organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o944-o945

6-{5-Amino-3-tert-butyl-4-[(E)-(3-methyl-1,2,4-thia­diazol-5-yl)diazen­yl]-1H-pyrazol-1-yl}-1,3,5-triazine-2,4(1H,3H)-dione–1-methyl­pyrrolidin-2-one–water (1/1/1)

aDepartment of Applied Physics, Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501, Japan
*Correspondence e-mail: mizu-j@ynu.ac.jp

(Received 18 March 2010; accepted 23 March 2010; online 27 March 2010)

In the title compound, C13H16N10O2S·C5H9NO·H2O, the entire 1-methylpyrrolidin-2-one (NMP) mol­ecule is disordered over two sites with occupancies of 0.488 (5) and 0.512 (5). The six-membered triazine ring and the two five-membered pyrazole and thiadia­zole rings, together with the diazene (–N=N–) linkage are almost coplanar (r.m.s. deviation for the non-H atoms = 0.0256 Å) with methyl groups from the tert-butyl substituent on the pyrazole ring located above and below the plane. Three intra­molecular N—H⋯N hydrogen bonds contribute to the planarity of the system. The O atom of the NMP mol­ecule is hydrogen bonded to an O—H group of water. In turn, the water mol­ecule is hydrogen bonded to the mono-azo skeleton through inter­molecular N—H⋯O and O—H⋯N hydrogen bonds. At both ends of the long mol­ecular axis of the main mol­ecule there are inter­molecular N—H⋯N hydrogen bonds, arranged in a head-to-tail fashion, between the N—H group of the triazine ring of one mol­ecule and the N atom of the thia­diazole ring of a neighboring mol­ecule. These form a polymeric chain along [110] or [1[\overline1]0]. The main mol­ecules are stacked alternately along the b axis, which effectively cancels their dipole moments. In addition, pairs of alternate molecules are dimerized via inter­molecular hydrogen bonds involving the solvent mol­ecules.

Related literature

For details of azo pigments, see: Herbst & Hunger (2004[Herbst, W. & Hunger, K. (2004). Industrial Organic Pigments, 3rd ed. Weinheim: VCH.]). For the structure of the Na(I) complex of the related bis-azo compound, see: Shibata & Mizuguchi (2010[Shibata, H. & Mizuguchi, J. (2010). Acta Cryst. E66, m463-m464.]). For the synthesis of the title compound, see: Nagata & Tateishi (2009[Nagata, Y. & Tateishi, K. (2009). Jpn Patent 2009-73978 A.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16N10O2S·C5H9NO·H2O

  • Mr = 493.54

  • Monoclinic, C 2/c

  • a = 27.8283 (5) Å

  • b = 7.0269 (1) Å

  • c = 23.4417 (4) Å

  • β = 91.3430 (7)°

  • V = 4582.69 (13) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.70 mm−1

  • T = 93 K

  • 0.50 × 0.10 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.529, Tmax = 0.844

  • 3977 measured reflections

  • 3977 independent reflections

  • 3083 reflections with F2 > 2σ(F2)

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.150

  • S = 1.13

  • 3977 reflections

  • 347 parameters

  • 84 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3A 0.90 2.19 3.087 (4) 176
O4—H4A⋯O3B 0.90 1.87 2.752 (4) 166
O4—H4B⋯N7 0.90 2.70 3.104 (2) 109
O4—H4B⋯N8 0.90 2.25 3.100 (2) 159
N1—H1N⋯N9i 0.88 2.07 2.947 (2) 176
N2—H2⋯N5 0.88 2.27 2.654 (2) 106
N2—H2⋯O3Aii 0.88 1.95 2.778 (4) 157
N2—H2⋯O3Bii 0.88 2.01 2.766 (4) 143
N10—H10N⋯N3 0.88 2.11 2.727 (2) 126
N10—H10M⋯O4 0.88 2.19 3.002 (2) 154
N10—H10M⋯N7 0.88 2.28 2.804 (2) 119
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC & Rigaku, 2006[Rigaku/MSC and Rigaku (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. OakRidge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC & Rigaku, 2006[Rigaku/MSC and Rigaku (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

Azo pigments play an important role as colorants in the imaging and printing industries (Herbst & Hunger, 2004). Compound (I), C13H16N9O2S.C5H7NO.H2O, is a monoazo pigment solvated with an N-methyl-2-pyrrolidone (NMP) molecule and water. The background of the present study is set out in our paper on the Na(I) complex with the closely related bis-azo compound as a ligand (Shibata & Mizuguchi, 2010). We report here on the structure of a Na+-free monoazo compound isolated from the same reaction mixture that produced the Na(I) complex.

Fig. 1 shows the ORTEP plot of I. The six-membered C1–C3,N1–N3 and two five-membered C4–C6,N4,N5 and S1,C7,C8,N8,N9 rings together with the N6–N7 azo linkage lie in a plane (rms deviation for the non-H atoms 0.0256Å) with a methyl group from the t-butyl substituent on the pyrazol ring above and below that plane. The formation of three intramolecular hydrogen bonds: N2—H2···N5, N10—H10M···N7, and N10—H10N···N3, Table 1, stabilises this planar conformation. The O4 atom of the water molecule is nearly on the same plane of the monoazo molecule: the dihedral angle between the planes N10/C6/H10M/H10M and O4/N10/H10M/H10N: 1.0 (1)°. However, the best fit planes through the NMP solvent molecule (C14A—C17A/N11A/O5A) and that of the water molecule (H4A/O4/H4B) are inclined to the above bis-azo skeleton by 124.6 (0) and 113.7 (0)°, respectively. The water molecules are hydrogen bonded to the O3A or O3B atoms of the disordered NMP molecule though O4—H4A···O3 hydrogen bonds. In turn, the O4 atom is hydrogen-bonded to the H10M—N10 amino group of the monoazo skeleton. In addition, the O4—H4B group is weakly hydrogen-bonded to both N7 and N8. At both ends of the long molecular axis of the main molecule, there are intermolecular N1—H1···N9 hydrogen bonds. These form a one-dimensional polymer chain on the molecular plane along the long molecular axis: <110> or <1-10> direction.

As shown in Fig. 2, the monoazo molecules are alternately stacked along the <010> direction in such a way to cancel their dipole moments so as to electrostatically stabilize themselves in the crystal. Each alternating pair is linked through a set of three-consecutive intermolecular hydrogen bonds. On one side of the molecule: N2—H2 (triazine ring)···O3Ai or O3Bi (NMP), O3Ai or O3Bi (NMP)···H4Ai—O4i (water), and O4i(water)···H10Mi—N10i (amino group) [symmetry code: (i) (-x+1/2, -y+1/2, -z+1)]. An equivalent set of H-bonding interactions are found at the opposite sides of the molecules.

Related literature top

For details of azo pigments, see: Herbst & Hunger (2004). For the structure of the Na(I) complex of the related bis-azo compound, see: Shibata & Mizuguchi (2010). For the synthesis of the title compound, see: Nagata & Tateishi (2009).

Experimental top

The title compound was synthesized as described by Nagata et al. (2009). The structure reported here is of the Na(I) cation free product which made up approximately 20% of the product mixture by emission spectrochemical analysis. A single crystal suitable for X-ray analysis was grown from a solution in N-methy-2-pyrrolidone prepared at 100 °C. Needle shaped crystals were obtained after standing for one week.

Refinement top

The entire NMP molecule was disordered over two sites (C14A—C18A/N11A/O3A and C14B—C18B/N11B/O3B) with occupancies of 0.488 (5) and 0.512 (5), respectively. These non-H atoms were refined anisotropically. The occupancies extend to the associated H atoms. All H atoms were placed in geometrically idealized position and constrained to ride on their parent atoms, with C—H in CH2 = 0.99, and C—H in CH3 = 0.98 Å, and Uiso(H) = 1.2 and 1.5 Ueq(C), respectively, and with O—H = 0.84, and N—H = 0.88 Å and Uiso(H) = 1.2. The low theta fraction is due to a weakly diffracting crystal.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC & Rigaku, 2006); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: CrystalStructure (Rigaku/MSC & Rigaku, 2006).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of I. Hydrogen atoms except for those involved in hydrogen bonds (dotted lines) are omitted for clarity.
[Figure 2] Fig. 2. Molecular stack along the <010> axis. Symmetry code: (-x+1/2, -y+1/2, -z+1). Hydrogen bonds are drawn as dotted lines.
6-{5-Amino-3-tert-butyl-4-[(E)-(3-methyl-1,2,4-thiadiazol-5- yl)diazenyl]-1H-pyrazol-1-yl}-1,3,5-triazine-2,4(1H,3H)- dione–1-methylpyrrolidin-2-one–water (1/1/1) top
Crystal data top
C13H16N10O2S·C5H9NO·H2OF(000) = 2080.00
Mr = 493.54Dx = 1.431 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54187 Å
Hall symbol: -C 2ycCell parameters from 23604 reflections
a = 27.8283 (5) Åθ = 3.2–68.2°
b = 7.0269 (1) ŵ = 1.70 mm1
c = 23.4417 (4) ÅT = 93 K
β = 91.3430 (7)°Needle, yellow
V = 4582.69 (13) Å30.50 × 0.10 × 0.10 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3083 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.000
ω scansθmax = 68.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 033
Tmin = 0.529, Tmax = 0.844k = 07
3977 measured reflectionsl = 2828
3977 independent reflections
Refinement top
Refinement on F284 restraints
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0944P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
3977 reflectionsΔρmax = 0.39 e Å3
347 parametersΔρmin = 0.35 e Å3
Crystal data top
C13H16N10O2S·C5H9NO·H2OV = 4582.69 (13) Å3
Mr = 493.54Z = 8
Monoclinic, C2/cCu Kα radiation
a = 27.8283 (5) ŵ = 1.70 mm1
b = 7.0269 (1) ÅT = 93 K
c = 23.4417 (4) Å0.50 × 0.10 × 0.10 mm
β = 91.3430 (7)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3977 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3083 reflections with F2 > 2σ(F2)
Tmin = 0.529, Tmax = 0.844Rint = 0.000
3977 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04984 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 1.13Δρmax = 0.39 e Å3
3977 reflectionsΔρmin = 0.35 e Å3
347 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.07691 (2)0.68241 (9)0.52778 (2)0.02961 (19)
O10.40973 (6)0.2937 (3)0.41323 (7)0.0373 (5)
N10.43390 (7)0.3073 (3)0.50624 (9)0.0308 (5)
H1N0.46310.27380.49650.037*
N20.37906 (7)0.3899 (3)0.57444 (8)0.0299 (5)
H20.37050.41040.60980.036*
N30.35360 (7)0.3813 (3)0.47740 (8)0.0282 (5)
N40.30101 (7)0.4672 (3)0.54684 (8)0.0289 (5)
N50.29244 (7)0.5038 (3)0.60491 (8)0.0300 (5)
N60.17773 (7)0.5903 (3)0.53920 (8)0.0283 (5)
N70.16607 (7)0.5794 (3)0.48524 (8)0.0299 (5)
N80.09905 (7)0.6256 (3)0.42446 (9)0.0332 (5)
N90.03348 (7)0.7075 (3)0.47827 (9)0.0327 (5)
N100.25877 (7)0.4604 (3)0.45724 (8)0.0292 (5)
H10N0.28470.42260.43970.035*
H10M0.23170.47800.43770.035*
C10.39937 (8)0.3258 (4)0.46226 (11)0.0288 (5)
C20.42627 (9)0.3368 (4)0.56318 (11)0.0308 (6)
C30.34649 (8)0.4099 (4)0.53120 (10)0.0276 (5)
C40.24716 (8)0.5503 (4)0.60692 (10)0.0281 (5)
C50.22433 (8)0.5469 (4)0.55086 (10)0.0285 (6)
C60.26045 (9)0.4907 (4)0.51269 (10)0.0286 (5)
C70.11800 (9)0.6252 (4)0.47621 (10)0.0292 (5)
C80.05135 (9)0.6725 (4)0.42785 (11)0.0331 (6)
C90.02131 (11)0.6866 (6)0.37484 (13)0.0563 (9)
H9A0.01230.70670.38470.084*
H9B0.02410.56860.35290.084*
H9C0.03240.79390.35190.084*
C100.22345 (9)0.5893 (4)0.66330 (11)0.0321 (6)
C110.26138 (9)0.5910 (4)0.71164 (11)0.0382 (6)
H11A0.28410.69530.70550.057*
H11B0.27870.46960.71210.057*
H11C0.24560.60920.74820.057*
C120.19714 (9)0.7813 (4)0.66161 (11)0.0384 (7)
H12A0.18120.80210.69800.058*
H12B0.17300.78070.63050.058*
H12C0.22030.88360.65530.058*
C130.18754 (9)0.4262 (5)0.67302 (11)0.0412 (7)
H13A0.17140.44640.70920.062*
H13B0.20480.30470.67440.062*
H13C0.16360.42390.64170.062*
O20.45672 (6)0.3194 (3)0.60030 (8)0.0383 (5)
O40.18713 (7)0.4753 (3)0.35961 (8)0.0463 (5)
H4A0.17190.37570.34300.056*
H4B0.16110.53930.37070.056*
O3A0.13169 (17)0.1331 (6)0.30823 (16)0.0335 (13)0.488 (5)
C14A0.10177 (11)0.1786 (4)0.27041 (11)0.0290 (15)0.488 (5)
C15A0.07874 (15)0.3737 (4)0.25815 (16)0.0457 (16)0.488 (5)
H15A0.10310.47640.25960.055*0.488 (5)
H15B0.05330.40250.28570.055*0.488 (5)
C16A0.05744 (16)0.3497 (5)0.19745 (16)0.0485 (17)0.488 (5)
H16A0.02730.42320.19260.058*0.488 (5)
H16B0.08050.39300.16870.058*0.488 (5)
C17A0.04784 (13)0.1366 (5)0.19163 (14)0.0356 (16)0.488 (5)
H17A0.01450.10500.20210.043*0.488 (5)
H17B0.05340.09230.15220.043*0.488 (5)
N11A0.08266 (10)0.0533 (4)0.23192 (11)0.0322 (12)0.488 (5)
C18A0.09354 (17)0.1506 (4)0.23177 (18)0.0488 (17)0.488 (5)
H18A0.10500.18760.19410.073*0.488 (5)
H18B0.06440.22270.24030.073*0.488 (5)
H18C0.11850.17800.26080.073*0.488 (5)
O3B0.12735 (16)0.2045 (5)0.31146 (16)0.0311 (12)0.512 (5)
C14B0.10602 (10)0.1110 (4)0.27360 (11)0.0333 (16)0.512 (5)
C15B0.10728 (13)0.1044 (4)0.26215 (16)0.0413 (14)0.512 (5)
H15C0.10440.17760.29800.050*0.512 (5)
H15D0.13730.14160.24330.050*0.512 (5)
C16B0.06328 (14)0.1355 (4)0.22232 (17)0.0423 (14)0.512 (5)
H16C0.06950.23780.19440.051*0.512 (5)
H16D0.03470.16990.24440.051*0.512 (5)
C17B0.05587 (13)0.0551 (5)0.19218 (13)0.0394 (16)0.512 (5)
H17C0.07270.05840.15540.047*0.512 (5)
H17D0.02130.08140.18510.047*0.512 (5)
N11B0.07691 (9)0.1908 (3)0.23277 (10)0.0354 (12)0.512 (5)
C18B0.06870 (15)0.3959 (4)0.22719 (17)0.0419 (15)0.512 (5)
H18D0.03430.42260.23010.063*0.512 (5)
H18E0.07990.43930.19010.063*0.512 (5)
H18F0.08640.46300.25770.063*0.512 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0231 (3)0.0402 (4)0.0255 (3)0.0041 (2)0.0000 (2)0.0017 (3)
O10.0262 (9)0.0595 (13)0.0264 (9)0.0060 (8)0.0017 (7)0.0019 (8)
N10.0183 (10)0.0433 (13)0.0307 (11)0.0024 (9)0.0007 (8)0.0018 (9)
N20.0233 (10)0.0437 (13)0.0227 (10)0.0029 (9)0.0004 (8)0.0026 (9)
N30.0214 (10)0.0370 (12)0.0262 (11)0.0010 (8)0.0007 (8)0.0011 (9)
N40.0228 (10)0.0396 (13)0.0241 (11)0.0026 (9)0.0001 (8)0.0009 (9)
N50.0244 (11)0.0404 (13)0.0253 (11)0.0031 (9)0.0021 (8)0.0026 (9)
N60.0259 (10)0.0317 (12)0.0271 (11)0.0010 (8)0.0007 (8)0.0004 (9)
N70.0232 (10)0.0397 (13)0.0265 (11)0.0024 (9)0.0023 (8)0.0000 (9)
N80.0266 (11)0.0457 (14)0.0272 (11)0.0074 (9)0.0014 (9)0.0016 (10)
N90.0250 (11)0.0437 (14)0.0291 (11)0.0057 (9)0.0020 (8)0.0013 (9)
N100.0243 (10)0.0402 (13)0.0231 (10)0.0054 (9)0.0001 (8)0.0008 (9)
C10.0230 (12)0.0336 (15)0.0298 (13)0.0001 (10)0.0003 (10)0.0012 (10)
C20.0238 (12)0.0367 (15)0.0318 (13)0.0011 (10)0.0006 (10)0.0001 (11)
C30.0212 (12)0.0323 (14)0.0294 (13)0.0005 (9)0.0003 (9)0.0002 (10)
C40.0239 (12)0.0338 (14)0.0266 (13)0.0028 (10)0.0002 (9)0.0001 (10)
C50.0260 (12)0.0334 (14)0.0260 (12)0.0043 (10)0.0009 (10)0.0002 (10)
C60.0251 (12)0.0320 (14)0.0287 (13)0.0008 (10)0.0019 (9)0.0015 (10)
C70.0270 (13)0.0337 (14)0.0269 (12)0.0050 (10)0.0012 (10)0.0010 (10)
C80.0286 (13)0.0426 (16)0.0279 (13)0.0079 (11)0.0029 (10)0.0014 (11)
C90.0387 (16)0.097 (3)0.0328 (16)0.0236 (17)0.0070 (13)0.0088 (16)
C100.0233 (12)0.0473 (17)0.0258 (13)0.0029 (11)0.0035 (10)0.0005 (11)
C110.0324 (14)0.0559 (18)0.0264 (13)0.0058 (12)0.0007 (10)0.0014 (12)
C120.0321 (14)0.0549 (19)0.0282 (14)0.0083 (12)0.0016 (11)0.0045 (12)
C130.0325 (15)0.059 (2)0.0319 (15)0.0042 (13)0.0063 (11)0.0026 (13)
O20.0251 (9)0.0573 (13)0.0323 (10)0.0053 (8)0.0068 (7)0.0020 (8)
O40.0331 (10)0.0676 (15)0.0383 (11)0.0036 (9)0.0018 (8)0.0084 (10)
O3A0.030 (2)0.051 (3)0.020 (2)0.018 (2)0.0027 (17)0.018 (2)
C14A0.016 (2)0.051 (3)0.021 (3)0.004 (2)0.001 (2)0.001 (2)
C15A0.040 (3)0.048 (4)0.049 (4)0.008 (3)0.001 (3)0.001 (3)
C16A0.053 (4)0.052 (4)0.040 (3)0.012 (3)0.007 (3)0.005 (3)
C17A0.031 (3)0.044 (4)0.032 (3)0.007 (3)0.004 (2)0.004 (3)
N11A0.031 (2)0.041 (3)0.024 (2)0.002 (2)0.0028 (18)0.001 (2)
C18A0.060 (4)0.044 (4)0.042 (4)0.008 (3)0.001 (3)0.004 (3)
O3B0.032 (2)0.030 (3)0.031 (2)0.0077 (19)0.0010 (18)0.0098 (18)
C14B0.032 (3)0.039 (3)0.030 (3)0.001 (2)0.012 (3)0.002 (2)
C15B0.040 (3)0.041 (3)0.043 (3)0.001 (2)0.004 (3)0.000 (3)
C16B0.043 (3)0.043 (3)0.040 (3)0.006 (3)0.001 (3)0.003 (2)
C17B0.032 (3)0.051 (4)0.035 (3)0.004 (3)0.003 (2)0.007 (3)
N11B0.030 (2)0.043 (3)0.032 (2)0.0011 (19)0.0004 (19)0.000 (2)
C18B0.042 (3)0.043 (3)0.040 (4)0.000 (3)0.001 (3)0.002 (3)
Geometric parameters (Å, º) top
S1—N91.665 (2)C12—H12B0.9800
S1—C71.731 (2)C12—H12C0.9800
O1—C11.213 (3)C13—H13A0.9800
N1—C21.372 (3)C13—H13B0.9800
N1—C11.399 (3)C13—H13C0.9800
N1—H1N0.8800O4—H4A0.9018
N2—C31.351 (3)O4—H4B0.8962
N2—C21.397 (3)O3A—C14A1.2437
N2—H20.8800C14A—N11A1.3603
N3—C31.297 (3)C14A—C15A1.5375
N3—C11.386 (3)C15A—C16A1.5378
N4—C61.378 (3)C15A—H15A0.9900
N4—C31.385 (3)C15A—H15B0.9900
N4—N51.411 (3)C16A—C17A1.5263
N5—C41.304 (3)C16A—H16A0.9900
N6—N71.301 (3)C16A—H16B0.9900
N6—C51.354 (3)C17A—N11A1.4598
N7—C71.388 (3)C17A—H17A0.9900
N8—C71.311 (3)C17A—H17B0.9900
N8—C81.372 (3)N11A—C18A1.4644
N9—C81.316 (3)C18A—H18A0.9800
N10—C61.317 (3)C18A—H18B0.9800
N10—H10N0.8800C18A—H18C0.9800
N10—H10M0.8800O3B—C14B1.2436
C2—O21.207 (3)C14B—N11B1.3603
C4—C51.446 (3)C14B—C15B1.5375
C4—C101.516 (3)C15B—C16B1.5379
C5—C61.417 (3)C15B—H15C0.9900
C8—C91.485 (3)C15B—H15D0.9900
C9—H9A0.9800C16B—C17B1.5263
C9—H9B0.9800C16B—H16C0.9900
C9—H9C0.9800C16B—H16D0.9900
C10—C111.530 (3)C17B—N11B1.4599
C10—C121.535 (4)C17B—H17C0.9900
C10—C131.541 (4)C17B—H17D0.9900
C11—H11A0.9800N11B—C18B1.4644
C11—H11B0.9800C18B—H18D0.9800
C11—H11C0.9800C18B—H18E0.9800
C12—H12A0.9800C18B—H18F0.9800
N9—S1—C791.05 (11)C10—C12—H12C109.5
C2—N1—C1125.7 (2)H12A—C12—H12C109.5
C2—N1—H1N117.1H12B—C12—H12C109.5
C1—N1—H1N117.1C10—C13—H13A109.5
C3—N2—C2120.2 (2)C10—C13—H13B109.5
C3—N2—H2119.9H13A—C13—H13B109.5
C2—N2—H2119.9C10—C13—H13C109.5
C3—N3—C1117.1 (2)H13A—C13—H13C109.5
C6—N4—C3128.4 (2)H13B—C13—H13C109.5
C6—N4—N5112.57 (19)H4A—O4—H4B98.0
C3—N4—N5118.97 (19)O3A—C14A—N11A123.4
C4—N5—N4105.43 (19)O3A—C14A—C15A129.2
N7—N6—C5113.5 (2)N11A—C14A—C15A107.4
N6—N7—C7110.6 (2)C14A—C15A—C16A103.0
C7—N8—C8108.4 (2)C14A—C15A—H15A111.2
C8—N9—S1108.82 (17)C16A—C15A—H15A111.2
C6—N10—H10N120.0C14A—C15A—H15B111.2
C6—N10—H10M120.0C16A—C15A—H15B111.2
H10N—N10—H10M120.0H15A—C15A—H15B109.1
O1—C1—N3122.4 (2)C17A—C16A—C15A104.7
O1—C1—N1120.5 (2)C17A—C16A—H16A110.8
N3—C1—N1117.2 (2)C15A—C16A—H16A110.8
O2—C2—N1124.3 (2)C17A—C16A—H16B110.8
O2—C2—N2122.6 (2)C15A—C16A—H16B110.8
N1—C2—N2113.1 (2)H16A—C16A—H16B108.9
N3—C3—N2126.8 (2)N11A—C17A—C16A102.9
N3—C3—N4117.6 (2)N11A—C17A—H17A111.2
N2—C3—N4115.6 (2)C16A—C17A—H17A111.2
N5—C4—C5111.6 (2)N11A—C17A—H17B111.2
N5—C4—C10121.2 (2)C16A—C17A—H17B111.2
C5—C4—C10127.2 (2)H17A—C17A—H17B109.1
N6—C5—C6128.7 (2)C14A—N11A—C17A114.4
N6—C5—C4125.3 (2)C14A—N11A—C18A123.9
C6—C5—C4106.0 (2)C17A—N11A—C18A121.7
N10—C6—N4124.3 (2)O3B—C14B—N11B123.4
N10—C6—C5131.2 (2)O3B—C14B—C15B129.2
N4—C6—C5104.5 (2)N11B—C14B—C15B107.4
N8—C7—N7120.5 (2)C14B—C15B—C16B103.0
N8—C7—S1112.82 (18)C14B—C15B—H15C111.2
N7—C7—S1126.71 (18)C16B—C15B—H15C111.2
N9—C8—N8118.9 (2)C14B—C15B—H15D111.2
N9—C8—C9121.5 (2)C16B—C15B—H15D111.2
N8—C8—C9119.6 (2)H15C—C15B—H15D109.1
C8—C9—H9A109.5C17B—C16B—C15B104.7
C8—C9—H9B109.5C17B—C16B—H16C110.8
H9A—C9—H9B109.5C15B—C16B—H16C110.8
C8—C9—H9C109.5C17B—C16B—H16D110.8
H9A—C9—H9C109.5C15B—C16B—H16D110.8
H9B—C9—H9C109.5H16C—C16B—H16D108.9
C4—C10—C11109.9 (2)N11B—C17B—C16B102.9
C4—C10—C12110.7 (2)N11B—C17B—H17C111.2
C11—C10—C12109.4 (2)C16B—C17B—H17C111.2
C4—C10—C13107.0 (2)N11B—C17B—H17D111.2
C11—C10—C13109.6 (2)C16B—C17B—H17D111.2
C12—C10—C13110.3 (2)H17C—C17B—H17D109.1
C10—C11—H11A109.5C14B—N11B—C17B114.4
C10—C11—H11B109.5C14B—N11B—C18B123.9
H11A—C11—H11B109.5C17B—N11B—C18B121.7
C10—C11—H11C109.5N11B—C18B—H18D109.5
H11A—C11—H11C109.5N11B—C18B—H18E109.5
H11B—C11—H11C109.5H18D—C18B—H18E109.5
C10—C12—H12A109.5N11B—C18B—H18F109.5
C10—C12—H12B109.5H18D—C18B—H18F109.5
H12A—C12—H12B109.5H18E—C18B—H18F109.5
C6—N4—N5—C40.2 (3)C8—N8—C7—N7179.1 (2)
C3—N4—N5—C4178.7 (2)C8—N8—C7—S10.0 (3)
C5—N6—N7—C7180.0 (2)N6—N7—C7—N8179.1 (2)
C7—S1—N9—C80.2 (2)N6—N7—C7—S12.0 (3)
C3—N3—C1—O1179.3 (3)N9—S1—C7—N80.1 (2)
C3—N3—C1—N10.6 (3)N9—S1—C7—N7179.1 (2)
C2—N1—C1—O1178.9 (3)S1—N9—C8—N80.2 (3)
C2—N1—C1—N30.9 (4)S1—N9—C8—C9179.0 (2)
C1—N1—C2—O2179.8 (2)C7—N8—C8—N90.1 (4)
C1—N1—C2—N20.2 (4)C7—N8—C8—C9178.9 (3)
C3—N2—C2—O2179.1 (2)N5—C4—C10—C117.4 (4)
C3—N2—C2—N10.9 (3)C5—C4—C10—C11176.5 (3)
C1—N3—C3—N20.5 (4)N5—C4—C10—C12128.4 (3)
C1—N3—C3—N4179.4 (2)C5—C4—C10—C1255.6 (3)
C2—N2—C3—N31.3 (4)N5—C4—C10—C13111.4 (3)
C2—N2—C3—N4178.6 (2)C5—C4—C10—C1364.6 (3)
C6—N4—C3—N33.2 (4)O3A—C14A—C15A—C16A164.1
N5—N4—C3—N3178.5 (2)N11A—C14A—C15A—C16A17.2
C6—N4—C3—N2176.8 (2)C14A—C15A—C16A—C17A26.5
N5—N4—C3—N21.4 (3)C15A—C16A—C17A—N11A26.1
N4—N5—C4—C50.2 (3)O3A—C14A—N11A—C17A179.4
N4—N5—C4—C10176.4 (2)C15A—C14A—N11A—C17A0.6
N7—N6—C5—C60.9 (4)O3A—C14A—N11A—C18A2.4
N7—N6—C5—C4179.0 (2)C15A—C14A—N11A—C18A176.4
N5—C4—C5—N6179.3 (2)C16A—C17A—N11A—C14A16.4
C10—C4—C5—N64.3 (4)C16A—C17A—N11A—C18A166.5
N5—C4—C5—C60.5 (3)O3B—C14B—C15B—C16B164.0
C10—C4—C5—C6175.8 (2)N11B—C14B—C15B—C16B17.2
C3—N4—C6—N100.1 (4)C14B—C15B—C16B—C17B26.5
N5—N4—C6—N10178.2 (2)C15B—C16B—C17B—N11B26.1
C3—N4—C6—C5178.9 (2)O3B—C14B—N11B—C17B179.4
N5—N4—C6—C50.5 (3)C15B—C14B—N11B—C17B0.6
N6—C5—C6—N102.2 (5)O3B—C14B—N11B—C18B2.4
C4—C5—C6—N10178.0 (3)C15B—C14B—N11B—C18B176.4
N6—C5—C6—N4179.2 (3)C16B—C17B—N11B—C14B16.4
C4—C5—C6—N40.6 (3)C16B—C17B—N11B—C18B166.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3A0.9022.1863.087 (4)175.8
O4—H4A···O3B0.9021.8682.752 (4)166.3
O4—H4B···N70.8962.7003.104 (2)108.5
O4—H4B···N80.8962.2453.100 (2)159.4
N1—H1N···N9i0.882.072.947 (2)176
N2—H2···N50.882.272.654 (2)106
N2—H2···O3Aii0.881.952.778 (4)157
N2—H2···O3Bii0.882.012.766 (4)143
N10—H10N···N30.882.112.727 (2)126
N10—H10M···O40.882.193.002 (2)154
N10—H10M···N70.882.282.804 (2)119
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC13H16N10O2S·C5H9NO·H2O
Mr493.54
Crystal system, space groupMonoclinic, C2/c
Temperature (K)93
a, b, c (Å)27.8283 (5), 7.0269 (1), 23.4417 (4)
β (°) 91.3430 (7)
V3)4582.69 (13)
Z8
Radiation typeCu Kα
µ (mm1)1.70
Crystal size (mm)0.50 × 0.10 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.529, 0.844
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
3977, 3977, 3083
Rint0.000
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.150, 1.13
No. of reflections3977
No. of parameters347
No. of restraints84
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.35

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC & Rigaku, 2006), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3A0.9022.1863.087 (4)175.8
O4—H4A···O3B0.9021.8682.752 (4)166.3
O4—H4B···N70.8962.7003.104 (2)108.5
O4—H4B···N80.8962.2453.100 (2)159.4
N1—H1N···N9i0.8802.0692.947 (2)176.0
N2—H2···N50.8802.2702.654 (2)106.2
N2—H2···O3Aii0.8801.9482.778 (4)156.8
N2—H2···O3Bii0.8802.0142.766 (4)142.7
N10—H10N···N30.8802.1132.727 (2)126.3
N10—H10M···O40.8802.1883.002 (2)153.5
N10—H10M···N70.8802.2762.804 (2)118.5
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1/2, y+1/2, z+1.
 

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. OakRidge National Laboratory. Tennessee, USA.  Google Scholar
First citationHerbst, W. & Hunger, K. (2004). Industrial Organic Pigments, 3rd ed. Weinheim: VCH.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationNagata, Y. & Tateishi, K. (2009). Jpn Patent 2009-73978 A.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC and Rigaku (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShibata, H. & Mizuguchi, J. (2010). Acta Cryst. E66, m463–m464.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o944-o945
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds