organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3,5-Di­methyl­phen­yl)-2-methyl­benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 9 March 2010; accepted 10 March 2010; online 17 March 2010)

In the mol­ecular structure of the title compound, C16H17NO, the amide group is twisted by 41.8 (2) and 29.0 (2)° out of the planes of the 2-methyl­phenyl and 3,5-dimethyl­phenyl rings, respectively. The two aromatic rings make a dihedral angle of 69.5 (1)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds connect the mol­ecules into C(4) chains running along the c axis.

Related literature

For our study of the effect of the substituents on the structures of benzanilides and for related structures, see: Gowda, Foro et al. (2008a[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o383.],b[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1605.]); Gowda, Tokarčík et al. (2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Rodrigues, V. Z. & Fuess, H. (2009). Acta Cryst. E65, o826.]). For synthesis, see: Gowda, Foro et al. (2008b[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1605.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17NO

  • Mr = 239.31

  • Monoclinic, P 21 /c

  • a = 10.5174 (5) Å

  • b = 14.9616 (7) Å

  • c = 8.9209 (4) Å

  • β = 105.373 (4)°

  • V = 1353.54 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.54 × 0.08 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.957, Tmax = 0.992

  • 14671 measured reflections

  • 2548 independent reflections

  • 1628 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.120

  • S = 0.97

  • 2548 reflections

  • 170 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.06 2.8935 (16) 163
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As a part of our efforts to explore the effect of the substituents on the structures of benzanilides (Gowda, Foro et al., 2008a, b, Gowda, Tokarčík et al., 2009), in the present work, the structure of 2-methyl-N-(3,5-dimethylphenyl)benzamide (I) has been determined. In the structure of (I) (Fig. 1), the N—H and C=O groups are in an antiperiplanar conformation. This conformation is similar to those observed, e.g. in 2-methyl-N-(phenyl)benzamide (II) (Gowda, Foro et al., 2008a), 2-methyl-N-(2,6-dimethylphenyl)benzamide (III) (Gowda, Foro et al., 2008b), and 2-methyl-N-(2,4-dimethylphenyl)benzamide (IV) (Gowda, Tokarčík et al., 2009). Further, in (I) the conformation of the C=O group to the methyl substituent in the 2-methylphenyl ring is syn. This conformation is similar to those observed in (II) and (IV). The bond parameters in (I) are similar to those in (II), (III), (IV), and other benzanilides.

In the molecule, the amido group is twisted 41.8 (2)° and 29.0 (2)° out of the planes of the 2-methylphenyl and the 3,5-dimethylphenyl rings, respectively. The two aromatic rings make the dihedral angle of 69.5 (1)°. Intermolecular N–H···O hydrogen bonds (Table 1) connect the molecules into chains running along the c-axis (Fig. 2).

Related literature top

For our studiy of the effect of the substituents on the structures of benzanilides and for related structures, see: Gowda, Foro et al. (2008a,b); Gowda, Tokarčík et al. (2009). For synthesis, see: Gowda, Foro et al. (2008b).

Experimental top

Compound (I) as prepared according to the method described by Gowda, Foro et al. (2008b). Colourless blocks of (I) were obtained by slow evaporation from an ethanol solution (0.5 g in about 25 ml of ethanol) held at room temperature.

Refinement top

All hydrogen atoms were positioned with idealized geometry using a riding model with C–H = 0.93-0.96 Å and N–H = 0.86 Å. The Uiso(H) values were set at 1.2Ueq(C-aromatic, N) and 1.5Ueq(C-methyl). The methyl groups with the carbon atoms C14, C15 and C16 exhibit orientational disorder in the positions of their H atoms, and each group was modelled by two sets of methyl hydrogen atoms. The refined occupancies are 0.82 (3) and 0.18 (3) for the C14-mehtyl group, 0.60 (3) and 0.40 (3) for the C15 group, 0.73 (2) and 0.27 (2) for the C16 group.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Supramolecular chain formation in (I) with hydrogen bonds shown as dashed lines. Symmetry code (i): x, -y+1/2, z+1/2. H atoms not involved in hydrogen bonding were omitted for reasons of clarity.
N-(3,5-Dimethylphenyl)-2-methylbenzamide top
Crystal data top
C16H17NOF(000) = 512
Mr = 239.31Dx = 1.174 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5268 reflections
a = 10.5174 (5) Åθ = 2.0–29.4°
b = 14.9616 (7) ŵ = 0.07 mm1
c = 8.9209 (4) ÅT = 295 K
β = 105.373 (4)°Needle, colourless
V = 1353.54 (11) Å30.54 × 0.08 × 0.04 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2548 independent reflections
Graphite monochromator1628 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.041
ω scansθmax = 25.6°, θmin = 2.0°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1212
Tmin = 0.957, Tmax = 0.992k = 1818
14671 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 0.97 [exp(2.50(sinθ/λ)2)]/[σ2(Fo2) + (0.094P)2],
where P = 0.33333Fo2 + 0.66667Fc2
2548 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C16H17NOV = 1353.54 (11) Å3
Mr = 239.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5174 (5) ŵ = 0.07 mm1
b = 14.9616 (7) ÅT = 295 K
c = 8.9209 (4) Å0.54 × 0.08 × 0.04 mm
β = 105.373 (4)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2548 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1628 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.992Rint = 0.041
14671 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 0.97Δρmax = 0.13 e Å3
2548 reflectionsΔρmin = 0.12 e Å3
170 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.20367 (15)0.19330 (10)0.08175 (15)0.0348 (4)
C20.09976 (16)0.14838 (10)0.14205 (17)0.0392 (4)
C30.02376 (17)0.12792 (12)0.0426 (2)0.0503 (5)
C40.1141 (2)0.08515 (16)0.1073 (3)0.0724 (6)
H40.19670.07050.04350.087*
C50.0850 (2)0.06389 (17)0.2623 (3)0.0835 (7)
H50.1480.03590.30210.1*
C60.0366 (2)0.08381 (16)0.3589 (3)0.0760 (7)
H60.05640.06950.4640.091*
C70.1290 (2)0.12525 (12)0.29829 (19)0.0527 (5)
H70.21210.13790.36290.063*
C80.38098 (14)0.30756 (10)0.15513 (15)0.0354 (4)
C90.46745 (15)0.27564 (11)0.07407 (16)0.0396 (4)
H90.45360.21980.02660.048*
C100.57512 (15)0.32734 (12)0.06388 (17)0.0454 (4)
C110.59283 (16)0.41058 (12)0.13406 (18)0.0489 (4)
H110.66370.44560.12560.059*
C120.50798 (17)0.44351 (11)0.21670 (17)0.0449 (4)
C130.40205 (16)0.39107 (11)0.22612 (16)0.0398 (4)
H130.3440.41190.28070.048*
C140.0633 (2)0.15265 (17)0.1269 (2)0.0743 (6)
H14A0.15680.14570.16730.112*0.82 (3)
H14B0.01870.11440.18290.112*0.82 (3)
H14C0.03950.21370.13860.112*0.82 (3)
H14D0.01350.17030.15850.112*0.18 (3)
H14E0.12480.20140.1430.112*0.18 (3)
H14F0.10370.10210.18720.112*0.18 (3)
C150.67092 (19)0.29122 (17)0.0193 (2)0.0651 (6)
H15A0.71430.340.05540.098*0.60 (3)
H15B0.62440.25580.10630.098*0.60 (3)
H15C0.73530.25480.05070.098*0.60 (3)
H15D0.66840.22710.01860.098*0.40 (3)
H15E0.75830.31120.03240.098*0.40 (3)
H15F0.64740.31230.12470.098*0.40 (3)
C160.5318 (2)0.53329 (13)0.2949 (2)0.0644 (5)
H16A0.55720.57540.2270.097*0.73 (2)
H16B0.60090.52830.38960.097*0.73 (2)
H16C0.45250.55350.31820.097*0.73 (2)
H16D0.51660.52940.39620.097*0.27 (2)
H16E0.47280.57650.23360.097*0.27 (2)
H16F0.62130.55130.3050.097*0.27 (2)
N10.27245 (13)0.25733 (9)0.17550 (13)0.0399 (3)
H1N0.24740.26910.25760.048*
O10.22394 (11)0.17203 (8)0.04280 (11)0.0456 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0372 (8)0.0346 (8)0.0317 (7)0.0014 (7)0.0078 (6)0.0008 (6)
C20.0428 (9)0.0315 (8)0.0444 (8)0.0029 (7)0.0137 (7)0.0046 (6)
C30.0426 (10)0.0445 (10)0.0629 (11)0.0037 (8)0.0122 (8)0.0086 (8)
C40.0485 (11)0.0649 (14)0.1019 (16)0.0159 (10)0.0167 (11)0.0023 (12)
C50.0744 (16)0.0734 (16)0.1135 (19)0.0260 (13)0.0438 (15)0.0144 (13)
C60.0901 (17)0.0724 (15)0.0719 (12)0.0242 (13)0.0327 (12)0.0169 (11)
C70.0602 (11)0.0481 (10)0.0506 (10)0.0128 (8)0.0163 (8)0.0044 (8)
C80.0360 (8)0.0395 (9)0.0290 (7)0.0040 (7)0.0056 (6)0.0048 (6)
C90.0396 (9)0.0428 (9)0.0341 (7)0.0008 (7)0.0055 (6)0.0004 (6)
C100.0359 (9)0.0604 (11)0.0377 (8)0.0007 (8)0.0058 (6)0.0074 (7)
C110.0387 (9)0.0580 (11)0.0463 (8)0.0133 (8)0.0050 (7)0.0113 (8)
C120.0486 (10)0.0413 (9)0.0399 (8)0.0071 (8)0.0031 (7)0.0065 (7)
C130.0444 (9)0.0393 (9)0.0354 (7)0.0013 (7)0.0101 (6)0.0020 (6)
C140.0483 (11)0.1004 (18)0.0638 (12)0.0075 (12)0.0037 (9)0.0105 (11)
C150.0441 (10)0.0897 (16)0.0651 (11)0.0000 (10)0.0209 (9)0.0018 (10)
C160.0745 (14)0.0471 (11)0.0683 (11)0.0196 (10)0.0134 (10)0.0037 (9)
N10.0461 (8)0.0433 (8)0.0341 (6)0.0087 (6)0.0173 (5)0.0051 (5)
O10.0505 (7)0.0517 (7)0.0363 (6)0.0048 (6)0.0148 (5)0.0068 (5)
Geometric parameters (Å, º) top
C1—O11.2276 (17)C12—C131.383 (2)
C1—N11.3490 (19)C12—C161.504 (2)
C1—C21.499 (2)C13—H130.93
C2—C71.389 (2)C14—H14A0.96
C2—C31.399 (2)C14—H14B0.96
C3—C41.391 (3)C14—H14C0.96
C3—C141.504 (3)C14—H14D0.96
C4—C51.372 (3)C14—H14E0.96
C4—H40.93C14—H14F0.96
C5—C61.372 (3)C15—H15A0.96
C5—H50.93C15—H15B0.96
C6—C71.378 (3)C15—H15C0.96
C6—H60.93C15—H15D0.96
C7—H70.93C15—H15E0.96
C8—C91.388 (2)C15—H15F0.96
C8—C131.392 (2)C16—H16A0.96
C8—N11.4180 (19)C16—H16B0.96
C9—C101.394 (2)C16—H16C0.96
C9—H90.93C16—H16D0.96
C10—C111.384 (2)C16—H16E0.96
C10—C151.501 (3)C16—H16F0.96
C11—C121.390 (2)N1—H1N0.86
C11—H110.93
O1—C1—N1123.50 (13)C11—C12—C16120.75 (16)
O1—C1—C2121.78 (13)C12—C13—C8121.01 (15)
N1—C1—C2114.72 (12)C12—C13—H13119.5
C7—C2—C3120.21 (16)C8—C13—H13119.5
C7—C2—C1118.90 (15)C3—C14—H14A109.5
C3—C2—C1120.87 (14)C3—C14—H14B109.5
C4—C3—C2117.28 (17)C3—C14—H14C109.5
C4—C3—C14119.57 (18)C3—C14—H14D109.5
C2—C3—C14123.12 (16)C3—C14—H14E109.5
C5—C4—C3122.1 (2)H14D—C14—H14E109.5
C5—C4—H4119C3—C14—H14F109.5
C3—C4—H4119H14D—C14—H14F109.5
C4—C5—C6120.27 (19)H14E—C14—H14F109.5
C4—C5—H5119.9C10—C15—H15A109.5
C6—C5—H5119.9C10—C15—H15B109.5
C5—C6—C7119.2 (2)C10—C15—H15C109.5
C5—C6—H6120.4C10—C15—H15D109.5
C7—C6—H6120.4C10—C15—H15E109.5
C6—C7—C2120.94 (19)H15D—C15—H15E109.5
C6—C7—H7119.5C10—C15—H15F109.5
C2—C7—H7119.5H15D—C15—H15F109.5
C9—C8—C13119.91 (14)H15E—C15—H15F109.5
C9—C8—N1123.04 (14)C12—C16—H16A109.5
C13—C8—N1117.00 (13)C12—C16—H16B109.5
C8—C9—C10119.92 (15)C12—C16—H16C109.5
C8—C9—H9120C12—C16—H16D109.5
C10—C9—H9120C12—C16—H16E109.5
C11—C10—C9118.94 (15)H16D—C16—H16E109.5
C11—C10—C15121.33 (16)C12—C16—H16F109.5
C9—C10—C15119.71 (17)H16D—C16—H16F109.5
C10—C11—C12122.04 (15)H16E—C16—H16F109.5
C10—C11—H11119C1—N1—C8127.92 (12)
C12—C11—H11119C1—N1—H1N116
C13—C12—C11118.16 (15)C8—N1—H1N116
C13—C12—C16121.09 (16)
O1—C1—C2—C7136.94 (16)N1—C8—C9—C10177.47 (13)
N1—C1—C2—C742.4 (2)C8—C9—C10—C110.7 (2)
O1—C1—C2—C341.5 (2)C8—C9—C10—C15177.92 (15)
N1—C1—C2—C3139.08 (15)C9—C10—C11—C121.2 (2)
C7—C2—C3—C40.7 (3)C15—C10—C11—C12177.41 (16)
C1—C2—C3—C4179.16 (17)C10—C11—C12—C130.9 (2)
C7—C2—C3—C14178.64 (19)C10—C11—C12—C16178.48 (16)
C1—C2—C3—C142.9 (3)C11—C12—C13—C80.1 (2)
C2—C3—C4—C50.4 (3)C16—C12—C13—C8179.26 (15)
C14—C3—C4—C5177.6 (2)C9—C8—C13—C120.3 (2)
C3—C4—C5—C60.7 (4)N1—C8—C13—C12177.91 (13)
C4—C5—C6—C70.1 (4)O1—C1—N1—C83.4 (2)
C5—C6—C7—C21.2 (3)C2—C1—N1—C8176.00 (14)
C3—C2—C7—C61.5 (3)C9—C8—N1—C127.9 (2)
C1—C2—C7—C6179.97 (18)C13—C8—N1—C1154.64 (15)
C13—C8—C9—C100.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.062.8935 (16)163
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H17NO
Mr239.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)10.5174 (5), 14.9616 (7), 8.9209 (4)
β (°) 105.373 (4)
V3)1353.54 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.54 × 0.08 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.957, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
14671, 2548, 1628
Rint0.041
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.120, 0.97
No. of reflections2548
No. of parameters170
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.12

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.062.8935 (16)163
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship.

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1605.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Rodrigues, V. Z. & Fuess, H. (2009). Acta Cryst. E65, o826.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds