organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-benzyl-4-hydr­­oxy-2-methyl-5-oxopyrrolidine-3-carboxyl­ate

aIndustrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 19 March 2010; accepted 23 March 2010; online 27 March 2010)

In the title oxopyrrolidine, C15H19NO4, the five-membered pyrrolidine ring is in a twist conformation and its mean plane makes an angle of 89.2 (3)° with the phenyl ring. In the crystal, mol­ecules pack as dimers via strong O—H⋯O [R22(10)] inter­actions cross-linked by weaker C—H⋯O and C—H⋯π inter­actions. Full synthetic and spectroscopic details are given for the title compound and related dicarboxyl­ates.

Related literature

For details of a programme to elucidate the structure–activity relationships of the Immucillin family of potent purine nucleoside phospho­rylase inhibitors, see: Mason et al. (2007[Mason, J. M., Lenz, D. H., Tyler, P. C., Wilcox, S. J., Mee, S., Evans, G. B., Clinch, K. & Furneaux, R. H. (2007). Org. Biol. Chem. 5, 2800-2802.]); Edwards et al. (2009[Edwards, A. A., Mason, J. M., Clinch, K., Tyler, P. C., Evans, G. B. & Schramm, V. L. (2009). Biochemistry, 48, 5226-5238.]); Clinch et al. (2009[Clinch, K., Evans, G. B., Froehlich, R. F. G., Furneaux, R. H., Kelly, P. M., Legentil, L., Murkin, A. S., Li, L., Schramm, V. L., Tyler, P. C. & Woolhouse, A. D. (2009). J. Med. Chem. 52, 1126-1143.]). For a related structure, see: Snider et al. (2000[Snider, B. B., Song, F. & Foxman, B. M. (2000). J. Org. Chem. 65, 793-800.]). For ring conformations see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) and for hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H19NO4

  • Mr = 277.31

  • Orthorhombic, P b c a

  • a = 27.746 (12) Å

  • b = 14.035 (5) Å

  • c = 7.357 (3) Å

  • V = 2865 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 93 K

  • 0.45 × 0.14 × 0.01 mm

Data collection
  • Siemens SMART APEX CCD area-detector diffractometer

  • 9428 measured reflections

  • 2376 independent reflections

  • 531 reflections with I > 2σ(I)

  • Rint = 0.136

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.138

  • S = 1.10

  • 2376 reflections

  • 146 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.93 (5) 1.87 (5) 2.795 (7) 171 (4)
C7—H7B⋯O4ii 0.99 2.57 3.555 (9) 173
C4—H4⋯O3iii 1.0 2.40 3.292 (7) 149
C14—H14⋯Cg1ii 0.95 2.81 3.612 (8) 142
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP in WinGX (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title oxopyrrolidine (I) (see Fig 3) was prepared as part of a programme to elucidate the structure-activity relationships of the Immucillin family of potent purine nucleoside phosphorylase inhibitors (Mason et al., 2007; Edwards et al., 2009, Clinch et al., 2009). Cycloaddition of the nitrone formed from N-benzyl hydroxylamine and acetaldehyde to diethyl maleate forms racemic, isomeric, isoxazolidine dicarboxylates II and III in 3:1 ratio. Reductive cleavage of the major isomer(II) with zinc was accompanied by spontaneous lactam formation to give the crystalline racemic pyrrolidine (I): the (2R*,3R*,4S*) isomer in shown in Figure 1.

The asymmetric unit of (I), Fig 1, contains one independent ethyl-1-benzyl-4-hydroxy-2-methyl-5-oxopyrrolidine-3-carboxylate(I) molecule. The five-membered ring (i.e. N1,C5—C2) is in a twist conformation on C2–C3 with Q(2) 0.260 (7)Å and ϕ 236.4 (14)° (Cremer & Pople, 1975). Its mean plane makes an angle of 89.2 (3)° with the planar phenyl ring (C10–C15). Distances and angles are similar to those observed before in the related N-bis(phenylmethyl)-2-pyrrolydinecarboxamide adduct QECBOP (Snider et al., 2000). Lattice binding is provided principally by O–H···O [motif R22(10), Bernstein et al., 1995] interactions, shown in Figure 2; these are supported by cross-linking weaker C–H···O and (one) C–H···π interactions (Table 1).

Related literature top

For details of a programme to elucidate the structure–activity relationships of the Immucillin family of potent purine nucleoside phosphorylase inhibitors, see: Mason et al. (2007); Edwards et al. (2009); Clinch et al. (2009). For a related structure , see: Snider et al. (2000). For ring conformations see: Cremer & Pople (1975) and for hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

(3S*,4S*,5R*)-Diethyl 2-benzyl-3-methylisoxazolidine-4,5-dicarboxylate (II) and (3R*,4S*,5R*)-Diethyl 2-benzyl-3-methylisoxazolidine-4,5-dicarboxylate (III). Acetaldehyde (0.90 ml, 16.0 mmol) was added to a stirred suspension of N-benzyl hydroxylamine (1.8 g, 14.6 mmol) in toluene. After 10 min diethyl maleate ( 2.14 ml, 13.3 mmol) was added and the solution heated to 90°C for 2 h. After cooling the solution was extracted with water, dried and concentrated under reduced pressure. Chromatography of the residue on a column of silica gel eluted with 20 and 25% EtOAc in hexanes gave first (II) (1.6 g, 4.98 mmol, 38%) and then (III) (0.53 g, 1.7 mmol, 12%) as colourless syrups. (II) ESI- MS C17H24NO5 [M+H]+ calcd 322.1654, found 322.1638. (III)ESI- MS C17H24NO5 [M+H]+ calcd 322.1654, found 322.1666.

(2S*,3S*,4R*)-Ethyl 1-benzyl-4-hydroxy-2-methyl-5-oxopyrrolidine -3-carboxylate(I): Zinc dust (0.52 g, 8.1 mmol) was added to a solution of (3S*,4S*,5R*)-diethyl 2-benzyl-3-methylisoxazolidine-4,5-dicarboxylate (II) (1.3 g, 4.1 mmol) in acetic acid (40 ml). The resulting suspension was stirred overnight and then filtered and concentrated to dryness under reduced pressure. The residue was partitioned between EtOAc and aqueous potassium carbonate (10%). The organic phase was dried and concentrated under reduced pressure. Chromatography of the residue on a column of silica gel eluted with 50-75% EtOAc in hexanes gave the title compound (I) (0.63 g, 56%). Elemental Analysis (%): calcd C 64.97, H 6.91, N 5.05, found C 64.89, H 6.84, N 5.03. Mp (EtOAc-hexanes) 85.9-86.1°C. ESI- MS C15H19NO4Na [M+Na]+ calcd 300.1212, found 300.1216.

For full details of 1H and 13C NMR of compounds (I), (II) & (III) see Special Details in the supplementary data.

Refinement top

The weighting scheme was chosen after the predicted SHELXL parameters gave a significantly poorer distribution of errors over the dataset. The H atom of the ordered hydroxyl group was placed in the position indicated by a difference electron density map and its positions allowed to refine with Uiso(H) = 1.2Ueq(O). The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the adjacent C—C bonds. All other H atoms were placed in geometrically idealised positions and constrained to ride on their parent atoms with C—H distances of 0.95 (aromatic) or 0.99 (methylene) Å with Uiso(H) = 1.2Ueq(C). Two low angle reflections were omitted from the final cycles of refinement because their observed intensities were much lower than the calculated values as a result of being partially obscured by the beam stop. Five other reflections were identified as outliers and removed from refinement. The crystals were minute in one direction, barely adequate but enough data was measured to solve the structure which met the chemical requirement for the study.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP in WinGX (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) at the 50% ellipsoid probability level.
[Figure 2] Fig. 2. Cell contents for (I) (Mercury, Macrae et al., 2006) showing the strong dimer-forming O–H···O interactions (Table 1).
[Figure 3] Fig. 3. Compounds formed during the synthesis of (I).
Ethyl 1-benzyl-4-hydroxy-2-methyl-5-oxopyrrolidine-3-carboxylate top
Crystal data top
C15H19NO4F(000) = 1184
Mr = 277.31Dx = 1.286 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 708 reflections
a = 27.746 (12) Åθ = 2.9–17.8°
b = 14.035 (5) ŵ = 0.09 mm1
c = 7.357 (3) ÅT = 93 K
V = 2865 (2) Å3Plate, colourless
Z = 80.45 × 0.14 × 0.01 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
531 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.136
Graphite monochromatorθmax = 25.0°, θmin = 2.9°
Detector resolution: 8.333 pixels mm-1h = 3232
ϕ and ω scansk = 1616
9428 measured reflectionsl = 77
2376 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.10 [exp(7.00(sinθ/λ)2)]/[σ2(Fo2) + (0.010P)2],
where P = 0.33333Fo2 + 0.66667Fc2
2376 reflections(Δ/σ)max < 0.001
146 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C15H19NO4V = 2865 (2) Å3
Mr = 277.31Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 27.746 (12) ŵ = 0.09 mm1
b = 14.035 (5) ÅT = 93 K
c = 7.357 (3) Å0.45 × 0.14 × 0.01 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
531 reflections with I > 2σ(I)
9428 measured reflectionsRint = 0.136
2376 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.26 e Å3
2376 reflectionsΔρmin = 0.21 e Å3
146 parameters
Special details top

Experimental. (I)(2S*,3S*,4R*)-Ethyl-1-benzyl-4-hydroxy-2-methyl -5-oxopyrrolidine-3-carboxylate (I) 1H NMR (300 MHz, CDCl3, TMS) δ 7.35-7.20 (m, 5H), 4.97 (d, J = 15.1 Hz, 1H), 4.64 (d, J = 8.7 Hz, 1H), 4.18 (q, J = 7.1 Hz, 2H), 4.07 (d, J = 15.1 Hz, 1H),3.83 (bs, 1H), 3.56 (m, 1H), 2.71 (t, J = 8.7 Hz, 1H), 1.33-1.06 (m, 6H). 13C NMR (CDCl3, 75.5 MHz, centre line of solvent 77.4 ppm) 173.2, 171.6, 136.0, 129.2, 128.3, 128.2, 72.5, 61.9, 54.7, 52.6, 44.6, 19.4, 14.5.

(II) (3S*,4S*,5R*)-Diethyl 2-benzyl-3-methylisoxazolidine-4,5-dicarboxylate 1H NMR (300 MHz, CDCl3, TMS) δ 7.39-7.12 (m, 5H), 4.58 (d, J = 8.4 Hz, 1H), 4.17-3.96 (m, 6H), 3.26 (m, 2H), 1.18 (m, 9H). 13C NMR (CDCl3, 75.5 MHz, centre line of solvent 77.4 ppm) 169.2, 169.0, 137.0, 128.7, 128.1, 127.1, 75.8, 63.8, 60.8, 60.2, 57.4, 16.2, 13.6.

(III) (3R*,4S*,5R*)-Diethyl 2-benzyl-3-methylisoxazolidine-4,5-dicarboxylate 1H NMR (300 MHz, CDCl3, TMS) δ 7.52-7.21 (m, 5H), 4.74 (d, J = 9.2 Hz, 1H), 4.32-4.05 (m, 5H), 3.95 (d, J = 14.3 Hz, 1H), 3.85 (dd, J = 7.6, 9.1 Hz, 1H), 3.30 (m, 1H), 1.86-1.11 (m, 9H). 13C NMR (CDCl3, 75.5 MHz, centre line of solvent 77.4 ppm) 170.1, 169.5, 136.7, 129.3. 128.6, 127.7, 76.2, 62.6, 61.6, 61.4, 59.6, 55.1, 14.6, 14.4.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58333 (18)0.5432 (2)0.5104 (6)0.0312 (13)
O20.4974 (2)0.5137 (3)0.2899 (6)0.0249 (12)
H2O0.470 (2)0.490 (4)0.347 (7)0.030*
O30.55079 (18)0.2657 (3)0.0461 (7)0.0352 (14)
O40.48229 (16)0.3345 (3)0.0499 (6)0.0229 (11)*
N10.6190 (2)0.4824 (3)0.2531 (7)0.0215 (14)
C10.6322 (3)0.4387 (4)0.0757 (8)0.036 (2)
H1A0.66720.43400.06020.053*
H1B0.62370.50380.11190.053*
H1C0.62180.39390.17000.053*
C20.6070 (2)0.4141 (4)0.1053 (9)0.0195 (16)*
H20.61660.34840.14360.023*
C30.5537 (2)0.4208 (4)0.0992 (9)0.0234 (17)*
H30.54560.47440.01510.028*
C40.5375 (2)0.4506 (4)0.2884 (8)0.0203 (17)
H40.52950.39250.36120.024*
C50.5818 (3)0.4975 (4)0.3670 (9)0.0216 (15)*
C60.5296 (2)0.3317 (4)0.0232 (9)0.0210 (16)*
C70.4550 (2)0.2497 (4)0.0061 (11)0.0313 (19)
H7A0.46250.19520.07440.038*
H7B0.46320.23190.13260.038*
C80.4022 (2)0.2757 (4)0.0083 (11)0.034 (2)
H8A0.39500.32790.07600.051*
H8B0.39500.29600.13290.051*
H8C0.38250.22020.02250.051*
C90.6675 (2)0.5142 (4)0.2908 (9)0.0278 (19)
H9A0.66640.55960.39380.033*
H9B0.67970.54930.18350.033*
C100.7025 (2)0.4361 (4)0.3362 (9)0.0204 (16)*
C110.7490 (3)0.4379 (4)0.2743 (9)0.0260 (16)*
H110.75830.48890.19690.031*
C120.7833 (3)0.3696 (4)0.3179 (8)0.0238 (17)*
H120.81550.37330.27470.029*
C130.7674 (3)0.2941 (4)0.4305 (10)0.033 (2)
H130.78970.24580.46410.039*
C140.7214 (3)0.2886 (4)0.4920 (11)0.031 (2)
H140.71160.23620.56470.037*
C150.6886 (3)0.3600 (4)0.4480 (8)0.0318 (19)
H150.65660.35720.49410.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.057 (4)0.0099 (18)0.026 (3)0.003 (2)0.001 (3)0.002 (2)
O20.042 (3)0.0100 (19)0.023 (3)0.002 (2)0.006 (3)0.0030 (19)
O30.044 (3)0.012 (2)0.050 (3)0.002 (2)0.006 (3)0.012 (2)
N10.033 (4)0.014 (2)0.017 (3)0.002 (2)0.002 (3)0.006 (2)
C10.049 (6)0.026 (3)0.032 (4)0.005 (4)0.003 (5)0.001 (4)
C40.032 (5)0.014 (3)0.014 (4)0.000 (3)0.002 (4)0.002 (3)
C70.039 (5)0.010 (2)0.046 (5)0.001 (3)0.007 (5)0.009 (3)
C80.041 (5)0.016 (3)0.046 (5)0.006 (3)0.002 (5)0.004 (4)
C90.035 (5)0.013 (3)0.035 (5)0.006 (3)0.001 (4)0.004 (3)
C130.044 (5)0.014 (3)0.039 (5)0.006 (3)0.005 (5)0.010 (3)
C140.036 (5)0.021 (3)0.036 (5)0.003 (3)0.001 (5)0.012 (4)
C150.047 (5)0.021 (3)0.028 (4)0.012 (3)0.000 (5)0.008 (3)
Geometric parameters (Å, º) top
O1—C51.236 (7)C7—C81.512 (8)
O2—C41.421 (7)C7—H7A0.9900
O2—H2O0.94 (6)C7—H7B0.9900
O3—C61.211 (7)C8—H8A0.9800
O4—C61.328 (7)C8—H8B0.9800
O4—C71.471 (6)C8—H8C0.9800
N1—C51.346 (8)C9—C101.504 (8)
N1—C91.442 (8)C9—H9A0.9900
N1—C21.488 (7)C9—H9B0.9900
C1—C21.543 (8)C10—C111.367 (9)
C1—H1A0.9800C10—C151.402 (8)
C1—H1B0.9800C11—C121.389 (8)
C1—H1C0.9800C11—H110.9500
C5—C41.511 (8)C12—C131.414 (8)
C4—C31.522 (8)C12—H120.9500
C4—H41.0000C13—C141.357 (9)
C3—C21.484 (9)C13—H130.9500
C3—C61.523 (8)C14—C151.392 (9)
C3—H31.0000C14—H140.9500
C2—H21.0000C15—H150.9500
C4—O2—H2O115 (4)O4—C7—H7A110.4
C6—O4—C7116.4 (5)C8—C7—H7A110.4
C5—N1—C9123.1 (6)O4—C7—H7B110.4
C5—N1—C2112.6 (5)C8—C7—H7B110.4
C9—N1—C2123.3 (5)H7A—C7—H7B108.6
C2—C1—H1A109.5C7—C8—H8A109.5
C2—C1—H1B109.5C7—C8—H8B109.5
H1A—C1—H1B109.5H8A—C8—H8B109.5
C2—C1—H1C109.5C7—C8—H8C109.5
H1A—C1—H1C109.5H8A—C8—H8C109.5
H1B—C1—H1C109.5H8B—C8—H8C109.5
O1—C5—N1126.0 (7)N1—C9—C10114.8 (5)
O1—C5—C4125.5 (7)N1—C9—H9A108.6
N1—C5—C4108.6 (5)C10—C9—H9A108.6
O2—C4—C5111.3 (5)N1—C9—H9B108.6
O2—C4—C3114.2 (5)C10—C9—H9B108.6
C5—C4—C3103.2 (6)H9A—C9—H9B107.5
O2—C4—H4109.3C11—C10—C15118.0 (6)
C5—C4—H4109.3C11—C10—C9121.5 (6)
C3—C4—H4109.3C15—C10—C9120.5 (7)
C2—C3—C4106.5 (6)C10—C11—C12123.8 (6)
C2—C3—C6113.4 (5)C10—C11—H11118.1
C4—C3—C6115.6 (6)C12—C11—H11118.1
C2—C3—H3106.9C11—C12—C13116.1 (7)
C4—C3—H3106.9C11—C12—H12122.0
C6—C3—H3106.9C13—C12—H12122.0
C3—C2—N1101.8 (5)C14—C13—C12122.0 (7)
C3—C2—C1114.3 (6)C14—C13—H13119.0
N1—C2—C1112.6 (5)C12—C13—H13119.0
C3—C2—H2109.3C13—C14—C15119.8 (7)
N1—C2—H2109.3C13—C14—H14120.1
C1—C2—H2109.3C15—C14—H14120.1
O3—C6—O4124.4 (6)C14—C15—C10120.3 (7)
O3—C6—C3124.7 (6)C14—C15—H15119.9
O4—C6—C3110.8 (5)C10—C15—H15119.9
O4—C7—C8106.5 (5)
C9—N1—C5—O13.8 (10)C7—O4—C6—O31.4 (10)
C2—N1—C5—O1172.5 (6)C7—O4—C6—C3176.0 (5)
C9—N1—C5—C4177.3 (5)C2—C3—C6—O38.4 (10)
C2—N1—C5—C48.6 (7)C4—C3—C6—O3131.8 (7)
O1—C5—C4—O247.3 (8)C2—C3—C6—O4169.1 (6)
N1—C5—C4—O2131.6 (5)C4—C3—C6—O445.7 (8)
O1—C5—C4—C3170.2 (6)C6—O4—C7—C8170.9 (6)
N1—C5—C4—C38.7 (6)C5—N1—C9—C10108.7 (6)
O2—C4—C3—C2143.4 (5)C2—N1—C9—C1058.8 (8)
C5—C4—C3—C222.5 (6)N1—C9—C10—C11140.9 (6)
O2—C4—C3—C689.6 (7)N1—C9—C10—C1540.8 (9)
C5—C4—C3—C6149.5 (5)C15—C10—C11—C121.0 (10)
C4—C3—C2—N126.7 (6)C9—C10—C11—C12177.4 (6)
C6—C3—C2—N1155.0 (5)C10—C11—C12—C131.2 (10)
C4—C3—C2—C1148.5 (5)C11—C12—C13—C140.2 (10)
C6—C3—C2—C183.3 (7)C12—C13—C14—C151.7 (11)
C5—N1—C2—C322.5 (7)C13—C14—C15—C101.9 (11)
C9—N1—C2—C3168.9 (6)C11—C10—C15—C140.6 (9)
C5—N1—C2—C1145.4 (5)C9—C10—C15—C14179.0 (6)
C9—N1—C2—C146.0 (8)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.93 (5)1.87 (5)2.795 (7)171 (4)
C7—H7B···O4ii0.992.573.555 (9)173
C4—H4···O3iii1.02.403.292 (7)149
C14—H14···Cg1ii0.952.813.612 (8)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H19NO4
Mr277.31
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)93
a, b, c (Å)27.746 (12), 14.035 (5), 7.357 (3)
V3)2865 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.14 × 0.01
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9428, 2376, 531
Rint0.136
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.138, 1.10
No. of reflections2376
No. of parameters146
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.21

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), ORTEP in WinGX (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.93 (5)1.87 (5)2.795 (7)171 (4)
C7—H7B···O4ii0.992.573.555 (9)173
C4—H4···O3iii1.02.403.292 (7)149
C14—H14···Cg1ii0.952.813.612 (8)142
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

We thank Professor Ward T Robinson and Dr J. Wikaira of the University of Canterbury, New Zealand, for their assistance.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationClinch, K., Evans, G. B., Froehlich, R. F. G., Furneaux, R. H., Kelly, P. M., Legentil, L., Murkin, A. S., Li, L., Schramm, V. L., Tyler, P. C. & Woolhouse, A. D. (2009). J. Med. Chem. 52, 1126–1143.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEdwards, A. A., Mason, J. M., Clinch, K., Tyler, P. C., Evans, G. B. & Schramm, V. L. (2009). Biochemistry, 48, 5226–5238.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMason, J. M., Lenz, D. H., Tyler, P. C., Wilcox, S. J., Mee, S., Evans, G. B., Clinch, K. & Furneaux, R. H. (2007). Org. Biol. Chem. 5, 2800–2802.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSnider, B. B., Song, F. & Foxman, B. M. (2000). J. Org. Chem. 65, 793–800.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds