organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-Hydr­­oxy-6-[(2-oxidophen­yl)imino­methyl-κ2N,O]phenolato-κO1}phenyl­boron

aCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, CP 62209, Cuernavaca Mor., Mexico
*Correspondence e-mail: hhopfl@uaem.mx

(Received 25 February 2010; accepted 28 February 2010; online 6 March 2010)

The [4.3.0]heterobicyclic title structure, C19H14BNO3, is composed of a five-membered OBNC2 ring and a six-membered OBNC3 ring, each of which has an approximate envelope conformation. The coordination geometry of the B atom is distorted tetra­hedral. In the crystal structure, centrosymmetrically related mol­ecules are associated through pairs of O—H⋯O hydrogen bonds.

Related literature

For related boronates, see: Barba et al. (2001[Barba, V., Cuahutle, D., Santillan, R. & Farfán, N. (2001). Can. J. Chem. 79, 1229-1237.]); Höpfl et al. (1998[Höpfl, H., Sánchez, M., Farfán, N. & Barba, V. (1998). Can. J. Chem. 76, 1352-1360.]); Lamère et al. (2006[Lamère, J. F., Lacroix, P. G., Farfán, N., Rivera, J. M., Santillan, R. & Nakatani, K. (2006). J. Mater. Chem. 16, 2913-2920.]). For boronates with non-linear optical properties, see: Reyes et al. (2005[Reyes, H., Rivera, J. M., Farfán, N., Santillan, R., Lacroix, P. G., Lepetit, C. & Nakatani, K. (2005). J. Organomet. Chem. 690, 3737-3745.]); Muñoz et al. (2008[Muñoz, B. M., Santillan, R., Rodríguez, M., Méndez, J. M., Romero, M., Farfán, N., Lacroix, P. G., Nakatani, K., Ramos-Ortíz, G. & Maldonado, J. L. (2008). J. Organomet. Chem. 693, 1321-1334.]). For the use of boronates in organic synthesis, see: Rodríguez et al. (2005a[Rodríguez, M., Ochoa, M. E., Rodríguez, C., Santillan, R., Barba, V. & Farfán, N. (2005a). J. Organomet. Chem. 692, 2425-2435.],b[Rodríguez, M., Ochoa, M. E., Santillan, R., Farfán, N. & Barba, V. (2005b). J. Organomet. Chem. 692, 2975-2988.]); López-Ruiz et al. (2008[López-Ruiz, H., Mera-Moreno, I., Rojas-Lima, S., Santillan, R. & Farfán, N. (2008). Tetrahedron Lett. 49, 1674-1677.]). For a definition of the tetra­hedral character in boron compounds, see: Höpfl et al. (1999[Höpfl, H. (1999). J. Organomet. Chem. 581, 129-149.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14BNO3

  • Mr = 315.12

  • Orthorhombic, P b c a

  • a = 14.7245 (13) Å

  • b = 11.196 (1) Å

  • c = 18.4060 (16) Å

  • V = 3034.3 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.21 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.985

  • 31865 measured reflections

  • 3317 independent reflections

  • 1942 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.127

  • S = 1.09

  • 3317 reflections

  • 220 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3′⋯O2i 0.84 (2) 1.97 (2) 2.740 (2) 152 (3)
C7—H7⋯O3ii 0.93 2.53 3.165 (3) 126
Symmetry codes: (i) -x, -y+2, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus NT (Bruker, 2001[Bruker (2001). SAINT-Plus NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus NT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Recently, boronates derived from ligands having electron-donating and -attracting groups have been prepared in order to generate chromophores with nonlinear optical properties (Reyes et al., 2005; Lamère et al., 2006; Muñoz et al., 2008). Boronates derived from Schiff bases have been applied in Diels-Alder reactions and for the stereoselective addition of Grignard reagents to azomethine carbon atoms (Rodríguez et al., 2005a, 2005b; López-Ruiz et al., 2008).

We have synthesized the [4.3.0]heterobicycle (I), Fig. 1, which is composed of a five-membered OBNC2 ring and a six-membered OBNC3 ring. The NB, B—O and B—C bond lengths are comparable to the values determined for the molecular structure of the boronate obtained from the unsubstituted ligand 2-[[(2-hydroxyphenyl)imino]methyl]phenol (Höpfl et al., 1998; Barba et al., 2001); however, the sum of bond lengths at the boron atom is significantly shorter for (I) (6.15 versus 6.18 Å), indicating that there is a small, but systematic tendency for bond length shortening.

The bond angles around the boron atom vary from 98.72 (2) ° for O2—B1—N1 to 112.8 (2) ° for O2—B1—C14, thus indicating a significant distortion from ideal tetrahedral geometry, which can be seen also from the value for the tetrahedral character [71 %] (Höpfl, 1999).

In the five-membered ring, the bond angles vary from 98.7 (2) to 114.0 (2) ° giving a mean value of 106.9 °. In the six-membered heterocycle, the bond angles range from 106.6 (2) to 123.4 (2) °, and the mean value is 117.9 °. Both rings have an approximate envelope conformation, in which the boron atom is localized at the tip. The proximity to an ideal envelope can be illustrated by the N1—C8—C9—O2 torsion angle [-2.7 (3) °] in the first case, and the O1—C1—C2—C7 and C2—C7—N1—B1 torsion angles [2.3 (3) and 2.5 (3) °] in the second case.

The degree of π–delocalization between the aromatic rings connected by the imino group can be analyzed by the C–N–C–C torsion angles (Reyes et al., 2005; Lamère et al., 2006; Muñoz et al., 2008). The C7—N1—C8—C13 torsion angle has a value of 26.1 (4) ° indicating that the π–delocalization is distorted. The distortion can be evidenced also by the relatively long N1—C7 bond [1.282 (3) Å].

In the crystal structure, neighboring molecules are associated through O3—H···O2i hydrogen bonds [symmetry code: (i), -x, 2-y, 1-z] to form supramolecular dimeric units having crystallographic inversion symmetry (Fig. 2). The crystal packing is further stabilized by C—H···O interactions (Table 1).

Related literature top

For related boronates, see: Barba et al. ( 2001); Höpfl et al. (1998); Lamère et al. (2006). For boronates with non-linear optical properties, see: Reyes et al. (2005); Muñoz et al. (2008). For the use of boronates in organic synthesis, see: Rodríguez et al. (2005a,b); López-Ruiz et al. (2008). For a definition of the tetrahedral character in boron compounds, see: Höpfl et al. (1999).

Experimental top

For the preparation of (I), 2,3-dihydroxysalicylaldehyde (0.250 g, 1.81 mmol), 2-aminophenol (0.198 g, 1.81 mmol) and phenylboronic acid (0.221 g, 1.81 mmol) were dissolved in DMF (35 ml), and the solution was refluxed for 1 h in the presence of a Dean-Stark trap. After cooling, the product precipitated in the form of a yellow crystalline solid, which was filtered and washed with hexane. Yield: 0.102 g (18 %). M.pt. 531 K.

MS (FAB+): m/z (%) = 316 ([M+H]+, 40).

Refinement top

H atoms were positioned geometrically and constrained using the riding-model approximation [C-H = 0.93 Å, Uiso(H)= 1.2 Ueq(C)]. The hydrogen atom bonded to O3 was located in a difference Fourier map. Its coordinates were refined with a distance restraint: O—H = 0.84±0.01 Å and [Uiso(H) = 1.5 Ueq(O)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus NT (Bruker, 2001); data reduction: SAINT-Plus NT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Perspective view of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Fragment of the crystal structure of (I), showing the supramolecular aggregate formed through O—H···O hydrogen bonding interactions. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
{2-Hydroxy-6-[(2-oxidophenyl)iminomethyl-κ2N,O]phenolato- κO1}phenylboron top
Crystal data top
C19H14BNO3Dx = 1.380 Mg m3
Mr = 315.12Melting point: 531 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3128 reflections
a = 14.7245 (13) Åθ = 2.2–21.4°
b = 11.196 (1) ŵ = 0.09 mm1
c = 18.4060 (16) ÅT = 293 K
V = 3034.3 (5) Å3Rectangular prism, orange
Z = 80.21 × 0.20 × 0.16 mm
F(000) = 1312
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3317 independent reflections
Radiation source: fine-focus sealed tube1942 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
Detector resolution: 8.3 pixels mm-1θmax = 27.0°, θmin = 2.2°
phi and ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.981, Tmax = 0.985l = 2323
31865 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0408P)2 + 0.7703P]
where P = (Fo2 + 2Fc2)/3
3317 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.19 e Å3
Crystal data top
C19H14BNO3V = 3034.3 (5) Å3
Mr = 315.12Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.7245 (13) ŵ = 0.09 mm1
b = 11.196 (1) ÅT = 293 K
c = 18.4060 (16) Å0.21 × 0.20 × 0.16 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3317 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1942 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.985Rint = 0.088
31865 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0611 restraint
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.14 e Å3
3317 reflectionsΔρmin = 0.19 e Å3
220 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.10076 (17)0.8654 (3)0.51225 (15)0.0453 (7)
N10.20017 (12)0.80938 (17)0.50322 (10)0.0460 (5)
O10.11329 (10)0.98838 (14)0.53706 (8)0.0486 (4)
O20.07078 (10)0.85831 (14)0.43509 (8)0.0514 (4)
O30.09544 (12)1.17706 (17)0.62833 (11)0.0672 (6)
H3'0.0545 (15)1.147 (3)0.6024 (14)0.101*
C10.17986 (15)1.0082 (2)0.58667 (12)0.0467 (6)
C20.25781 (16)0.9374 (2)0.59210 (13)0.0479 (6)
C30.32673 (17)0.9695 (2)0.64063 (14)0.0579 (7)
H30.37940.92380.64320.069*
C40.31745 (18)1.0667 (3)0.68403 (14)0.0613 (7)
H40.36331.08740.71640.074*
C50.23854 (18)1.1354 (2)0.67962 (13)0.0582 (7)
H50.23191.20170.70960.070*
C60.17066 (16)1.1066 (2)0.63186 (13)0.0518 (6)
C70.26874 (16)0.8426 (2)0.54104 (13)0.0506 (6)
H70.32480.80550.53530.061*
C80.19835 (16)0.7394 (2)0.43960 (12)0.0466 (6)
C90.12224 (16)0.7743 (2)0.40089 (13)0.0482 (6)
C100.10560 (18)0.7249 (2)0.33315 (14)0.0576 (7)
H100.05550.74780.30570.069*
C110.1662 (2)0.6406 (3)0.30787 (14)0.0622 (7)
H110.15650.60670.26240.075*
C120.24025 (19)0.6050 (3)0.34753 (14)0.0619 (7)
H120.27880.54650.32910.074*
C130.25807 (17)0.6548 (2)0.41423 (14)0.0565 (7)
H130.30860.63210.44120.068*
C140.03782 (15)0.7892 (2)0.56575 (12)0.0444 (6)
C150.00739 (17)0.6756 (2)0.54791 (15)0.0599 (7)
H150.02470.64260.50360.072*
C160.04753 (19)0.6099 (2)0.59356 (17)0.0707 (8)
H160.06650.53380.58000.085*
C170.07412 (18)0.6570 (3)0.65887 (16)0.0649 (8)
H170.11070.61280.69010.078*
C180.04662 (17)0.7693 (3)0.67788 (14)0.0590 (7)
H180.06510.80210.72190.071*
C190.00840 (16)0.8338 (2)0.63199 (13)0.0523 (6)
H190.02650.91000.64590.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0384 (14)0.0458 (16)0.0517 (17)0.0035 (13)0.0048 (12)0.0004 (14)
N10.0408 (11)0.0516 (12)0.0455 (12)0.0010 (9)0.0017 (9)0.0026 (10)
O10.0430 (9)0.0478 (10)0.0551 (10)0.0032 (8)0.0085 (8)0.0019 (8)
O20.0503 (10)0.0558 (11)0.0482 (10)0.0042 (8)0.0050 (8)0.0005 (8)
O30.0517 (11)0.0594 (12)0.0905 (15)0.0025 (10)0.0096 (10)0.0189 (10)
C10.0441 (14)0.0494 (15)0.0466 (14)0.0100 (12)0.0008 (12)0.0056 (12)
C20.0442 (14)0.0526 (15)0.0469 (14)0.0062 (12)0.0031 (12)0.0021 (12)
C30.0456 (15)0.0660 (19)0.0619 (17)0.0046 (13)0.0079 (13)0.0010 (15)
C40.0540 (17)0.0685 (19)0.0614 (17)0.0169 (15)0.0099 (13)0.0012 (15)
C50.0594 (17)0.0547 (17)0.0605 (17)0.0124 (14)0.0017 (14)0.0047 (14)
C60.0471 (15)0.0507 (16)0.0577 (16)0.0095 (12)0.0020 (12)0.0026 (13)
C70.0409 (14)0.0577 (17)0.0533 (15)0.0020 (12)0.0038 (12)0.0076 (13)
C80.0448 (13)0.0532 (15)0.0418 (13)0.0043 (12)0.0058 (11)0.0010 (12)
C90.0461 (14)0.0488 (15)0.0496 (15)0.0032 (12)0.0024 (12)0.0041 (13)
C100.0598 (16)0.0647 (18)0.0483 (16)0.0095 (14)0.0046 (13)0.0020 (14)
C110.0699 (19)0.0683 (19)0.0484 (15)0.0157 (16)0.0126 (14)0.0058 (14)
C120.0578 (17)0.0641 (19)0.0637 (18)0.0029 (14)0.0166 (15)0.0065 (15)
C130.0487 (15)0.0663 (18)0.0545 (16)0.0001 (13)0.0073 (13)0.0024 (14)
C140.0351 (12)0.0475 (15)0.0505 (15)0.0023 (11)0.0046 (11)0.0014 (12)
C150.0570 (16)0.0528 (17)0.0700 (18)0.0022 (14)0.0112 (14)0.0056 (14)
C160.0662 (18)0.0510 (17)0.095 (2)0.0083 (14)0.0173 (17)0.0024 (16)
C170.0549 (16)0.070 (2)0.0702 (19)0.0027 (15)0.0131 (14)0.0159 (16)
C180.0501 (15)0.074 (2)0.0530 (16)0.0008 (14)0.0025 (13)0.0036 (14)
C190.0456 (14)0.0590 (17)0.0523 (16)0.0047 (12)0.0013 (12)0.0008 (13)
Geometric parameters (Å, º) top
B1—O11.463 (3)C8—C131.375 (3)
B1—O21.489 (3)C8—C91.384 (3)
B1—C141.599 (4)C9—C101.386 (3)
B1—N11.601 (3)C10—C111.380 (4)
N1—C71.282 (3)C10—H100.93
N1—C81.409 (3)C11—C121.371 (4)
O1—C11.358 (3)C11—H110.93
O2—C91.362 (3)C12—C131.374 (3)
O3—C61.362 (3)C12—H120.93
O3—H3'0.84 (2)C13—H130.93
C1—C61.387 (3)C14—C191.387 (3)
C1—C21.399 (3)C14—C151.388 (3)
C2—C31.399 (3)C15—C161.379 (3)
C2—C71.426 (3)C15—H150.93
C3—C41.357 (3)C16—C171.370 (4)
C3—H30.93C16—H160.93
C4—C51.396 (4)C17—C181.367 (4)
C4—H40.93C17—H170.93
C5—C61.370 (3)C18—C191.375 (3)
C5—H50.93C18—H180.93
C7—H70.93C19—H190.93
O1—B1—O2112.7 (2)C9—C8—N1106.6 (2)
O1—B1—C14112.5 (2)O2—C9—C8114.0 (2)
O2—B1—C14112.78 (19)O2—C9—C10126.4 (2)
O1—B1—N1106.61 (18)C8—C9—C10119.6 (2)
O2—B1—N198.70 (18)C11—C10—C9117.5 (3)
C14—B1—N1112.6 (2)C11—C10—H10121.2
C7—N1—C8128.9 (2)C9—C10—H10121.2
C7—N1—B1123.4 (2)C12—C11—C10122.3 (3)
C8—N1—B1106.65 (18)C12—C11—H11118.9
C1—O1—B1117.06 (18)C10—C11—H11118.9
C9—O2—B1108.21 (18)C11—C12—C13120.6 (3)
C6—O3—H3'112 (2)C11—C12—H12119.7
O1—C1—C6117.6 (2)C13—C12—H12119.7
O1—C1—C2123.2 (2)C12—C13—C8117.5 (3)
C6—C1—C2119.2 (2)C12—C13—H13121.3
C1—C2—C3119.7 (2)C8—C13—H13121.3
C1—C2—C7117.9 (2)C19—C14—C15115.9 (2)
C3—C2—C7122.0 (2)C19—C14—B1122.1 (2)
C4—C3—C2120.6 (3)C15—C14—B1122.0 (2)
C4—C3—H3119.7C16—C15—C14122.3 (3)
C2—C3—H3119.7C16—C15—H15118.9
C3—C4—C5119.4 (2)C14—C15—H15118.9
C3—C4—H4120.3C17—C16—C15119.8 (3)
C5—C4—H4120.3C17—C16—H16120.1
C6—C5—C4121.0 (3)C15—C16—H16120.1
C6—C5—H5119.5C18—C17—C16119.6 (3)
C4—C5—H5119.5C18—C17—H17120.2
O3—C6—C5119.2 (2)C16—C17—H17120.2
O3—C6—C1120.7 (2)C17—C18—C19120.0 (3)
C5—C6—C1120.1 (2)C17—C18—H18120.0
N1—C7—C2119.0 (2)C19—C18—H18120.0
N1—C7—H7120.5C18—C19—C14122.4 (2)
C2—C7—H7120.5C18—C19—H19118.8
C13—C8—C9122.5 (2)C14—C19—H19118.8
C13—C8—N1130.8 (2)
O1—B1—N1—C729.0 (3)C7—N1—C8—C1326.0 (4)
O2—B1—N1—C7145.9 (2)B1—N1—C8—C13165.7 (3)
C14—B1—N1—C794.8 (3)C7—N1—C8—C9151.6 (2)
O1—B1—N1—C8140.00 (19)B1—N1—C8—C916.7 (2)
O2—B1—N1—C823.1 (2)B1—O2—C9—C813.6 (3)
C14—B1—N1—C896.1 (2)B1—O2—C9—C10167.3 (2)
O2—B1—O1—C1146.93 (18)C13—C8—C9—O2179.4 (2)
C14—B1—O1—C184.2 (2)N1—C8—C9—O22.7 (3)
N1—B1—O1—C139.7 (3)C13—C8—C9—C101.5 (4)
O1—B1—O2—C9133.55 (19)N1—C8—C9—C10176.3 (2)
C14—B1—O2—C997.7 (2)O2—C9—C10—C11180.0 (2)
N1—B1—O2—C921.4 (2)C8—C9—C10—C111.0 (4)
B1—O1—C1—C6154.4 (2)C9—C10—C11—C120.4 (4)
B1—O1—C1—C228.1 (3)C10—C11—C12—C131.5 (4)
O1—C1—C2—C3174.7 (2)C11—C12—C13—C81.0 (4)
C6—C1—C2—C32.7 (3)C9—C8—C13—C120.5 (4)
O1—C1—C2—C72.3 (3)N1—C8—C13—C12176.8 (2)
C6—C1—C2—C7175.1 (2)O1—B1—C14—C196.9 (3)
C1—C2—C3—C42.0 (4)O2—B1—C14—C19135.7 (2)
C7—C2—C3—C4174.1 (2)N1—B1—C14—C19113.6 (2)
C2—C3—C4—C50.4 (4)O1—B1—C14—C15171.4 (2)
C3—C4—C5—C60.4 (4)O2—B1—C14—C1542.6 (3)
C4—C5—C6—O3178.9 (2)N1—B1—C14—C1568.0 (3)
C4—C5—C6—C10.3 (4)C19—C14—C15—C161.0 (4)
O1—C1—C6—O32.8 (3)B1—C14—C15—C16179.4 (2)
C2—C1—C6—O3179.6 (2)C14—C15—C16—C170.3 (4)
O1—C1—C6—C5175.7 (2)C15—C16—C17—C180.6 (4)
C2—C1—C6—C51.8 (3)C16—C17—C18—C190.9 (4)
C8—N1—C7—C2164.0 (2)C17—C18—C19—C140.1 (4)
B1—N1—C7—C22.5 (3)C15—C14—C19—C180.8 (3)
C1—C2—C7—N114.9 (3)B1—C14—C19—C18179.2 (2)
C3—C2—C7—N1172.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.84 (2)1.97 (2)2.740 (2)152 (3)
C7—H7···O3ii0.932.533.165 (3)126
Symmetry codes: (i) x, y+2, z+1; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC19H14BNO3
Mr315.12
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)14.7245 (13), 11.196 (1), 18.4060 (16)
V3)3034.3 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.21 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
31865, 3317, 1942
Rint0.088
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.127, 1.09
No. of reflections3317
No. of parameters220
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.19

Computer programs: SMART (Bruker, 2000), SAINT-Plus NT (Bruker, 2001), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3'···O2i0.84 (2)1.97 (2)2.740 (2)152 (3)
C7—H7···O3ii0.932.533.165 (3)126
Symmetry codes: (i) x, y+2, z+1; (ii) x+1/2, y1/2, z.
 

Acknowledgements

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CIAM-59213).

References

First citationBarba, V., Cuahutle, D., Santillan, R. & Farfán, N. (2001). Can. J. Chem. 79, 1229–1237.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SMART. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHöpfl, H. (1999). J. Organomet. Chem. 581, 129–149.  Google Scholar
First citationHöpfl, H., Sánchez, M., Farfán, N. & Barba, V. (1998). Can. J. Chem. 76, 1352–1360.  Google Scholar
First citationLamère, J. F., Lacroix, P. G., Farfán, N., Rivera, J. M., Santillan, R. & Nakatani, K. (2006). J. Mater. Chem. 16, 2913–2920.  Google Scholar
First citationLópez-Ruiz, H., Mera-Moreno, I., Rojas-Lima, S., Santillan, R. & Farfán, N. (2008). Tetrahedron Lett. 49, 1674–1677.  Google Scholar
First citationMuñoz, B. M., Santillan, R., Rodríguez, M., Méndez, J. M., Romero, M., Farfán, N., Lacroix, P. G., Nakatani, K., Ramos-Ortíz, G. & Maldonado, J. L. (2008). J. Organomet. Chem. 693, 1321–1334.  Google Scholar
First citationReyes, H., Rivera, J. M., Farfán, N., Santillan, R., Lacroix, P. G., Lepetit, C. & Nakatani, K. (2005). J. Organomet. Chem. 690, 3737–3745.  Web of Science CSD CrossRef CAS Google Scholar
First citationRodríguez, M., Ochoa, M. E., Rodríguez, C., Santillan, R., Barba, V. & Farfán, N. (2005a). J. Organomet. Chem. 692, 2425–2435.  Google Scholar
First citationRodríguez, M., Ochoa, M. E., Santillan, R., Farfán, N. & Barba, V. (2005b). J. Organomet. Chem. 692, 2975–2988.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds