metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Pyrid­yl)pyridinium bis­­(pyridine-2,6-di­carboxyl­ato)ferrate(III) tetra­hydrate

aDepartment of Chemistry, Ilam University, Ilam, Iran, bFaculty of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and cDepartment of Chemistry, Islamic Azad University, Shahr-e Rey Branch, Tehran, Iran
*Correspondence e-mail: janet_soleimannejad@yahoo.com

(Received 1 March 2010; accepted 5 March 2010; online 17 March 2010)

In the title compound, (C10H9N2)[Fe(C7H3NO4)2]·4H2O or (bpyH)[Fe(pydc)2]·4H2O, the asymmetric unit contains an [Fe(pydc)2] (pydcH2= pyridine-2,6-dicarboxylic acid) anion, a protonated 4,4′-bipyridine as a counter-ion, (bpyH)+, and four uncoordinated water mol­ecules. The anion is a six-coordinate complex with a distorted octa­hedral geometry around the FeIII atom. A wide range of non-covalent inter­actions, i.e. O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds, ion pairing, C—O⋯π [3.431 (2) Å] and C—H⋯π stacking inter­actions result in the formation of a three-dimensional network structure.

Related literature

For related structures, see: Aghabozorg, Manteghi & Sheshmani (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]); Aghabozorg, Ramezanipour et al. (2008[Aghabozorg, H., Ramezanipour, F., Soleimannejad, J., Sharif, M. A., Shokrollahi, A., Shamsipur, M., Moghimi, A., Attar Gharamaleki, J., Lippolis, V. & Blake, A. J. (2008). Pol. J. Chem. 82, 487-507.]); Aghajani et al. (2009[Aghajani, Z., Aghabozorg, H., Sadr-Khanlou, E., Shokrollahi, A., Derki, S. & Shamsipur, M. (2009). J. Iran. Chem. Soc. 6, 373-385.]); For details on the importance of coordinative covalent bonds and weak inter­molecular forces in forming extended organized networks, see: Steiner (2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H9N2)[Fe(C7H3NO4)2]·4H2O

  • Mr = 615.31

  • Triclinic, [P \overline 1]

  • a = 9.3759 (9) Å

  • b = 9.3778 (9) Å

  • c = 14.6284 (14) Å

  • α = 84.545 (2)°

  • β = 89.246 (2)°

  • γ = 87.062 (2)°

  • V = 1278.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.67 mm−1

  • T = 150 K

  • 0.39 × 0.39 × 0.28 mm

Data collection
  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.782, Tmax = 0.836

  • 14814 measured reflections

  • 5931 independent reflections

  • 4922 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.04

  • 5931 reflections

  • 370 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N3/C15–C19 and N1/C2–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1B⋯O6i 0.85 2.22 3.031 (2) 159
O1W—H1A⋯O3ii 0.85 2.18 2.976 (2) 157
O2W—H2B⋯O7ii 0.85 1.93 2.726 (2) 156
O2W—H2A⋯O3Wiii 0.85 1.88 2.732 (2) 174
O3W—H3A⋯O5iv 0.85 1.90 2.713 (2) 160
O3W—H3B⋯N3v 0.85 1.95 2.775 (2) 162
O4W—H4B⋯O4 0.85 1.99 2.8220 (19) 168
O4W—H4A⋯O3W 0.85 1.99 2.838 (2) 177
N4—H4C⋯O2Wvi 0.90 1.82 2.691 (2) 163
C5—H5⋯Cg2 0.95 3.63 3.750 (2) 90
C17—H17⋯Cg1 0.95 3.52 3.708 (2) 94
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y, -z+1; (iv) x+1, y, z; (v) -x+1, -y+1, -z; (vi) x, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

For the synthesis of supramolecular systems, coordinative covalent bonds and weak intermolecular forces are important to the assembly into extended organized networks (Steiner, 2002). Our research group has worked on the synthesis of supramolecular systems, and found out the role of non-covalent interactions such as hydrogen bonding, ion pairing and π-π stacking in constructing the supramolecular crystalline compounds and their metal complexes (Aghabozorg, Manteghi et al., 2008; Aghabozorg, Ramezanipour et al., 2008, Aghajani et al., 2009).

In the title compound, illustrated in Fig. 1, the metal ion is hexa-coordinated by two nitrogen atoms N1, and N2 and four oxygen atoms O1, O2, O3 and O4 of carboxylate groups of two (pydc)2– ions. The FeIII atom is located in the center of a distorted octahedral arrangement. The N1–Fe–N2 angle shows deviation from linearity, 170.90 (6)°. The O2–Fe1–O4–C14, O2–Fe1–O3–C8, O4–Fe1–O1–C1 and O4–Fe1–O2–C7 torsion angles are 86.75 (14)°, -93.74 (13)°, -102.35 (14)° and 94.37 (14)°, respectively, indicating that two dianionic (pydc)2– units are almost perpendicular to each other. Another characteristic solid state structural feature of this complex is dictated by the presence of a 4,4'-bipyridinium fragment as a proton acceptor that deprotonates pyridine-2,6-dicarboxylic acid. This leads to the formation of a metal-organo FeIII complex in which ion-pairing, metal-ligand coordination and intensive hydrogen-bonding play important roles in the construction of its three dimensional supramolecular network.

The crystal packing diagram (Fig. 2) indicates the interesting layered structure for the title complex. The space provided between two layers, consisting of (bpyH)+ cations, are filled with a layer of [Fe(pydc)2] complex anions. In fact, the layers involving the FeIIIcomplexes are bridged by (bpyH)+ counter ions via hydrogen bonding. The hydrogen bonding, that is O–H···O, O–H···N and N–H···O between carboxylate, (bpyH)+ and water molecules, throughout the lattice of the title complex plays an important role in stabilizing the crystal structure (Fig 2 and Table 1).

The C–O···π and C–H···π interactions in the title compound are shown in Fig. 3. The H17···Cg1 (Cg1: N1, C2—C6) distance is 3.519 (2) Å, the H5···Cg2 (Cg2: N3, C15—C19) distance is 3.631 (2) Å and the O8···Cg3 A (Cg3 A: N2A, C9A—C13A) distance is 3.431 (2) Å [Symmetry code: (A) = –x, –y, –z].

Related literature top

For related structures, see: Aghabozorg, Manteghi & Sheshmani (2008); Aghabozorg, Ramezanipour et al. (2008); Aghajani et al. (2009); For details on the importance of coordinative covalent bonds and weak intermolecular forces in forming extended organized networks, see: Steiner (2002).

Experimental top

An solution of pyridine-2,6-dicarboxylic acid (312.38 mg, 2 mmol) and 4,4'-bipyridine (167.12 mg, 1 mmol) in water (15 ml) was refluxed for 1h. To this mixture was added to a solution of FeCl2.4H2O (99.4 mg, 0.5 mmol) in water (5 ml) and it was then heated for a further 1h. Green crystals of the complex, suitable for X-ray analysis, were obtained by slow evaporation of the solution at RT after two weeks.

Refinement top

The water and NH H-atoms were located in a low 2θ difference Fourier map and refined with distance restraints: O—H = 0.85 (2) Å, and N-H 0.89 (2) Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å. For all H-atoms Uiso(H) = 1.2Ueq(parent O-, N- or C-atom).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, (bpyH)[Fe(pydc)2].4H2O. Thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A perspective view, along the a-axis, of the crystal packing of the title compound [dashed lines indicate hydrogen bonds - see Table 1 for details].
[Figure 3] Fig. 3. A view of the C–O···π and C–H···π interactions in the title compound. The H17···Cg1 (Cg1: centroid of ring N1, C2—C6) distance is 3.519 (2) Å, the H5···Cg2 (Cg2: centroid of ring N3, C15—C19) distance is 3.631 (2) Å and the O8···Cg3 A (Cg3 A: centroid of ring N2A, C9A—C13A) distance is 3.431 (2) Å [Symmetry code: (A) = –x, –y, –z].
4-(4-Pyridyl)pyridinium bis(pyridine-2,6-dicarboxylato)ferrate(III) tetrahydrate top
Crystal data top
(C10H9N2)[Fe(C7H3NO4)2]·4H2OZ = 2
Mr = 615.31F(000) = 634
Triclinic, P1Dx = 1.598 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3759 (9) ÅCell parameters from 7438 reflections
b = 9.3778 (9) Åθ = 2.5–28.6°
c = 14.6284 (14) ŵ = 0.67 mm1
α = 84.545 (2)°T = 150 K
β = 89.246 (2)°Block, green
γ = 87.062 (2)°0.39 × 0.39 × 0.28 mm
V = 1278.7 (2) Å3
Data collection top
Bruker SMART 1000
diffractometer
5931 independent reflections
Radiation source: fine-focus sealed tube4922 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 100 pixels mm-1θmax = 28.7°, θmin = 1.4°
ω scansh = 1211
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1212
Tmin = 0.782, Tmax = 0.836l = 1919
14814 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.2243P]
where P = (Fo2 + 2Fc2)/3
5931 reflections(Δ/σ)max = 0.001
370 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
(C10H9N2)[Fe(C7H3NO4)2]·4H2Oγ = 87.062 (2)°
Mr = 615.31V = 1278.7 (2) Å3
Triclinic, P1Z = 2
a = 9.3759 (9) ÅMo Kα radiation
b = 9.3778 (9) ŵ = 0.67 mm1
c = 14.6284 (14) ÅT = 150 K
α = 84.545 (2)°0.39 × 0.39 × 0.28 mm
β = 89.246 (2)°
Data collection top
Bruker SMART 1000
diffractometer
5931 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4922 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 0.836Rint = 0.030
14814 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.04Δρmax = 0.34 e Å3
5931 reflectionsΔρmin = 0.52 e Å3
370 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.22857 (3)0.50271 (3)0.304811 (17)0.01665 (9)
O1W0.12803 (17)0.32200 (19)0.82149 (11)0.0425 (4)
H1B0.21450.29570.81160.051*
H1A0.09130.31840.76900.051*
O10.07928 (14)0.37678 (14)0.26484 (8)0.0216 (3)
O2W0.25021 (16)0.03484 (17)0.60895 (9)0.0356 (4)
H2B0.18490.10120.60870.043*
H2A0.24160.01500.66020.043*
O20.38786 (13)0.63723 (14)0.27794 (9)0.0212 (3)
O30.07590 (14)0.65525 (14)0.33404 (9)0.0213 (3)
O3W0.77869 (15)0.10812 (15)0.22072 (9)0.0273 (3)
H3A0.83340.17690.20800.033*
H3B0.77780.06370.17270.033*
O40.36699 (14)0.33767 (14)0.34487 (9)0.0223 (3)
O4W0.53959 (16)0.30365 (17)0.18817 (10)0.0342 (4)
H4B0.49690.30500.23970.041*
H4A0.61190.24540.19600.041*
O50.02554 (15)0.29003 (16)0.14699 (10)0.0308 (3)
O60.54940 (14)0.72094 (15)0.17475 (10)0.0274 (3)
O70.03745 (14)0.76723 (15)0.44505 (10)0.0280 (3)
O80.50477 (15)0.23244 (15)0.45845 (10)0.0277 (3)
N10.25170 (15)0.51693 (16)0.16448 (10)0.0171 (3)
N20.23620 (15)0.50323 (16)0.44512 (10)0.0166 (3)
N30.22726 (18)0.97703 (19)0.04433 (11)0.0269 (4)
N40.28135 (18)0.99456 (17)0.42996 (11)0.0244 (4)
H4C0.28891.00210.49020.029*
C10.06258 (19)0.3626 (2)0.17921 (13)0.0210 (4)
C20.16527 (19)0.4448 (2)0.11620 (12)0.0194 (4)
C30.1780 (2)0.4493 (2)0.02214 (13)0.0233 (4)
H30.11730.39680.01230.028*
C40.2818 (2)0.5326 (2)0.02104 (13)0.0248 (4)
H40.29160.53910.08600.030*
C50.3719 (2)0.6067 (2)0.03041 (13)0.0219 (4)
H50.44340.66380.00150.026*
C60.35415 (19)0.59466 (19)0.12467 (13)0.0187 (4)
C70.44092 (19)0.65836 (19)0.19604 (13)0.0200 (4)
C80.05410 (19)0.6827 (2)0.41791 (13)0.0206 (4)
C90.15317 (19)0.59809 (19)0.48584 (12)0.0192 (4)
C100.1634 (2)0.6097 (2)0.57899 (13)0.0237 (4)
H100.10470.67780.60830.028*
C110.2620 (2)0.5190 (2)0.62818 (13)0.0268 (4)
H110.27170.52510.69220.032*
C120.3471 (2)0.4188 (2)0.58516 (13)0.0234 (4)
H120.41420.35570.61880.028*
C130.33042 (18)0.41466 (19)0.49149 (12)0.0183 (4)
C140.41062 (19)0.3178 (2)0.42920 (13)0.0196 (4)
C150.2438 (2)0.9931 (2)0.14461 (13)0.0205 (4)
C160.1444 (2)0.9092 (2)0.10825 (13)0.0223 (4)
H160.07930.85740.14720.027*
C170.1425 (2)0.9031 (2)0.01440 (14)0.0264 (4)
H170.07690.84270.00970.032*
C180.3193 (2)1.0607 (2)0.00902 (14)0.0296 (5)
H180.37841.11640.05010.036*
C190.3330 (2)1.0707 (2)0.08356 (14)0.0266 (4)
H190.40211.12940.10560.032*
C200.25691 (19)0.99744 (19)0.24448 (12)0.0190 (4)
C210.1369 (2)1.0210 (2)0.29944 (13)0.0232 (4)
H210.04491.03640.27270.028*
C220.1529 (2)1.0217 (2)0.39210 (14)0.0258 (4)
H220.07231.04170.42970.031*
C230.3993 (2)0.9715 (2)0.37953 (13)0.0241 (4)
H230.48920.95280.40860.029*
C240.3899 (2)0.9751 (2)0.28632 (13)0.0220 (4)
H240.47360.96230.25010.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01791 (14)0.01966 (15)0.01226 (14)0.00143 (10)0.00009 (10)0.00068 (10)
O1W0.0339 (9)0.0640 (12)0.0285 (8)0.0033 (8)0.0037 (7)0.0012 (8)
O10.0220 (7)0.0266 (7)0.0167 (6)0.0064 (5)0.0013 (5)0.0019 (5)
O2W0.0389 (9)0.0457 (9)0.0185 (7)0.0174 (7)0.0055 (6)0.0049 (6)
O20.0222 (7)0.0256 (7)0.0165 (6)0.0060 (5)0.0016 (5)0.0021 (5)
O30.0222 (7)0.0237 (7)0.0174 (6)0.0022 (5)0.0021 (5)0.0011 (5)
O3W0.0310 (8)0.0322 (8)0.0191 (7)0.0054 (6)0.0032 (6)0.0027 (6)
O40.0248 (7)0.0237 (7)0.0179 (7)0.0030 (5)0.0004 (5)0.0018 (5)
O4W0.0325 (8)0.0423 (9)0.0255 (8)0.0069 (7)0.0086 (6)0.0026 (6)
O50.0305 (8)0.0375 (8)0.0265 (8)0.0144 (6)0.0019 (6)0.0058 (6)
O60.0230 (7)0.0316 (8)0.0279 (8)0.0095 (6)0.0022 (6)0.0002 (6)
O70.0256 (7)0.0281 (8)0.0298 (8)0.0052 (6)0.0029 (6)0.0048 (6)
O80.0254 (7)0.0257 (7)0.0306 (8)0.0041 (6)0.0030 (6)0.0024 (6)
N10.0168 (7)0.0186 (7)0.0158 (7)0.0015 (6)0.0006 (6)0.0001 (6)
N20.0174 (7)0.0184 (7)0.0140 (7)0.0032 (6)0.0005 (6)0.0001 (6)
N30.0287 (9)0.0309 (9)0.0205 (8)0.0030 (7)0.0010 (7)0.0022 (7)
N40.0338 (9)0.0233 (8)0.0164 (8)0.0067 (7)0.0013 (7)0.0009 (6)
C10.0198 (9)0.0224 (9)0.0210 (9)0.0013 (7)0.0003 (7)0.0033 (7)
C20.0185 (9)0.0224 (9)0.0174 (9)0.0002 (7)0.0017 (7)0.0026 (7)
C30.0227 (9)0.0288 (10)0.0190 (9)0.0006 (8)0.0024 (8)0.0044 (8)
C40.0267 (10)0.0314 (11)0.0152 (9)0.0033 (8)0.0017 (8)0.0004 (8)
C50.0215 (9)0.0245 (10)0.0183 (9)0.0014 (7)0.0033 (7)0.0027 (7)
C60.0164 (8)0.0191 (9)0.0197 (9)0.0011 (7)0.0015 (7)0.0009 (7)
C70.0190 (9)0.0189 (9)0.0213 (9)0.0002 (7)0.0011 (7)0.0019 (7)
C80.0190 (9)0.0204 (9)0.0230 (10)0.0049 (7)0.0015 (7)0.0030 (7)
C90.0182 (9)0.0213 (9)0.0187 (9)0.0053 (7)0.0024 (7)0.0028 (7)
C100.0242 (10)0.0295 (11)0.0185 (9)0.0076 (8)0.0057 (8)0.0062 (8)
C110.0309 (11)0.0357 (11)0.0149 (9)0.0117 (9)0.0008 (8)0.0025 (8)
C120.0225 (9)0.0290 (10)0.0184 (9)0.0067 (8)0.0034 (7)0.0033 (8)
C130.0155 (8)0.0216 (9)0.0174 (9)0.0050 (7)0.0005 (7)0.0017 (7)
C140.0182 (9)0.0192 (9)0.0210 (9)0.0042 (7)0.0005 (7)0.0018 (7)
C150.0207 (9)0.0203 (9)0.0201 (9)0.0013 (7)0.0002 (7)0.0015 (7)
C160.0217 (9)0.0223 (9)0.0224 (10)0.0020 (7)0.0004 (8)0.0001 (7)
C170.0252 (10)0.0276 (10)0.0271 (10)0.0016 (8)0.0059 (8)0.0072 (8)
C180.0301 (11)0.0349 (12)0.0230 (10)0.0050 (9)0.0025 (8)0.0030 (8)
C190.0250 (10)0.0301 (11)0.0249 (10)0.0070 (8)0.0001 (8)0.0002 (8)
C200.0227 (9)0.0152 (9)0.0189 (9)0.0023 (7)0.0006 (7)0.0000 (7)
C210.0196 (9)0.0258 (10)0.0241 (10)0.0019 (8)0.0005 (8)0.0018 (8)
C220.0264 (10)0.0263 (10)0.0249 (10)0.0054 (8)0.0062 (8)0.0024 (8)
C230.0257 (10)0.0204 (9)0.0260 (10)0.0024 (8)0.0050 (8)0.0002 (8)
C240.0219 (9)0.0208 (9)0.0234 (10)0.0010 (7)0.0012 (8)0.0028 (7)
Geometric parameters (Å, º) top
Fe1—O12.0045 (13)C3—C41.388 (3)
Fe1—O22.0149 (13)C3—H30.9500
Fe1—O42.0161 (13)C4—C51.392 (3)
Fe1—O32.0417 (13)C4—H40.9500
Fe1—N12.0538 (15)C5—C61.381 (3)
Fe1—N22.0552 (15)C5—H50.9500
O1W—H1B0.8500C6—C71.516 (3)
O1W—H1A0.8501C8—C91.510 (3)
O1—C11.285 (2)C9—C101.382 (3)
O2W—H2B0.8500C10—C111.385 (3)
O2W—H2A0.8500C10—H100.9500
O2—C71.293 (2)C11—C121.392 (3)
O3—C81.289 (2)C11—H110.9500
O3W—H3A0.8500C12—C131.386 (3)
O3W—H3B0.8501C12—H120.9500
O4—C141.298 (2)C13—C141.513 (3)
O4W—H4B0.8500C15—C161.392 (3)
O4W—H4A0.8500C15—C191.395 (3)
O5—C11.224 (2)C15—C201.472 (3)
O6—C71.222 (2)C16—C171.380 (3)
O7—C81.226 (2)C16—H160.9500
O8—C141.215 (2)C17—H170.9500
N1—C61.330 (2)C18—C191.374 (3)
N1—C21.332 (2)C18—H180.9500
N2—C131.328 (2)C19—H190.9500
N2—C91.330 (2)C20—C241.393 (3)
N3—C171.333 (3)C20—C211.395 (3)
N3—C181.337 (3)C21—C221.366 (3)
N4—C221.335 (3)C21—H210.9500
N4—C231.341 (3)C22—H220.9500
N4—H4C0.8951C23—C241.365 (3)
C1—C21.513 (3)C23—H230.9500
C2—C31.376 (3)C24—H240.9500
O1—Fe1—O2151.86 (5)O2—C7—C6112.77 (15)
O1—Fe1—O494.25 (5)O7—C8—O3126.24 (18)
O2—Fe1—O492.07 (5)O7—C8—C9119.82 (17)
O1—Fe1—O391.06 (5)O3—C8—C9113.94 (15)
O2—Fe1—O396.57 (5)N2—C9—C10120.84 (18)
O4—Fe1—O3150.97 (5)N2—C9—C8111.22 (15)
O1—Fe1—N176.29 (5)C10—C9—C8127.94 (17)
O2—Fe1—N175.58 (5)C9—C10—C11117.76 (18)
O4—Fe1—N1101.99 (6)C9—C10—H10121.1
O3—Fe1—N1106.99 (5)C11—C10—H10121.1
O1—Fe1—N2112.55 (5)C10—C11—C12120.97 (18)
O2—Fe1—N295.58 (5)C10—C11—H11119.5
O4—Fe1—N275.80 (6)C12—C11—H11119.5
O3—Fe1—N275.81 (5)C13—C12—C11117.54 (18)
N1—Fe1—N2170.90 (6)C13—C12—H12121.2
H1B—O1W—H1A101.7C11—C12—H12121.2
C1—O1—Fe1120.32 (12)N2—C13—C12120.78 (17)
H2B—O2W—H2A105.6N2—C13—C14111.52 (15)
C7—O2—Fe1120.81 (11)C12—C13—C14127.69 (17)
C8—O3—Fe1119.73 (12)O8—C14—O4126.06 (18)
H3A—O3W—H3B105.5O8—C14—C13121.30 (17)
C14—O4—Fe1120.54 (12)O4—C14—C13112.64 (16)
H4B—O4W—H4A107.2C16—C15—C19117.95 (18)
C6—N1—C2121.95 (16)C16—C15—C20121.17 (17)
C6—N1—Fe1119.33 (12)C19—C15—C20120.87 (17)
C2—N1—Fe1118.70 (12)C17—C16—C15118.55 (18)
C13—N2—C9122.10 (16)C17—C16—H16120.7
C13—N2—Fe1118.71 (12)C15—C16—H16120.7
C9—N2—Fe1119.05 (12)N3—C17—C16123.77 (18)
C17—N3—C18117.23 (17)N3—C17—H17118.1
C22—N4—C23122.20 (17)C16—C17—H17118.1
C22—N4—H4C117.7N3—C18—C19123.52 (19)
C23—N4—H4C119.7N3—C18—H18118.2
O5—C1—O1125.95 (18)C19—C18—H18118.2
O5—C1—C2119.91 (17)C18—C19—C15118.90 (19)
O1—C1—C2114.13 (15)C18—C19—H19120.5
N1—C2—C3120.86 (17)C15—C19—H19120.5
N1—C2—C1110.55 (15)C24—C20—C21118.58 (17)
C3—C2—C1128.58 (17)C24—C20—C15120.40 (17)
C2—C3—C4118.15 (17)C21—C20—C15121.00 (17)
C2—C3—H3120.9C22—C21—C20119.35 (18)
C4—C3—H3120.9C22—C21—H21120.3
C3—C4—C5120.30 (17)C20—C21—H21120.3
C3—C4—H4119.9N4—C22—C21120.22 (18)
C5—C4—H4119.9N4—C22—H22119.9
C6—C5—C4118.09 (17)C21—C22—H22119.9
C6—C5—H5121.0N4—C23—C24119.81 (18)
C4—C5—H5121.0N4—C23—H23120.1
N1—C6—C5120.63 (17)C24—C23—H23120.1
N1—C6—C7110.76 (15)C23—C24—C20119.74 (18)
C5—C6—C7128.61 (17)C23—C24—H24120.1
O6—C7—O2126.05 (17)C20—C24—H24120.1
O6—C7—C6121.18 (17)
O2—Fe1—O1—C10.1 (2)C4—C5—C6—N11.5 (3)
O4—Fe1—O1—C1102.35 (14)C4—C5—C6—C7177.18 (18)
O3—Fe1—O1—C1106.21 (14)Fe1—O2—C7—O6169.14 (15)
N1—Fe1—O1—C11.03 (13)Fe1—O2—C7—C610.3 (2)
N2—Fe1—O1—C1178.73 (13)N1—C6—C7—O6172.26 (17)
O1—Fe1—O2—C78.6 (2)C5—C6—C7—O66.5 (3)
O4—Fe1—O2—C794.37 (14)N1—C6—C7—O27.2 (2)
O3—Fe1—O2—C7113.39 (14)C5—C6—C7—O2174.08 (18)
N1—Fe1—O2—C77.48 (13)Fe1—O3—C8—O7176.98 (15)
N2—Fe1—O2—C7170.30 (13)Fe1—O3—C8—C92.3 (2)
O1—Fe1—O3—C8113.40 (13)C13—N2—C9—C101.0 (3)
O2—Fe1—O3—C893.74 (13)Fe1—N2—C9—C10174.73 (13)
O4—Fe1—O3—C812.7 (2)C13—N2—C9—C8178.78 (15)
N1—Fe1—O3—C8170.62 (13)Fe1—N2—C9—C85.50 (19)
N2—Fe1—O3—C80.39 (13)O7—C8—C9—N2174.39 (17)
O1—Fe1—O4—C14120.69 (13)O3—C8—C9—N24.9 (2)
O2—Fe1—O4—C1486.75 (14)O7—C8—C9—C105.4 (3)
O3—Fe1—O4—C1420.8 (2)O3—C8—C9—C10175.31 (17)
N1—Fe1—O4—C14162.44 (13)N2—C9—C10—C110.4 (3)
N2—Fe1—O4—C148.49 (13)C8—C9—C10—C11179.32 (17)
O1—Fe1—N1—C6177.84 (14)C9—C10—C11—C120.4 (3)
O2—Fe1—N1—C62.71 (13)C10—C11—C12—C130.7 (3)
O4—Fe1—N1—C686.34 (14)C9—N2—C13—C120.7 (3)
O3—Fe1—N1—C695.29 (14)Fe1—N2—C13—C12175.02 (13)
O1—Fe1—N1—C20.59 (13)C9—N2—C13—C14179.86 (15)
O2—Fe1—N1—C2178.86 (14)Fe1—N2—C13—C144.41 (19)
O4—Fe1—N1—C292.09 (14)C11—C12—C13—N20.1 (3)
O3—Fe1—N1—C286.28 (14)C11—C12—C13—C14179.21 (17)
O1—Fe1—N2—C1395.46 (13)Fe1—O4—C14—O8171.42 (15)
O2—Fe1—N2—C1383.99 (13)Fe1—O4—C14—C138.6 (2)
O4—Fe1—N2—C136.73 (12)N2—C13—C14—O8177.55 (16)
O3—Fe1—N2—C13179.38 (14)C12—C13—C14—O81.8 (3)
O1—Fe1—N2—C988.68 (14)N2—C13—C14—O42.5 (2)
O2—Fe1—N2—C991.87 (13)C12—C13—C14—O4178.16 (17)
O4—Fe1—N2—C9177.40 (14)C19—C15—C16—C172.3 (3)
O3—Fe1—N2—C93.51 (13)C20—C15—C16—C17176.39 (17)
Fe1—O1—C1—O5179.29 (15)C18—N3—C17—C160.4 (3)
Fe1—O1—C1—C21.2 (2)C15—C16—C17—N32.5 (3)
C6—N1—C2—C30.7 (3)C17—N3—C18—C191.9 (3)
Fe1—N1—C2—C3179.05 (14)N3—C18—C19—C152.0 (3)
C6—N1—C2—C1178.22 (16)C16—C15—C19—C180.2 (3)
Fe1—N1—C2—C10.2 (2)C20—C15—C19—C18178.46 (18)
O5—C1—C2—N1179.83 (17)C16—C15—C20—C24129.3 (2)
O1—C1—C2—N10.7 (2)C19—C15—C20—C2449.3 (3)
O5—C1—C2—C31.4 (3)C16—C15—C20—C2149.4 (3)
O1—C1—C2—C3178.12 (18)C19—C15—C20—C21132.0 (2)
N1—C2—C3—C40.9 (3)C24—C20—C21—C220.1 (3)
C1—C2—C3—C4179.59 (18)C15—C20—C21—C22178.81 (17)
C2—C3—C4—C51.3 (3)C23—N4—C22—C212.8 (3)
C3—C4—C5—C60.1 (3)C20—C21—C22—N42.6 (3)
C2—N1—C6—C51.9 (3)C22—N4—C23—C240.2 (3)
Fe1—N1—C6—C5179.73 (13)N4—C23—C24—C202.3 (3)
C2—N1—C6—C7176.97 (16)C21—C20—C24—C232.3 (3)
Fe1—N1—C6—C71.40 (19)C15—C20—C24—C23176.38 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N3/C15–C19 and N1/C2–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1W—H1B···O6i0.852.223.031 (2)159
O1W—H1A···O3ii0.852.182.976 (2)157
O2W—H2B···O7ii0.851.932.726 (2)156
O2W—H2A···O3Wiii0.851.882.732 (2)174
O3W—H3A···O5iv0.851.902.713 (2)160
O3W—H3B···N3v0.851.952.775 (2)162
O4W—H4B···O40.851.992.8220 (19)168
O4W—H4A···O3W0.851.992.838 (2)177
N4—H4C···O2Wvi0.901.822.691 (2)163
C5—H5···Cg20.953.633.750 (2)90
C17—H17···Cg10.953.523.708 (2)94
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C10H9N2)[Fe(C7H3NO4)2]·4H2O
Mr615.31
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)9.3759 (9), 9.3778 (9), 14.6284 (14)
α, β, γ (°)84.545 (2), 89.246 (2), 87.062 (2)
V3)1278.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.39 × 0.39 × 0.28
Data collection
DiffractometerBruker SMART 1000
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.782, 0.836
No. of measured, independent and
observed [I > 2σ(I)] reflections
14814, 5931, 4922
Rint0.030
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.04
No. of reflections5931
No. of parameters370
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.52

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N3/C15–C19 and N1/C2–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1W—H1B···O6i0.852.223.031 (2)159.3
O1W—H1A···O3ii0.852.182.976 (2)156.5
O2W—H2B···O7ii0.851.932.726 (2)155.7
O2W—H2A···O3Wiii0.851.882.732 (2)174.2
O3W—H3A···O5iv0.851.902.713 (2)160.2
O3W—H3B···N3v0.851.952.775 (2)162.1
O4W—H4B···O40.851.992.8220 (19)167.5
O4W—H4A···O3W0.851.992.838 (2)177.2
N4—H4C···O2Wvi0.901.822.691 (2)163.4
C5—H5···Cg20.953.633.750 (2)90
C17—H17···Cg10.953.523.708 (2)94
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y, z+1; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x, y+1, z.
 

Acknowledgements

Financial support from Ilam University is gratefully acknowledged.

References

First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Ramezanipour, F., Soleimannejad, J., Sharif, M. A., Shokrollahi, A., Shamsipur, M., Moghimi, A., Attar Gharamaleki, J., Lippolis, V. & Blake, A. J. (2008). Pol. J. Chem. 82, 487–507.  CAS Google Scholar
First citationAghajani, Z., Aghabozorg, H., Sadr-Khanlou, E., Shokrollahi, A., Derki, S. & Shamsipur, M. (2009). J. Iran. Chem. Soc. 6, 373–385.  CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds