organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-(2-Chloro-6-methyl-3-quinol­yl)-1-(1-naphth­yl)prop-2-en-1-one

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, cInstitute of Biochemistry, University of Balochistan, Quetta 8700, Pakistan, and dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@yahoo.com

(Received 22 February 2010; accepted 1 March 2010; online 6 March 2010)

In the title mol­ecule, C23H16ClNO, the quinoline and naphthalene ring systems are individually planar, with maximum deviations of 0.020 (2) and 0.033 (2) Å, respectively, and are inclined at a dihedral angle of 30.01 (4)°. Intra­molecular C—H⋯O and C—H⋯Cl inter­actions occur. The crystal structure is devoid of any classical hydrogen bonds, but symmetry-related mol­ecules are linked via weak C—H⋯Cl inter­actions, forming chains propagating in [001].

Related literature

For background literature on chalcones, see: Drexler & Amiridis (2003[Drexler, M. T. & Amiridis, M. D. (2003). J. Catal. 214, 136-145.]); Opletalova & Sedivy (1999[Opletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252-255.]); Oyedapo et al. (2004[Oyedapo, A. O., Makanju, V. O., Adewunmi, C. O., Iwalewa, E. O. & Adenowo, T. K. (2004). Afr. J. Trad. CAM. 1, 55-62.]); Prabhavat & Ghiya (1998[Prabhavat, M. & Ghiya, B. (1998). Indian J. Heterocycl. Chem. 7, 311-312.]); Varga et al. (2003[Varga, L., Nagy, T., Kövesdi, I., Jordi, B.-B., Dormán, G., Ürge, L. & Darvas, F. (2003). Tetrahedron, 59, 655-662.]). For bond distances, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the preparation of 2-chloro-6-methyl-3-formyl­quinoline, see: Meth-Cohn et al. (1981[Meth-Cohn, O., Narine, B. & Tarnowski, B. (1981). J. Chem. Soc. Perkin Trans. 1, pp. 1520-530.]).

[Scheme 1]

Experimental

Crystal data
  • C23H16ClNO

  • Mr = 357.82

  • Monoclinic, P 21 /c

  • a = 16.919 (8) Å

  • b = 7.146 (3) Å

  • c = 14.829 (5) Å

  • β = 103.29 (2)°

  • V = 1744.9 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 173 K

  • 0.14 × 0.12 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.968, Tmax = 0.989

  • 6886 measured reflections

  • 3988 independent reflections

  • 2575 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.131

  • S = 1.01

  • 3988 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯Cl1i 0.95 2.86 3.792 (2) 166
C11—H11⋯Cl1 0.95 2.65 3.045 (2) 106
C11—H11⋯O1 0.95 2.45 2.788 (3) 101
C22—H22⋯O1 0.95 2.33 2.924 (3) 120
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3-Diaryl-2-propen-1-ones, commonly known as chalcones, are normally synthesized by Claisen-Schmidt condensation (Oyedapo et al., 2004). They are used as precursors to synthesize many heterocyclic compounds like flavonoids (Drexler & Amiridis, 2003), pyrimidines, imidazoles (Varga et al., 2003) etc. Chalcones have already been recognized as anti-bacterial, anti-tuberculous, anti-tumor, anti-inflammatory, anti-viral, anti-microbial and anti-protozoal gastroprotective agents (Opletalova & Sedivy, 1999). They may also be converted to 2-mercaptopyrimidines, which have anti-cancer, anti-tubercular and anti-AIDS activities, by the reaction with thiourea (Prabhavat & Ghiya, 1998). A series of similar chalcones is under investigation in our laboratory for their biological activities. We report here on the synthesis and crystal structure of a new chalcone, containing a quinolyl ring system, (2E)-3-(2-chloro-6-methylquinolin-3-yl)-1-(naphthalen-1-yl)prop-2-en-1-one.

The title molecule is presented in Fig. 1. The bond distances are as expected (Allen, 2002). The mean planes of the quinoline and naphthalene rings, defined by atoms N1/C1—C9 and C14—C23, respectively, are individually planar with maximum deviations of 0.020 (2) and 0.033 (2) Å, respectively. These planes are inclined at 30.01 (4)° with respect to each other.

The crystal structure is devoid of any classical hydrogen bonds, however in the molecule itself short intramolecular interactions involving atoms Cl1 and O1 are present (Table 1). In the crystal structure a weak C-H···Cl interaction links the molecules to form chains propagating in [001]; see Table 1 and Fig. 2 for details.

Related literature top

For background literature on chalcones, see: Drexler & Amiridis (2003); Opletalova & Sedivy (1999); Oyedapo et al. (2004); Prabhavat & Ghiya (1998); Varga et al. (2003). For bond distances, see: Allen (2002). For the preparation of 2-chloro-6-methyl-3-formylquinoline, see: Meth-Cohn et al. (1981).

Experimental top

2-Chloro-6-methyl-3-formylquinoline was prepared by the literature procedure (Meth-Cohn et al., 1981). A mixture of 2-chloro-6-methyl-3-formylquinoline (2.055 g, 10.0 mmol), 1-acetylnaphthalene (1.7021 g, 10.0 mmol) and methanol (50 ml) was stirred at RT, and an aqueous solution of sodium hydroxide (4.0 ml, 10 %) was added dropwise. The mixture was stirred overnight and was then pored into ice-cold water (200 ml). The precipitates obtained were collected by filtration, washed first with cold water and then with cold methanol. Recrystallization from chloroform gave pale-yellow crystals (yield: 2.90 g; 8.11 mmol, 81.0%), (m.p. 433-435 K).

Refinement top

Although all of the H atoms could be located in the difference Fourier maps they were included at geometrically idealized positions and refined in the riding-model approximation: C—H = 0.95 and 0.98 Å for aromatic and methyl H-atoms, respectively, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) drawing of the title molecule, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b-axis of the crystal packing of the title compound, showing the C—H···Cl interactions as dashed lines [see Table 1 for details; H-atoms not involved in hydrogen bonds have been omitted for clarity].
(2E)-3-(2-Chloro-6-methyl-3-quinolyl)-1-(1-naphthyl)prop-2-en-1-one top
Crystal data top
C23H16ClNOF(000) = 744
Mr = 357.82Dx = 1.362 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6886 reflections
a = 16.919 (8) Åθ = 2.8–27.5°
b = 7.146 (3) ŵ = 0.23 mm1
c = 14.829 (5) ÅT = 173 K
β = 103.29 (2)°Plate, light yellow
V = 1744.9 (13) Å30.14 × 0.12 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3988 independent reflections
Radiation source: fine-focus sealed tube2575 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω and ϕ scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 2121
Tmin = 0.968, Tmax = 0.989k = 89
6886 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: difference Fourier map
wR(F2) = 0.131H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.6476P]
where P = (Fo2 + 2Fc2)/3
3988 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C23H16ClNOV = 1744.9 (13) Å3
Mr = 357.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.919 (8) ŵ = 0.23 mm1
b = 7.146 (3) ÅT = 173 K
c = 14.829 (5) Å0.14 × 0.12 × 0.05 mm
β = 103.29 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3988 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
2575 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.989Rint = 0.039
6886 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
3988 reflectionsΔρmin = 0.29 e Å3
236 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05985 (4)0.69090 (9)0.33367 (3)0.0466 (2)
O10.29189 (9)0.9031 (2)0.21743 (9)0.0428 (4)
N10.07435 (11)0.6646 (3)0.20914 (11)0.0364 (4)
C10.12197 (12)0.6652 (3)0.11997 (13)0.0319 (5)
C20.20482 (13)0.6170 (3)0.10550 (15)0.0378 (5)
H20.22750.58740.15670.045*
C30.25230 (13)0.6132 (3)0.01723 (15)0.0374 (5)
H30.30800.58010.00810.045*
C40.22076 (13)0.6572 (3)0.06116 (14)0.0353 (5)
C50.14061 (13)0.7047 (3)0.04742 (14)0.0344 (5)
H50.11900.73630.09920.041*
C60.08912 (13)0.7078 (3)0.04277 (13)0.0314 (5)
C70.00604 (13)0.7522 (3)0.05985 (14)0.0338 (5)
H70.01720.78350.00920.041*
C80.04260 (13)0.7514 (3)0.14841 (13)0.0317 (5)
C90.00187 (13)0.7035 (3)0.21931 (13)0.0328 (5)
C100.27558 (15)0.6499 (4)0.15703 (16)0.0481 (6)
H10A0.24520.68960.20260.058*
H10B0.32190.73380.16000.058*
H10C0.29520.52170.17080.058*
C110.12863 (13)0.8006 (3)0.16855 (13)0.0340 (5)
H110.15330.83440.23060.041*
C120.17573 (13)0.8023 (3)0.10796 (14)0.0338 (5)
H120.15350.76960.04520.041*
C130.26277 (13)0.8548 (3)0.13762 (13)0.0322 (5)
C140.31294 (12)0.8425 (3)0.06743 (13)0.0295 (5)
C150.27849 (14)0.8918 (3)0.02286 (13)0.0361 (5)
H150.22310.92850.03900.043*
C160.32305 (16)0.8890 (4)0.09110 (15)0.0551 (7)
H160.29830.92530.15280.066*
C170.40178 (17)0.8344 (5)0.06904 (16)0.0718 (10)
H170.43160.83250.11600.086*
C180.44086 (14)0.7800 (4)0.02193 (15)0.0489 (7)
C190.52216 (17)0.7176 (5)0.04411 (19)0.0776 (11)
H190.55200.71580.00290.093*
C200.55878 (16)0.6603 (5)0.13079 (18)0.0637 (8)
H200.61360.61910.14430.076*
C210.51529 (14)0.6622 (3)0.19988 (16)0.0439 (6)
H210.54070.62110.26050.053*
C220.43669 (13)0.7222 (3)0.18163 (14)0.0361 (5)
H220.40840.72250.23000.043*
C230.39635 (12)0.7843 (3)0.09213 (13)0.0309 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0431 (4)0.0673 (4)0.0265 (3)0.0126 (3)0.0024 (2)0.0045 (3)
O10.0350 (9)0.0637 (11)0.0287 (7)0.0057 (8)0.0053 (6)0.0084 (7)
N10.0347 (11)0.0459 (11)0.0292 (9)0.0018 (9)0.0088 (7)0.0014 (8)
C10.0296 (12)0.0357 (12)0.0304 (10)0.0007 (9)0.0069 (8)0.0012 (9)
C20.0325 (12)0.0425 (14)0.0404 (11)0.0001 (10)0.0122 (9)0.0013 (10)
C30.0278 (12)0.0360 (13)0.0471 (12)0.0011 (10)0.0056 (9)0.0001 (10)
C40.0336 (12)0.0302 (12)0.0387 (11)0.0032 (9)0.0014 (9)0.0003 (9)
C50.0365 (13)0.0357 (12)0.0306 (10)0.0006 (10)0.0071 (9)0.0002 (9)
C60.0310 (12)0.0334 (12)0.0301 (10)0.0008 (9)0.0074 (8)0.0015 (9)
C70.0340 (12)0.0409 (13)0.0282 (10)0.0013 (10)0.0107 (8)0.0011 (9)
C80.0301 (11)0.0371 (12)0.0284 (10)0.0013 (9)0.0081 (8)0.0031 (9)
C90.0329 (12)0.0396 (13)0.0256 (9)0.0005 (10)0.0059 (8)0.0007 (9)
C100.0419 (14)0.0500 (15)0.0448 (13)0.0038 (12)0.0056 (11)0.0043 (11)
C110.0318 (12)0.0404 (13)0.0287 (10)0.0021 (10)0.0043 (8)0.0006 (9)
C120.0298 (11)0.0418 (13)0.0284 (9)0.0005 (10)0.0041 (8)0.0034 (9)
C130.0297 (12)0.0363 (12)0.0294 (10)0.0014 (9)0.0041 (8)0.0007 (9)
C140.0277 (11)0.0319 (12)0.0277 (9)0.0013 (9)0.0039 (8)0.0022 (8)
C150.0323 (12)0.0427 (13)0.0309 (10)0.0031 (10)0.0023 (9)0.0004 (9)
C160.0447 (15)0.093 (2)0.0267 (11)0.0093 (14)0.0061 (10)0.0086 (12)
C170.0466 (17)0.142 (3)0.0321 (12)0.0179 (18)0.0187 (11)0.0051 (16)
C180.0329 (13)0.080 (2)0.0340 (11)0.0100 (13)0.0085 (9)0.0020 (12)
C190.0408 (16)0.148 (3)0.0466 (14)0.0298 (19)0.0155 (12)0.0024 (18)
C200.0354 (15)0.094 (2)0.0567 (16)0.0209 (15)0.0012 (12)0.0071 (15)
C210.0383 (14)0.0456 (14)0.0409 (12)0.0005 (11)0.0051 (10)0.0013 (11)
C220.0321 (12)0.0404 (13)0.0335 (11)0.0040 (10)0.0025 (9)0.0028 (9)
C230.0281 (11)0.0341 (12)0.0290 (10)0.0021 (9)0.0035 (8)0.0033 (9)
Geometric parameters (Å, º) top
Cl1—C91.755 (2)C11—H110.9500
O1—C131.222 (2)C12—C131.485 (3)
N1—C91.294 (3)C12—H120.9500
N1—C11.381 (3)C13—C141.489 (3)
C1—C21.411 (3)C14—C151.378 (3)
C1—C61.416 (3)C14—C231.436 (3)
C2—C31.370 (3)C15—C161.394 (3)
C2—H20.9500C15—H150.9500
C3—C41.421 (3)C16—C171.354 (4)
C3—H30.9500C16—H160.9500
C4—C51.367 (3)C17—C181.414 (3)
C4—C101.509 (3)C17—H170.9500
C5—C61.419 (3)C18—C191.411 (4)
C5—H50.9500C18—C231.418 (3)
C6—C71.406 (3)C19—C201.356 (4)
C7—C81.380 (3)C19—H190.9500
C7—H70.9500C20—C211.392 (4)
C8—C91.425 (3)C20—H200.9500
C8—C111.460 (3)C21—C221.364 (3)
C10—H10A0.9800C21—H210.9500
C10—H10B0.9800C22—C231.417 (3)
C10—H10C0.9800C22—H220.9500
C11—C121.331 (3)
C9—N1—C1117.22 (17)C11—C12—C13120.61 (18)
N1—C1—C2119.03 (18)C11—C12—H12119.7
N1—C1—C6121.58 (19)C13—C12—H12119.7
C2—C1—C6119.37 (18)O1—C13—C12120.64 (19)
C3—C2—C1119.6 (2)O1—C13—C14121.71 (19)
C3—C2—H2120.2C12—C13—C14117.64 (17)
C1—C2—H2120.2C15—C14—C23119.57 (18)
C2—C3—C4122.0 (2)C15—C14—C13118.85 (19)
C2—C3—H3119.0C23—C14—C13121.57 (17)
C4—C3—H3119.0C14—C15—C16121.6 (2)
C5—C4—C3118.63 (19)C14—C15—H15119.2
C5—C4—C10121.5 (2)C16—C15—H15119.2
C3—C4—C10119.9 (2)C17—C16—C15119.7 (2)
C4—C5—C6121.2 (2)C17—C16—H16120.2
C4—C5—H5119.4C15—C16—H16120.2
C6—C5—H5119.4C16—C17—C18121.9 (2)
C7—C6—C1117.71 (18)C16—C17—H17119.1
C7—C6—C5123.03 (19)C18—C17—H17119.1
C1—C6—C5119.26 (19)C19—C18—C17121.8 (2)
C8—C7—C6121.54 (19)C19—C18—C23119.3 (2)
C8—C7—H7119.2C17—C18—C23118.9 (2)
C6—C7—H7119.2C20—C19—C18121.7 (2)
C7—C8—C9114.79 (19)C20—C19—H19119.2
C7—C8—C11122.81 (19)C18—C19—H19119.2
C9—C8—C11122.37 (18)C19—C20—C21119.4 (2)
N1—C9—C8127.14 (18)C19—C20—H20120.3
N1—C9—Cl1114.98 (15)C21—C20—H20120.3
C8—C9—Cl1117.87 (16)C22—C21—C20120.9 (2)
C4—C10—H10A109.5C22—C21—H21119.6
C4—C10—H10B109.5C20—C21—H21119.6
H10A—C10—H10B109.5C21—C22—C23121.5 (2)
C4—C10—H10C109.5C21—C22—H22119.3
H10A—C10—H10C109.5C23—C22—H22119.3
H10B—C10—H10C109.5C22—C23—C18117.3 (2)
C12—C11—C8125.99 (19)C22—C23—C14124.28 (19)
C12—C11—H11117.0C18—C23—C14118.41 (18)
C8—C11—H11117.0
C9—N1—C1—C2177.8 (2)C11—C12—C13—O12.4 (3)
C9—N1—C1—C60.4 (3)C11—C12—C13—C14176.4 (2)
N1—C1—C2—C3178.6 (2)O1—C13—C14—C15143.8 (2)
C6—C1—C2—C30.3 (3)C12—C13—C14—C1537.4 (3)
C1—C2—C3—C40.3 (3)O1—C13—C14—C2334.9 (3)
C2—C3—C4—C50.0 (3)C12—C13—C14—C23143.8 (2)
C2—C3—C4—C10179.7 (2)C23—C14—C15—C160.9 (3)
C3—C4—C5—C60.9 (3)C13—C14—C15—C16177.9 (2)
C10—C4—C5—C6178.8 (2)C14—C15—C16—C170.9 (4)
N1—C1—C6—C70.8 (3)C15—C16—C17—C180.2 (5)
C2—C1—C6—C7179.0 (2)C16—C17—C18—C19178.0 (3)
N1—C1—C6—C5179.4 (2)C16—C17—C18—C230.5 (5)
C2—C1—C6—C51.2 (3)C17—C18—C19—C20178.0 (3)
C4—C5—C6—C7178.7 (2)C23—C18—C19—C200.5 (5)
C4—C5—C6—C11.5 (3)C18—C19—C20—C210.2 (5)
C1—C6—C7—C81.1 (3)C19—C20—C21—C220.5 (5)
C5—C6—C7—C8179.1 (2)C20—C21—C22—C230.1 (4)
C6—C7—C8—C90.3 (3)C21—C22—C23—C180.5 (3)
C6—C7—C8—C11178.7 (2)C21—C22—C23—C14177.5 (2)
C1—N1—C9—C81.5 (3)C19—C18—C23—C220.8 (4)
C1—N1—C9—Cl1177.48 (16)C17—C18—C23—C22177.7 (3)
C7—C8—C9—N11.1 (3)C19—C18—C23—C14178.0 (3)
C11—C8—C9—N1177.3 (2)C17—C18—C23—C140.5 (4)
C7—C8—C9—Cl1177.80 (17)C15—C14—C23—C22176.9 (2)
C11—C8—C9—Cl13.7 (3)C13—C14—C23—C224.4 (3)
C7—C8—C11—C1219.2 (4)C15—C14—C23—C180.1 (3)
C9—C8—C11—C12162.5 (2)C13—C14—C23—C18178.6 (2)
C8—C11—C12—C13179.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl1i0.952.863.792 (2)166
C11—H11···Cl10.952.653.045 (2)106
C11—H11···O10.952.452.788 (3)101
C22—H22···O10.952.332.924 (3)120
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC23H16ClNO
Mr357.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)16.919 (8), 7.146 (3), 14.829 (5)
β (°) 103.29 (2)
V3)1744.9 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.14 × 0.12 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.968, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
6886, 3988, 2575
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.131, 1.01
No. of reflections3988
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.29

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl1i0.952.863.792 (2)166
C11—H11···Cl10.952.653.045 (2)106
C11—H11···O10.952.452.788 (3)101
C22—H22···O10.952.332.924 (3)120
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for a grant to carry out this work.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDrexler, M. T. & Amiridis, M. D. (2003). J. Catal. 214, 136–145.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMeth-Cohn, O., Narine, B. & Tarnowski, B. (1981). J. Chem. Soc. Perkin Trans. 1, pp. 1520–530.  CrossRef Web of Science Google Scholar
First citationOpletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm. 48, 252–255.  PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationOyedapo, A. O., Makanju, V. O., Adewunmi, C. O., Iwalewa, E. O. & Adenowo, T. K. (2004). Afr. J. Trad. CAM. 1, 55–62.  CAS Google Scholar
First citationPrabhavat, M. & Ghiya, B. (1998). Indian J. Heterocycl. Chem. 7, 311–312.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarga, L., Nagy, T., Kövesdi, I., Jordi, B.-B., Dormán, G., Ürge, L. & Darvas, F. (2003). Tetrahedron, 59, 655–662.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds