclinic, P 21 /c

  • a = 13.4828 (9) Å

  • b = 5.1618 (3) Å

  • c = 22.8462 (11) Å

  • β = 123.863 (3)°

  • V = 1320.29 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.30 × 0.23 × 0.08 mm

Data collection
  • Bruker SMART APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.978, Tmax = 0.994

  • 13801 measured reflections

  • 3829 independent reflections

  • 3085 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.170

  • S = 1.15

  • 3829 reflections

  • 169 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯N2i 0.798 (17) 2.283 (17) 3.0802 (14) 177 (2)
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Substituted amino pyrimidines are highly biologically important molecules (Katrizky, 1982; Brown & Lyall, 1964; Jonckers et al., 2001). Recently we have synthesized various substituted amino pyrimidines by microwave process (Goswami et al., 2009). Here we report the crystal structure of 2-butylamino-4-methyl-6-phenylpyrimidine.

In the title compound (Fig. 1), the pyrimidine ring (C1/N2/C2/C3/C4/N1) is approximately planar with a maximum deviation of 0.007 (1) Å at atom N2 and forms a dihedral angle of 3.15 (6)° with the benzene ring (C5–C10). The bond lengths are within normal values (Allen et al., 1987) and similar to those in the crystal structure of 4,6-diphenylpyrimidin-2-ylamine (Fun et al., 2006).

In the crystal packing (Fig. 2), two neighbouring molecules are linked by intermolecular N3—H3B···N2 hydrogen bonds (Table 1) to form dimers with R22(8) ring motifs (Bernstein et al., 1995). These dimers are stacked along the b axis.

Related literature top

For the biological importance of substituted amino pyrimidines, see: Katrizky (1982); Brown & Lyall (1964); Jonckers et al. (2001). For their synthesis by microwave processes, see: Goswami et al. (2009). For a related structure, see: Fun et al. (2006). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of S-methylisothiourea sulphate (556 mg, 2.0 mmol), potassium carbonate (345 mg, 2.5 mmol) and butylamine (292 mg, 4.0 mmol) was thoroughly mixed together and then irradiated at 450 Watt for 12 min in a microwave oven. The solid mass was washed with CHCl3 to remove the unreacted butylamine and it was then dried. The solid residue formed was mixed with benzoylacetone (648 mg, 4.0 mmol) and again irradiated at 300 Watt for 5 min. Then it was dissolved in water and extracted with chloroform. The crude product was purified by column chromatography (silica gel, 100-200 mesh) with 15% ethyl acetate in petroleum ether as eluant. Single crystals were grown by slow evaporation of a chloroform solution. Yield: 75 %; Mp: 328-329 K.

Refinement top

H3B was located in a difference Fourier map and refined freely [N–H = 0.797 (18) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms [C–H = 0.93 to 0.97 Å]. A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis, showing the R22(8) ring motifs. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
N-Butyl-4-methyl-6-phenylpyrimidin-2-amine top
Crystal data top
C15H19N3F(000) = 520
Mr = 241.33Dx = 1.214 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4691 reflections
a = 13.4828 (9) Åθ = 3.0–30.0°
b = 5.1618 (3) ŵ = 0.07 mm1
c = 22.8462 (11) ÅT = 100 K
β = 123.863 (3)°Plate, colourless
V = 1320.29 (13) Å30.30 × 0.23 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX DUO CCD area-detector
diffractometer
3829 independent reflections
Radiation source: fine-focus sealed tube3085 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1818
Tmin = 0.978, Tmax = 0.994k = 77
13801 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0985P)2 + 0.2466P]
where P = (Fo2 + 2Fc2)/3
3829 reflections(Δ/σ)max = 0.001
169 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C15H19N3V = 1320.29 (13) Å3
Mr = 241.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.4828 (9) ŵ = 0.07 mm1
b = 5.1618 (3) ÅT = 100 K
c = 22.8462 (11) Å0.30 × 0.23 × 0.08 mm
β = 123.863 (3)°
Data collection top
Bruker SMART APEX DUO CCD area-detector
diffractometer
3829 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3085 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.994Rint = 0.031
13801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.54 e Å3
3829 reflectionsΔρmin = 0.28 e Å3
169 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.28959 (9)0.3936 (2)0.81414 (5)0.0154 (2)
N20.37437 (9)0.2822 (2)0.93559 (5)0.0152 (2)
N30.45114 (9)0.6155 (2)0.90539 (5)0.0157 (2)
C10.36872 (10)0.4257 (2)0.88392 (6)0.0144 (2)
C20.29524 (10)0.0896 (2)0.91422 (6)0.0156 (2)
C30.20994 (10)0.0413 (2)0.84312 (6)0.0165 (2)
H3A0.15490.09260.82900.020*
C40.20988 (10)0.2004 (2)0.79384 (6)0.0147 (2)
C50.12498 (10)0.1654 (2)0.71633 (6)0.0163 (2)
C60.13025 (13)0.3317 (3)0.67022 (7)0.0273 (3)
H6A0.18490.46740.68810.033*
C70.05468 (14)0.2972 (3)0.59776 (7)0.0319 (3)
H7A0.05930.40970.56760.038*
C80.02738 (12)0.0971 (3)0.57018 (7)0.0239 (3)
H8A0.07760.07370.52170.029*
C90.03385 (13)0.0677 (3)0.61560 (7)0.0295 (3)
H9A0.08930.20190.59750.035*
C100.04193 (13)0.0343 (3)0.68824 (7)0.0271 (3)
H10A0.03690.14700.71830.033*
C110.30354 (12)0.0752 (3)0.97066 (6)0.0199 (3)
H11A0.38300.14311.00030.030*
H11B0.24770.21570.94940.030*
H11C0.28520.02760.99850.030*
C120.46551 (11)0.7606 (2)0.85587 (6)0.0167 (2)
H12A0.51120.91640.87870.020*
H12B0.38750.81270.81600.020*
C130.52875 (11)0.6029 (2)0.82927 (6)0.0176 (3)
H13A0.48360.44550.80750.021*
H13B0.52860.70200.79310.021*
C140.65693 (11)0.5300 (3)0.88617 (6)0.0194 (3)
H14A0.65960.45870.92630.023*
H14B0.70600.68480.90180.023*
C150.70840 (12)0.3326 (3)0.86024 (7)0.0266 (3)
H15A0.79020.29830.89700.040*
H15B0.70400.40040.81970.040*
H15C0.66330.17470.84770.040*
H3B0.4963 (16)0.637 (4)0.9468 (9)0.026 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0164 (5)0.0151 (5)0.0137 (4)0.0001 (3)0.0077 (4)0.0003 (4)
N20.0164 (5)0.0158 (5)0.0136 (4)0.0003 (3)0.0084 (4)0.0003 (4)
N30.0175 (5)0.0173 (5)0.0112 (4)0.0035 (4)0.0073 (4)0.0013 (4)
C10.0149 (5)0.0140 (5)0.0145 (5)0.0006 (4)0.0084 (4)0.0006 (4)
C20.0170 (5)0.0154 (5)0.0164 (5)0.0016 (4)0.0106 (5)0.0006 (4)
C30.0175 (5)0.0154 (5)0.0172 (5)0.0013 (4)0.0101 (4)0.0002 (4)
C40.0149 (5)0.0144 (5)0.0148 (5)0.0016 (4)0.0084 (4)0.0005 (4)
C50.0153 (5)0.0180 (6)0.0149 (5)0.0016 (4)0.0080 (4)0.0005 (4)
C60.0324 (7)0.0241 (7)0.0168 (6)0.0091 (6)0.0084 (5)0.0008 (5)
C70.0376 (8)0.0336 (8)0.0155 (6)0.0093 (6)0.0093 (6)0.0024 (5)
C80.0183 (6)0.0332 (7)0.0140 (5)0.0009 (5)0.0050 (5)0.0032 (5)
C90.0244 (7)0.0385 (8)0.0193 (6)0.0157 (6)0.0082 (5)0.0066 (6)
C100.0275 (7)0.0329 (8)0.0179 (6)0.0126 (6)0.0107 (5)0.0022 (5)
C110.0233 (6)0.0201 (6)0.0168 (5)0.0024 (5)0.0115 (5)0.0021 (4)
C120.0190 (5)0.0156 (5)0.0156 (5)0.0008 (4)0.0097 (4)0.0019 (4)
C130.0192 (6)0.0207 (6)0.0132 (5)0.0000 (4)0.0093 (5)0.0012 (4)
C140.0188 (6)0.0227 (6)0.0156 (5)0.0016 (4)0.0090 (5)0.0001 (4)
C150.0234 (6)0.0283 (7)0.0270 (7)0.0025 (5)0.0133 (5)0.0050 (5)
Geometric parameters (Å, º) top
N1—C41.3453 (15)C8—H8A0.9300
N1—C11.3459 (15)C9—C101.3921 (18)
N2—C21.3362 (15)C9—H9A0.9300
N2—C11.3593 (15)C10—H10A0.9300
N3—C11.3520 (15)C11—H11A0.9600
N3—C121.4570 (15)C11—H11B0.9600
N3—H3B0.797 (18)C11—H11C0.9600
C2—C31.3934 (16)C12—C131.5284 (16)
C2—C111.4957 (16)C12—H12A0.9700
C3—C41.3932 (16)C12—H12B0.9700
C3—H3A0.9300C13—C141.5214 (17)
C4—C51.4899 (16)C13—H13A0.9700
C5—C101.3886 (18)C13—H13B0.9700
C5—C61.3910 (18)C14—C151.5263 (18)
C6—C71.3894 (18)C14—H14A0.9700
C6—H6A0.9300C14—H14B0.9700
C7—C81.383 (2)C15—H15A0.9600
C7—H7A0.9300C15—H15B0.9600
C8—C91.382 (2)C15—H15C0.9600
C4—N1—C1116.94 (10)C5—C10—H10A119.7
C2—N2—C1116.17 (10)C9—C10—H10A119.7
C1—N3—C12121.92 (10)C2—C11—H11A109.5
C1—N3—H3B117.5 (13)C2—C11—H11B109.5
C12—N3—H3B120.3 (13)H11A—C11—H11B109.5
N1—C1—N3117.88 (10)C2—C11—H11C109.5
N1—C1—N2125.85 (10)H11A—C11—H11C109.5
N3—C1—N2116.27 (10)H11B—C11—H11C109.5
N2—C2—C3122.10 (10)N3—C12—C13112.34 (10)
N2—C2—C11116.56 (10)N3—C12—H12A109.1
C3—C2—C11121.33 (11)C13—C12—H12A109.1
C4—C3—C2117.72 (11)N3—C12—H12B109.1
C4—C3—H3A121.1C13—C12—H12B109.1
C2—C3—H3A121.1H12A—C12—H12B107.9
N1—C4—C3121.19 (11)C14—C13—C12114.32 (10)
N1—C4—C5115.89 (10)C14—C13—H13A108.7
C3—C4—C5122.91 (11)C12—C13—H13A108.7
C10—C5—C6118.46 (11)C14—C13—H13B108.7
C10—C5—C4121.79 (11)C12—C13—H13B108.7
C6—C5—C4119.73 (11)H13A—C13—H13B107.6
C7—C6—C5120.68 (13)C13—C14—C15112.29 (10)
C7—C6—H6A119.7C13—C14—H14A109.1
C5—C6—H6A119.7C15—C14—H14A109.1
C8—C7—C6120.54 (13)C13—C14—H14B109.1
C8—C7—H7A119.7C15—C14—H14B109.1
C6—C7—H7A119.7H14A—C14—H14B107.9
C9—C8—C7119.15 (12)C14—C15—H15A109.5
C9—C8—H8A120.4C14—C15—H15B109.5
C7—C8—H8A120.4H15A—C15—H15B109.5
C8—C9—C10120.51 (13)C14—C15—H15C109.5
C8—C9—H9A119.7H15A—C15—H15C109.5
C10—C9—H9A119.7H15B—C15—H15C109.5
C5—C10—C9120.66 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···N2i0.798 (17)2.283 (17)3.0802 (14)177 (2)
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC15H19N3
Mr241.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.4828 (9), 5.1618 (3), 22.8462 (11)
β (°) 123.863 (3)
V3)1320.29 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.23 × 0.08
Data collection
DiffractometerBruker SMART APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.978, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
13801, 3829, 3085
Rint0.031
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.170, 1.15
No. of reflections3829
No. of parameters169
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···N2i0.798 (17)2.283 (17)3.0802 (14)177 (2)
Symmetry code: (i) x+1, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian government and USM for the award of Research Fellowship. SG and AH thank the CSIR [No. 01 (2292)/09/ EMR-II], Government of India, for financial support. AH thanks the CSIR, Government of India, for a Research Fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrown, D. J. & Lyall, M. J. (1964). Aust. J. Chem. 17, 794–802.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Goswami, S., Jana, S. & Chantrapromma, S. (2006). Acta Cryst. E62, o5332–o5334.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoswami, S., Hazra, A. & Jana, S. (2009). Bull. Chem. Soc. Jpn, 82, 1175–1181.  Web of Science CrossRef CAS Google Scholar
First citationJonckers, T. H. M., Maes, B. U. W., Lemiere, G. L. F. & Dommisse, R. (2001). Tetrahedron, 57, 7027–7034.  Web of Science CrossRef CAS Google Scholar
First citationKatrizky, A. R. (1982). J. Chem. Soc. Perkin Trans. 1, pp. 153–158.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds