organic compounds
1,5-Diaminotetrazolium chloride
aState Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
*Correspondence e-mail: duzhiming430@sohu.com
The title compound, CH5N6+·Cl−, crystallized with two indepedent 1,5-diaminotetrazolium cations and two independent chloride anions in the In the crystal, there are a number of N—H⋯Cl hydrogen-bonding interactions, which generate a three-dimensional network.
Related literature
For the preparation of the starting material, 1,5-diaminotetrazole, see: Galvez-Ruiz et al. (2005). For the preparation of 5-aminotetrazolium halogenide salts, see: Denffer et al. (2008) and of 1,5-diaminotetrazolium hydrochloride, see: He et al. (2009a). For the bond distances and angles in a related structure, see: He et al. (2009b). For van der Waals radii, see: http://biblo.chm.uri.edu/PeriodicTable/PeriodicTableoftheElements.htm .
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2008); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810009633/su2159sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810009633/su2159Isup2.hkl
The starting material, 1,5-diaminotetrazole, was prepared according to the literature method (Galvez-Ruiz et al., 2005). 1,5-diaminotetrazole (2.0043 g, 20.04 mmol) suspended in 40 mL of methanol, was reacted with 10 mL concentrated HCl. The reaction mixture was refluxed for 2 h and then the solvent was evaporated until precipitation occured. The concentrated solution was then placed in the refrigerator, and the white 1,5-diaminotetrazolium hydrochloride was obtained. The precipitate was filtered off and washed with water. The crude product was recrystallized from methanol (Yield: 2.4189 g, 88.6%). Crystals suitable for X-ray
were obtained by slow evaporation of a solution in methanol at rt.In the final cycles of
in the absence of significant effects, Friedel pairs were merged and Δf " set to zero. All the H-atoms were located in difference Fourier maps and were freely refined: N-H = 0.79 (4) - 0.96 (4) Å.Data collection: CrystalClear (Rigaku, 2008); cell
CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. |
CH5N6+·Cl− | F(000) = 560 |
Mr = 136.56 | Dx = 1.706 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 3581 reflections |
a = 12.389 (3) Å | θ = 3.1–27.5° |
b = 6.4500 (12) Å | µ = 0.61 mm−1 |
c = 13.305 (3) Å | T = 93 K |
V = 1063.1 (4) Å3 | Prism, colourless |
Z = 8 | 0.43 × 0.27 × 0.10 mm |
Rigaku AFC10/Saturn724+ diffractometer | 1268 independent reflections |
Radiation source: Rotating Anode | 1246 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 28.5714 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
Multi–scan | h = −16→14 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) | k = −8→8 |
Tmin = 0.778, Tmax = 0.942 | l = −16→17 |
7927 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.061 | All H-atom parameters refined |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0395P)2 + 0.2133P] where P = (Fo2 + 2Fc2)/3 |
1268 reflections | (Δ/σ)max = 0.004 |
185 parameters | Δρmax = 0.64 e Å−3 |
1 restraint | Δρmin = −0.17 e Å−3 |
CH5N6+·Cl− | V = 1063.1 (4) Å3 |
Mr = 136.56 | Z = 8 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 12.389 (3) Å | µ = 0.61 mm−1 |
b = 6.4500 (12) Å | T = 93 K |
c = 13.305 (3) Å | 0.43 × 0.27 × 0.10 mm |
Rigaku AFC10/Saturn724+ diffractometer | 1268 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) | 1246 reflections with I > 2σ(I) |
Tmin = 0.778, Tmax = 0.942 | Rint = 0.029 |
7927 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 1 restraint |
wR(F2) = 0.061 | All H-atom parameters refined |
S = 1.07 | Δρmax = 0.64 e Å−3 |
1268 reflections | Δρmin = −0.17 e Å−3 |
185 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.44089 (16) | 0.1470 (3) | 0.39856 (16) | 0.0134 (6) | |
N2 | 0.51729 (18) | 0.2805 (3) | 0.36265 (19) | 0.0157 (6) | |
N3 | 0.48306 (18) | 0.4641 (3) | 0.37753 (18) | 0.0191 (7) | |
N4 | 0.38470 (18) | 0.4512 (3) | 0.42323 (16) | 0.0170 (6) | |
N5 | 0.44793 (18) | −0.0680 (3) | 0.39178 (19) | 0.0174 (6) | |
N6 | 0.26869 (18) | 0.1788 (3) | 0.4778 (2) | 0.0173 (6) | |
C1 | 0.3577 (2) | 0.2537 (4) | 0.4364 (2) | 0.0129 (7) | |
N7 | 0.68577 (16) | 0.3860 (3) | 0.20486 (15) | 0.0128 (6) | |
N8 | 0.76391 (17) | 0.2503 (3) | 0.23810 (19) | 0.0154 (6) | |
N9 | 0.73281 (18) | 0.0683 (3) | 0.21667 (17) | 0.0170 (6) | |
N10 | 0.63448 (17) | 0.0824 (3) | 0.17032 (17) | 0.0153 (6) | |
N11 | 0.68953 (18) | 0.5995 (3) | 0.21790 (18) | 0.0154 (6) | |
N12 | 0.51472 (17) | 0.3555 (3) | 0.1248 (2) | 0.0167 (6) | |
C2 | 0.6038 (2) | 0.2794 (4) | 0.1630 (2) | 0.0131 (7) | |
Cl1 | 0.93591 (4) | 0.67650 (9) | 0.13004 (5) | 0.0168 (2) | |
Cl2 | 0.19017 (4) | 0.71516 (9) | 0.47049 (5) | 0.0174 (2) | |
H4 | 0.342 (3) | 0.565 (7) | 0.438 (3) | 0.048 (12)* | |
H5A | 0.446 (3) | −0.093 (7) | 0.334 (3) | 0.037 (11)* | |
H5B | 0.514 (3) | −0.104 (5) | 0.422 (3) | 0.031 (9)* | |
H6A | 0.215 (3) | 0.259 (6) | 0.492 (3) | 0.037 (10)* | |
H6B | 0.260 (3) | 0.037 (6) | 0.469 (3) | 0.040 (10)* | |
H10 | 0.599 (3) | −0.016 (6) | 0.158 (3) | 0.028 (9)* | |
H11A | 0.677 (3) | 0.623 (5) | 0.288 (3) | 0.024 (8)* | |
H11B | 0.753 (3) | 0.634 (5) | 0.200 (2) | 0.016 (7)* | |
H12A | 0.477 (3) | 0.275 (5) | 0.094 (3) | 0.021 (9)* | |
H12B | 0.502 (3) | 0.476 (6) | 0.129 (3) | 0.028 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0118 (10) | 0.0145 (10) | 0.0140 (10) | −0.0003 (8) | −0.0009 (8) | 0.0006 (8) |
N2 | 0.0157 (11) | 0.0187 (10) | 0.0126 (12) | −0.0025 (8) | 0.0014 (9) | 0.0005 (8) |
N3 | 0.0194 (11) | 0.0213 (12) | 0.0166 (12) | −0.0018 (8) | −0.0005 (10) | −0.0002 (10) |
N4 | 0.0165 (11) | 0.0161 (10) | 0.0184 (11) | 0.0005 (8) | −0.0008 (9) | −0.0015 (9) |
N5 | 0.0182 (11) | 0.0141 (10) | 0.0198 (12) | 0.0029 (8) | 0.0002 (9) | −0.0009 (9) |
N6 | 0.0132 (9) | 0.0197 (11) | 0.0189 (11) | 0.0007 (8) | 0.0042 (10) | −0.0004 (10) |
C1 | 0.0118 (12) | 0.0175 (11) | 0.0093 (12) | 0.0023 (9) | −0.0028 (9) | −0.0006 (9) |
N7 | 0.0112 (9) | 0.0146 (10) | 0.0125 (10) | 0.0000 (8) | −0.0001 (8) | 0.0008 (8) |
N8 | 0.0115 (11) | 0.0202 (10) | 0.0144 (12) | 0.0026 (8) | 0.0003 (9) | 0.0007 (8) |
N9 | 0.0170 (11) | 0.0184 (11) | 0.0156 (11) | 0.0014 (8) | −0.0002 (9) | −0.0001 (9) |
N10 | 0.0124 (10) | 0.0164 (10) | 0.0171 (10) | −0.0023 (8) | −0.0004 (8) | −0.0027 (9) |
N11 | 0.0126 (10) | 0.0137 (10) | 0.0199 (12) | −0.0020 (8) | 0.0008 (9) | −0.0013 (9) |
N12 | 0.0134 (9) | 0.0170 (11) | 0.0196 (11) | −0.0020 (8) | −0.0037 (10) | −0.0016 (11) |
C2 | 0.0134 (12) | 0.0165 (12) | 0.0094 (12) | −0.0031 (9) | 0.0028 (10) | −0.0010 (9) |
Cl1 | 0.0114 (3) | 0.0194 (3) | 0.0197 (3) | −0.0004 (2) | −0.0017 (3) | 0.0002 (3) |
Cl2 | 0.0126 (3) | 0.0196 (3) | 0.0199 (3) | −0.0011 (2) | 0.0019 (3) | −0.0003 (3) |
N1—N2 | 1.366 (3) | N7—N8 | 1.378 (3) |
N1—N5 | 1.392 (3) | N7—N11 | 1.389 (3) |
N1—C1 | 1.338 (3) | N7—C2 | 1.347 (3) |
N2—N3 | 1.273 (3) | N8—N9 | 1.268 (3) |
N3—N4 | 1.364 (3) | N9—N10 | 1.368 (3) |
N4—C1 | 1.329 (3) | N10—C2 | 1.330 (3) |
N6—C1 | 1.324 (3) | N12—C2 | 1.310 (3) |
N4—H4 | 0.93 (4) | N10—H10 | 0.79 (4) |
N5—H5A | 0.79 (4) | N11—H11A | 0.96 (4) |
N5—H5B | 0.94 (4) | N11—H11B | 0.85 (4) |
N6—H6A | 0.86 (4) | N12—H12A | 0.81 (4) |
N6—H6B | 0.93 (4) | N12—H12B | 0.80 (4) |
N2—N1—N5 | 124.2 (2) | N7—N8—N9 | 107.6 (2) |
N2—N1—C1 | 109.95 (19) | N8—N9—N10 | 108.08 (19) |
N5—N1—C1 | 125.8 (2) | N9—N10—C2 | 110.6 (2) |
N1—N2—N3 | 107.5 (2) | C2—N10—H10 | 126 (3) |
N2—N3—N4 | 108.06 (19) | N9—N10—H10 | 122 (3) |
N3—N4—C1 | 110.0 (2) | N7—N11—H11B | 105 (2) |
N3—N4—H4 | 124 (2) | N7—N11—H11A | 105.9 (19) |
C1—N4—H4 | 126 (3) | H11A—N11—H11B | 112 (3) |
N1—N5—H5A | 105 (3) | C2—N12—H12B | 120 (3) |
H5A—N5—H5B | 113 (4) | C2—N12—H12A | 116 (3) |
N1—N5—H5B | 106 (2) | H12A—N12—H12B | 123 (4) |
C1—N6—H6A | 121 (3) | N4—C1—N6 | 127.9 (2) |
C1—N6—H6B | 114 (2) | N1—C1—N4 | 104.5 (2) |
H6A—N6—H6B | 122 (3) | N1—C1—N6 | 127.6 (2) |
N8—N7—N11 | 124.48 (19) | N7—C2—N12 | 127.2 (2) |
N8—N7—C2 | 109.76 (19) | N10—C2—N12 | 128.8 (2) |
N11—N7—C2 | 125.7 (2) | N7—C2—N10 | 104.0 (2) |
N5—N1—N2—N3 | 177.3 (2) | N11—N7—N8—N9 | 177.8 (2) |
C1—N1—N2—N3 | 0.0 (3) | C2—N7—N8—N9 | 0.9 (3) |
N2—N1—C1—N4 | −0.2 (3) | N8—N7—C2—N10 | −0.9 (3) |
N2—N1—C1—N6 | 180.0 (3) | N8—N7—C2—N12 | 178.8 (3) |
N5—N1—C1—N4 | −177.4 (2) | N11—N7—C2—N10 | −177.7 (2) |
N5—N1—C1—N6 | 2.8 (4) | N11—N7—C2—N12 | 1.9 (4) |
N1—N2—N3—N4 | 0.1 (3) | N7—N8—N9—N10 | −0.5 (3) |
N2—N3—N4—C1 | −0.2 (3) | N8—N9—N10—C2 | −0.1 (3) |
N3—N4—C1—N1 | 0.2 (3) | N9—N10—C2—N7 | 0.6 (3) |
N3—N4—C1—N6 | −179.9 (3) | N9—N10—C2—N12 | −179.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···Cl2 | 0.93 (4) | 2.16 (4) | 3.017 (2) | 154 (4) |
N5—H5A···Cl1i | 0.79 (4) | 2.77 (4) | 3.555 (3) | 179 (6) |
N5—H5B···Cl2ii | 0.94 (4) | 2.39 (4) | 3.317 (2) | 170 (3) |
N6—H6A···Cl1iii | 0.86 (4) | 2.65 (4) | 3.376 (3) | 142 (3) |
N6—H6B···Cl2iv | 0.93 (4) | 2.25 (4) | 3.146 (2) | 162 (3) |
N10—H10···Cl1i | 0.79 (4) | 2.30 (4) | 3.021 (2) | 152 (4) |
N11—H11A···Cl2v | 0.96 (4) | 2.65 (4) | 3.567 (3) | 161 (3) |
N11—H11B···Cl1 | 0.85 (4) | 2.47 (4) | 3.306 (2) | 170 (3) |
N12—H12A···Cl2vi | 0.81 (4) | 2.67 (4) | 3.388 (3) | 148 (3) |
N12—H12B···Cl1vii | 0.80 (4) | 2.39 (4) | 3.173 (2) | 171 (4) |
Symmetry codes: (i) x−1/2, −y+1/2, z; (ii) x+1/2, −y+1/2, z; (iii) −x+1, −y+1, z+1/2; (iv) x, y−1, z; (v) x+1/2, −y+3/2, z; (vi) −x+1/2, y−1/2, z−1/2; (vii) x−1/2, −y+3/2, z. |
Experimental details
Crystal data | |
Chemical formula | CH5N6+·Cl− |
Mr | 136.56 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 93 |
a, b, c (Å) | 12.389 (3), 6.4500 (12), 13.305 (3) |
V (Å3) | 1063.1 (4) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.61 |
Crystal size (mm) | 0.43 × 0.27 × 0.10 |
Data collection | |
Diffractometer | Rigaku AFC10/Saturn724+ diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2008) |
Tmin, Tmax | 0.778, 0.942 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7927, 1268, 1246 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.061, 1.07 |
No. of reflections | 1268 |
No. of parameters | 185 |
No. of restraints | 1 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.64, −0.17 |
Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4···Cl2 | 0.93 (4) | 2.16 (4) | 3.017 (2) | 154 (4) |
N5—H5A···Cl1i | 0.79 (4) | 2.77 (4) | 3.555 (3) | 179 (6) |
N5—H5B···Cl2ii | 0.94 (4) | 2.39 (4) | 3.317 (2) | 170 (3) |
N6—H6A···Cl1iii | 0.86 (4) | 2.65 (4) | 3.376 (3) | 142 (3) |
N6—H6B···Cl2iv | 0.93 (4) | 2.25 (4) | 3.146 (2) | 162 (3) |
N10—H10···Cl1i | 0.79 (4) | 2.30 (4) | 3.021 (2) | 152 (4) |
N11—H11A···Cl2v | 0.96 (4) | 2.65 (4) | 3.567 (3) | 161 (3) |
N11—H11B···Cl1 | 0.85 (4) | 2.47 (4) | 3.306 (2) | 170 (3) |
N12—H12A···Cl2vi | 0.81 (4) | 2.67 (4) | 3.388 (3) | 148 (3) |
N12—H12B···Cl1vii | 0.80 (4) | 2.39 (4) | 3.173 (2) | 171 (4) |
Symmetry codes: (i) x−1/2, −y+1/2, z; (ii) x+1/2, −y+1/2, z; (iii) −x+1, −y+1, z+1/2; (iv) x, y−1, z; (v) x+1/2, −y+3/2, z; (vi) −x+1/2, y−1/2, z−1/2; (vii) x−1/2, −y+3/2, z. |
Acknowledgements
This work was funded by the State Key Laboratory of Explosion Science and Technology (QNKT10-09), Beijing Institute of Technology.
References
Denffer, V. M., Klapötke, T. M. & Sabaté, C. M. (2008). Z. Anorg. Allg. Chem. 634, 2575–2582. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Galvez-Ruiz, J. C., Holl, G., Karaghiosoff, K., Klapötke, T. M., Lohnwitz, K., Mayer, P., Noth, H., Polborn, K., Rohbogner, C. J., Suter, M. & Weigand, J. J. (2005). Inorg. Chem. 44, 4237–4253. Web of Science CSD CrossRef PubMed CAS Google Scholar
He, C. L., Du, Z. M., Cong, X. M., Tang, Z. Q. & Meng, L. Q. (2009a). Theory and Practice of Energetic Materials, Vol. 8, pp. 673–677. Beijing Institute of Technology. Google Scholar
He, C.-L., Du, Z.-M., Tang, Z.-Q., Cong, X.-M. & Meng, L.-Q. (2009b). Acta Cryst. E65, o1760. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis and study of nitrogen-rich energetic salts and highly energetic materials for possible military as well as civil applications has attracted considerable interest in recent years, especially the salts with tetrazole-containing compounds (Galvez-Ruiz et al., 2005; Denffer et al., 2008). The nitrogen content of 5-amniotetrazole and 1,5-diaminotetrazole, which are primary sources for preparing energetic salts, is 82.3% and 84%, respectively. Denffer et al. (2008) reported the synthesis of 5-aminotetrazolium hydrochloride and determinated its crystal structure. Our rearch group has recently reported on the synthesis of the title compound (He et al.., 2009a,b), and herein we report on its crystal structure.
The molecular structure of the title molecule is presented in Fig. 1. It crystallizes with two independent 1,5-Diaminotetrazolium cations and two independent chloride anions per asymmetric unit. The bond distances and angles are as expected for a molecule of this kind, and are similar to the corresponding distances and angles reported by (He et al., 2009a,b). The cations, excluding the N6 and N11 hydrogen atoms, are planar (maximum deviation 0.020 (2) Å).
The distance between the Cl1 anion and the plane formed by the cation ring 1, (= N1,N2,N3,N4,C1), is 0.445 (1) Å, and the perpendicular distances of this cation centroid, Cg1, to the parallel cation 2 ring planes (= N7,N8,N9,N10,C2), are 2.868 (1) Å (symmetry code: 1-x, -y, 0.5+z) and 2.922 (1) Å (symmetry code: 1-x, 1-y, 0.5+z). The distances of N2—C2 (2.864 (4) Å) and N8—C1i (2.883 (4) Å) [symmetry code (i) = 0.5+x, 0.5-y, z] are smaller than the sum of the associated van der Waals Radii (rN + rC = 3.25 Å), because of edge-to-face π-π interactions between the two cations. Both of the amino groups, in position 4 (N4) and position 5 (N6), form a long contact to the Cl2- anion (N4—Cl2 = 3.017 (2) Å and N6—Cl2ii = 3.146 (2) Å [symmetry code (ii) = x, 1+y, z]), which is within the sum of the van der Waals radii (rN +rCl = 3.30 Å).
In the crystal there are a number of N-H···Cl hydrogen bonds which result in the foamation of a three-dimensional network (Table 1).