organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Di­amino­tetra­zolium chloride

aState Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
*Correspondence e-mail: duzhiming430@sohu.com

(Received 18 January 2010; accepted 15 March 2010; online 31 March 2010)

The title compound, CH5N6+·Cl, crystallized with two indepedent 1,5-diamino­tetra­zolium cations and two independent chloride anions in the asymmetric unit. In the crystal, there are a number of N—H⋯Cl hydrogen-bonding inter­actions, which generate a three-dimensional network.

Related literature

For the preparation of the starting material, 1,5-diamino­tetra­zole, see: Galvez-Ruiz et al. (2005[Galvez-Ruiz, J. C., Holl, G., Karaghiosoff, K., Klapötke, T. M., Lohnwitz, K., Mayer, P., Noth, H., Polborn, K., Rohbogner, C. J., Suter, M. & Weigand, J. J. (2005). Inorg. Chem. 44, 4237-4253.]). For the preparation of 5-amino­tetra­zolium halogenide salts, see: Denffer et al. (2008[Denffer, V. M., Klapötke, T. M. & Sabaté, C. M. (2008). Z. Anorg. Allg. Chem. 634, 2575-2582.]) and of 1,5-diamino­tetra­zolium hydro­chloride, see: He et al. (2009a[He, C. L., Du, Z. M., Cong, X. M., Tang, Z. Q. & Meng, L. Q. (2009a). Theory and Practice of Energetic Materials, Vol. 8, pp. 673-677. Beijing Institute of Technology.]). For the bond distances and angles in a related structure, see: He et al. (2009b[He, C.-L., Du, Z.-M., Tang, Z.-Q., Cong, X.-M. & Meng, L.-Q. (2009b). Acta Cryst. E65, o1760.]). For van der Waals radii, see: http://biblo.chm.uri.edu/PeriodicTable/PeriodicTableoftheElements.htm .

[Scheme 1]

Experimental

Crystal data
  • CH5N6+·Cl

  • Mr = 136.56

  • Orthorhombic, P n a 21

  • a = 12.389 (3) Å

  • b = 6.4500 (12) Å

  • c = 13.305 (3) Å

  • V = 1063.1 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 93 K

  • 0.43 × 0.27 × 0.10 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.778, Tmax = 0.942

  • 7927 measured reflections

  • 1268 independent reflections

  • 1246 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.061

  • S = 1.07

  • 1268 reflections

  • 185 parameters

  • 1 restraint

  • All H-atom parameters refined

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯Cl2 0.93 (4) 2.16 (4) 3.017 (2) 154 (4)
N5—H5A⋯Cl1i 0.79 (4) 2.77 (4) 3.555 (3) 179 (6)
N5—H5B⋯Cl2ii 0.94 (4) 2.39 (4) 3.317 (2) 170 (3)
N6—H6A⋯Cl1iii 0.86 (4) 2.65 (4) 3.376 (3) 142 (3)
N6—H6B⋯Cl2iv 0.93 (4) 2.25 (4) 3.146 (2) 162 (3)
N10—H10⋯Cl1i 0.79 (4) 2.30 (4) 3.021 (2) 152 (4)
N11—H11A⋯Cl2v 0.96 (4) 2.65 (4) 3.567 (3) 161 (3)
N11—H11B⋯Cl1 0.85 (4) 2.47 (4) 3.306 (2) 170 (3)
N12—H12A⋯Cl2vi 0.81 (4) 2.67 (4) 3.388 (3) 148 (3)
N12—H12B⋯Cl1vii 0.80 (4) 2.39 (4) 3.173 (2) 171 (4)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iv) x, y-1, z; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (vii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The synthesis and study of nitrogen-rich energetic salts and highly energetic materials for possible military as well as civil applications has attracted considerable interest in recent years, especially the salts with tetrazole-containing compounds (Galvez-Ruiz et al., 2005; Denffer et al., 2008). The nitrogen content of 5-amniotetrazole and 1,5-diaminotetrazole, which are primary sources for preparing energetic salts, is 82.3% and 84%, respectively. Denffer et al. (2008) reported the synthesis of 5-aminotetrazolium hydrochloride and determinated its crystal structure. Our rearch group has recently reported on the synthesis of the title compound (He et al.., 2009a,b), and herein we report on its crystal structure.

The molecular structure of the title molecule is presented in Fig. 1. It crystallizes with two independent 1,5-Diaminotetrazolium cations and two independent chloride anions per asymmetric unit. The bond distances and angles are as expected for a molecule of this kind, and are similar to the corresponding distances and angles reported by (He et al., 2009a,b). The cations, excluding the N6 and N11 hydrogen atoms, are planar (maximum deviation 0.020 (2) Å).

The distance between the Cl1 anion and the plane formed by the cation ring 1, (= N1,N2,N3,N4,C1), is 0.445 (1) Å, and the perpendicular distances of this cation centroid, Cg1, to the parallel cation 2 ring planes (= N7,N8,N9,N10,C2), are 2.868 (1) Å (symmetry code: 1-x, -y, 0.5+z) and 2.922 (1) Å (symmetry code: 1-x, 1-y, 0.5+z). The distances of N2—C2 (2.864 (4) Å) and N8—C1i (2.883 (4) Å) [symmetry code (i) = 0.5+x, 0.5-y, z] are smaller than the sum of the associated van der Waals Radii (rN + rC = 3.25 Å), because of edge-to-face π-π interactions between the two cations. Both of the amino groups, in position 4 (N4) and position 5 (N6), form a long contact to the Cl2- anion (N4—Cl2 = 3.017 (2) Å and N6—Cl2ii = 3.146 (2) Å [symmetry code (ii) = x, 1+y, z]), which is within the sum of the van der Waals radii (rN +rCl = 3.30 Å).

In the crystal there are a number of N-H···Cl hydrogen bonds which result in the foamation of a three-dimensional network (Table 1).

Related literature top

For the preparation of the starting material, 1,5-diaminotetrazole, see: Galvez-Ruiz et al. (2005). For the preparation of 5-aminotetrazolium halogenide salts, see: Denffer et al. (2008) and of 1,5-diaminotetrazolium hydrochloride, see: He et al. (2009a). For the bond distances and angles in a related structure, see: He et al. (2009b). For van der Waals radii, see: http://biblo.chm.uri.edu/PeriodicTable/PeriodicTableoftheElements.htm.

Experimental top

The starting material, 1,5-diaminotetrazole, was prepared according to the literature method (Galvez-Ruiz et al., 2005). 1,5-diaminotetrazole (2.0043 g, 20.04 mmol) suspended in 40 mL of methanol, was reacted with 10 mL concentrated HCl. The reaction mixture was refluxed for 2 h and then the solvent was evaporated until precipitation occured. The concentrated solution was then placed in the refrigerator, and the white 1,5-diaminotetrazolium hydrochloride was obtained. The precipitate was filtered off and washed with water. The crude product was recrystallized from methanol (Yield: 2.4189 g, 88.6%). Crystals suitable for X-ray structure determination were obtained by slow evaporation of a solution in methanol at rt.

Refinement top

In the final cycles of refinement, in the absence of significant anomalous scattering effects, Friedel pairs were merged and Δf " set to zero. All the H-atoms were located in difference Fourier maps and were freely refined: N-H = 0.79 (4) - 0.96 (4) Å.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
1,5-Diaminotetrazolium chloride top
Crystal data top
CH5N6+·ClF(000) = 560
Mr = 136.56Dx = 1.706 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3581 reflections
a = 12.389 (3) Åθ = 3.1–27.5°
b = 6.4500 (12) ŵ = 0.61 mm1
c = 13.305 (3) ÅT = 93 K
V = 1063.1 (4) Å3Prism, colourless
Z = 80.43 × 0.27 × 0.10 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
1268 independent reflections
Radiation source: Rotating Anode1246 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.1°
Multi–scanh = 1614
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
k = 88
Tmin = 0.778, Tmax = 0.942l = 1617
7927 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: difference Fourier map
wR(F2) = 0.061All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.2133P]
where P = (Fo2 + 2Fc2)/3
1268 reflections(Δ/σ)max = 0.004
185 parametersΔρmax = 0.64 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
CH5N6+·ClV = 1063.1 (4) Å3
Mr = 136.56Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 12.389 (3) ŵ = 0.61 mm1
b = 6.4500 (12) ÅT = 93 K
c = 13.305 (3) Å0.43 × 0.27 × 0.10 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
1268 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
1246 reflections with I > 2σ(I)
Tmin = 0.778, Tmax = 0.942Rint = 0.029
7927 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0251 restraint
wR(F2) = 0.061All H-atom parameters refined
S = 1.07Δρmax = 0.64 e Å3
1268 reflectionsΔρmin = 0.17 e Å3
185 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.44089 (16)0.1470 (3)0.39856 (16)0.0134 (6)
N20.51729 (18)0.2805 (3)0.36265 (19)0.0157 (6)
N30.48306 (18)0.4641 (3)0.37753 (18)0.0191 (7)
N40.38470 (18)0.4512 (3)0.42323 (16)0.0170 (6)
N50.44793 (18)0.0680 (3)0.39178 (19)0.0174 (6)
N60.26869 (18)0.1788 (3)0.4778 (2)0.0173 (6)
C10.3577 (2)0.2537 (4)0.4364 (2)0.0129 (7)
N70.68577 (16)0.3860 (3)0.20486 (15)0.0128 (6)
N80.76391 (17)0.2503 (3)0.23810 (19)0.0154 (6)
N90.73281 (18)0.0683 (3)0.21667 (17)0.0170 (6)
N100.63448 (17)0.0824 (3)0.17032 (17)0.0153 (6)
N110.68953 (18)0.5995 (3)0.21790 (18)0.0154 (6)
N120.51472 (17)0.3555 (3)0.1248 (2)0.0167 (6)
C20.6038 (2)0.2794 (4)0.1630 (2)0.0131 (7)
Cl10.93591 (4)0.67650 (9)0.13004 (5)0.0168 (2)
Cl20.19017 (4)0.71516 (9)0.47049 (5)0.0174 (2)
H40.342 (3)0.565 (7)0.438 (3)0.048 (12)*
H5A0.446 (3)0.093 (7)0.334 (3)0.037 (11)*
H5B0.514 (3)0.104 (5)0.422 (3)0.031 (9)*
H6A0.215 (3)0.259 (6)0.492 (3)0.037 (10)*
H6B0.260 (3)0.037 (6)0.469 (3)0.040 (10)*
H100.599 (3)0.016 (6)0.158 (3)0.028 (9)*
H11A0.677 (3)0.623 (5)0.288 (3)0.024 (8)*
H11B0.753 (3)0.634 (5)0.200 (2)0.016 (7)*
H12A0.477 (3)0.275 (5)0.094 (3)0.021 (9)*
H12B0.502 (3)0.476 (6)0.129 (3)0.028 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0118 (10)0.0145 (10)0.0140 (10)0.0003 (8)0.0009 (8)0.0006 (8)
N20.0157 (11)0.0187 (10)0.0126 (12)0.0025 (8)0.0014 (9)0.0005 (8)
N30.0194 (11)0.0213 (12)0.0166 (12)0.0018 (8)0.0005 (10)0.0002 (10)
N40.0165 (11)0.0161 (10)0.0184 (11)0.0005 (8)0.0008 (9)0.0015 (9)
N50.0182 (11)0.0141 (10)0.0198 (12)0.0029 (8)0.0002 (9)0.0009 (9)
N60.0132 (9)0.0197 (11)0.0189 (11)0.0007 (8)0.0042 (10)0.0004 (10)
C10.0118 (12)0.0175 (11)0.0093 (12)0.0023 (9)0.0028 (9)0.0006 (9)
N70.0112 (9)0.0146 (10)0.0125 (10)0.0000 (8)0.0001 (8)0.0008 (8)
N80.0115 (11)0.0202 (10)0.0144 (12)0.0026 (8)0.0003 (9)0.0007 (8)
N90.0170 (11)0.0184 (11)0.0156 (11)0.0014 (8)0.0002 (9)0.0001 (9)
N100.0124 (10)0.0164 (10)0.0171 (10)0.0023 (8)0.0004 (8)0.0027 (9)
N110.0126 (10)0.0137 (10)0.0199 (12)0.0020 (8)0.0008 (9)0.0013 (9)
N120.0134 (9)0.0170 (11)0.0196 (11)0.0020 (8)0.0037 (10)0.0016 (11)
C20.0134 (12)0.0165 (12)0.0094 (12)0.0031 (9)0.0028 (10)0.0010 (9)
Cl10.0114 (3)0.0194 (3)0.0197 (3)0.0004 (2)0.0017 (3)0.0002 (3)
Cl20.0126 (3)0.0196 (3)0.0199 (3)0.0011 (2)0.0019 (3)0.0003 (3)
Geometric parameters (Å, º) top
N1—N21.366 (3)N7—N81.378 (3)
N1—N51.392 (3)N7—N111.389 (3)
N1—C11.338 (3)N7—C21.347 (3)
N2—N31.273 (3)N8—N91.268 (3)
N3—N41.364 (3)N9—N101.368 (3)
N4—C11.329 (3)N10—C21.330 (3)
N6—C11.324 (3)N12—C21.310 (3)
N4—H40.93 (4)N10—H100.79 (4)
N5—H5A0.79 (4)N11—H11A0.96 (4)
N5—H5B0.94 (4)N11—H11B0.85 (4)
N6—H6A0.86 (4)N12—H12A0.81 (4)
N6—H6B0.93 (4)N12—H12B0.80 (4)
N2—N1—N5124.2 (2)N7—N8—N9107.6 (2)
N2—N1—C1109.95 (19)N8—N9—N10108.08 (19)
N5—N1—C1125.8 (2)N9—N10—C2110.6 (2)
N1—N2—N3107.5 (2)C2—N10—H10126 (3)
N2—N3—N4108.06 (19)N9—N10—H10122 (3)
N3—N4—C1110.0 (2)N7—N11—H11B105 (2)
N3—N4—H4124 (2)N7—N11—H11A105.9 (19)
C1—N4—H4126 (3)H11A—N11—H11B112 (3)
N1—N5—H5A105 (3)C2—N12—H12B120 (3)
H5A—N5—H5B113 (4)C2—N12—H12A116 (3)
N1—N5—H5B106 (2)H12A—N12—H12B123 (4)
C1—N6—H6A121 (3)N4—C1—N6127.9 (2)
C1—N6—H6B114 (2)N1—C1—N4104.5 (2)
H6A—N6—H6B122 (3)N1—C1—N6127.6 (2)
N8—N7—N11124.48 (19)N7—C2—N12127.2 (2)
N8—N7—C2109.76 (19)N10—C2—N12128.8 (2)
N11—N7—C2125.7 (2)N7—C2—N10104.0 (2)
N5—N1—N2—N3177.3 (2)N11—N7—N8—N9177.8 (2)
C1—N1—N2—N30.0 (3)C2—N7—N8—N90.9 (3)
N2—N1—C1—N40.2 (3)N8—N7—C2—N100.9 (3)
N2—N1—C1—N6180.0 (3)N8—N7—C2—N12178.8 (3)
N5—N1—C1—N4177.4 (2)N11—N7—C2—N10177.7 (2)
N5—N1—C1—N62.8 (4)N11—N7—C2—N121.9 (4)
N1—N2—N3—N40.1 (3)N7—N8—N9—N100.5 (3)
N2—N3—N4—C10.2 (3)N8—N9—N10—C20.1 (3)
N3—N4—C1—N10.2 (3)N9—N10—C2—N70.6 (3)
N3—N4—C1—N6179.9 (3)N9—N10—C2—N12179.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl20.93 (4)2.16 (4)3.017 (2)154 (4)
N5—H5A···Cl1i0.79 (4)2.77 (4)3.555 (3)179 (6)
N5—H5B···Cl2ii0.94 (4)2.39 (4)3.317 (2)170 (3)
N6—H6A···Cl1iii0.86 (4)2.65 (4)3.376 (3)142 (3)
N6—H6B···Cl2iv0.93 (4)2.25 (4)3.146 (2)162 (3)
N10—H10···Cl1i0.79 (4)2.30 (4)3.021 (2)152 (4)
N11—H11A···Cl2v0.96 (4)2.65 (4)3.567 (3)161 (3)
N11—H11B···Cl10.85 (4)2.47 (4)3.306 (2)170 (3)
N12—H12A···Cl2vi0.81 (4)2.67 (4)3.388 (3)148 (3)
N12—H12B···Cl1vii0.80 (4)2.39 (4)3.173 (2)171 (4)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1, y+1, z+1/2; (iv) x, y1, z; (v) x+1/2, y+3/2, z; (vi) x+1/2, y1/2, z1/2; (vii) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaCH5N6+·Cl
Mr136.56
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)93
a, b, c (Å)12.389 (3), 6.4500 (12), 13.305 (3)
V3)1063.1 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.43 × 0.27 × 0.10
Data collection
DiffractometerRigaku AFC10/Saturn724+
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.778, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
7927, 1268, 1246
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.061, 1.07
No. of reflections1268
No. of parameters185
No. of restraints1
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.64, 0.17

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···Cl20.93 (4)2.16 (4)3.017 (2)154 (4)
N5—H5A···Cl1i0.79 (4)2.77 (4)3.555 (3)179 (6)
N5—H5B···Cl2ii0.94 (4)2.39 (4)3.317 (2)170 (3)
N6—H6A···Cl1iii0.86 (4)2.65 (4)3.376 (3)142 (3)
N6—H6B···Cl2iv0.93 (4)2.25 (4)3.146 (2)162 (3)
N10—H10···Cl1i0.79 (4)2.30 (4)3.021 (2)152 (4)
N11—H11A···Cl2v0.96 (4)2.65 (4)3.567 (3)161 (3)
N11—H11B···Cl10.85 (4)2.47 (4)3.306 (2)170 (3)
N12—H12A···Cl2vi0.81 (4)2.67 (4)3.388 (3)148 (3)
N12—H12B···Cl1vii0.80 (4)2.39 (4)3.173 (2)171 (4)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x+1, y+1, z+1/2; (iv) x, y1, z; (v) x+1/2, y+3/2, z; (vi) x+1/2, y1/2, z1/2; (vii) x1/2, y+3/2, z.
 

Acknowledgements

This work was funded by the State Key Laboratory of Explosion Science and Technology (QNKT10-09), Beijing Institute of Technology.

References

First citationDenffer, V. M., Klapötke, T. M. & Sabaté, C. M. (2008). Z. Anorg. Allg. Chem. 634, 2575–2582.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGalvez-Ruiz, J. C., Holl, G., Karaghiosoff, K., Klapötke, T. M., Lohnwitz, K., Mayer, P., Noth, H., Polborn, K., Rohbogner, C. J., Suter, M. & Weigand, J. J. (2005). Inorg. Chem. 44, 4237–4253.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHe, C. L., Du, Z. M., Cong, X. M., Tang, Z. Q. & Meng, L. Q. (2009a). Theory and Practice of Energetic Materials, Vol. 8, pp. 673–677. Beijing Institute of Technology.  Google Scholar
First citationHe, C.-L., Du, Z.-M., Tang, Z.-Q., Cong, X.-M. & Meng, L.-Q. (2009b). Acta Cryst. E65, o1760.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds