organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-2-[1-(3-Amino-4-chloro­phenyl­imino)eth­yl]-4-bromo­phenol

aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 10 March 2010; accepted 16 March 2010; online 20 March 2010)

The title Schiff base compound, C14H12BrClN2O, exists in an E configuration with respect to the central C=N double bond. The amino group adopts a pyramidal configuration. The dihedral angle between the two benzene rings is 76.88 (10)° and an intra­molecular O—H⋯N hydrogen bond forms a six-membered ring, generating an S(6) ring motif. In the crystal structure, mol­ecules are linked into chains along [010] via N—H⋯O hydrogen bonds. The presence of ππ inter­actions [centroid–centroid distance = 3.6244 (12) Å] further stabilizes the crystal structure.

Related literature

For the biological activity and corrosion inhibition properties of Schiff base derivatives, see: Azam et al. (2007[Azam, F., Singh, S., Khokhra, S. L. & Prakash, O. (2007). J. Zhejiang Univ. Sci. B, 8, 446-452.]); Sauri et al. (2009[Sauri, A. S. M., Kassim, K., Bahron, H., Yahya, M. Z. A. & Harun, M. K. (2009). Mater. Res. Innovations, 13, 305-308.]). For a related structure, see: Yamin et al. (2009[Yamin, B. M., Bakar, S. N. A., Kassim, K. & Bahron, H. (2009). Acta Cryst. E65, o2573.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12BrClN2O

  • Mr = 339.62

  • Monoclinic, P 21 /c

  • a = 10.2469 (1) Å

  • b = 8.7672 (1) Å

  • c = 15.7180 (2) Å

  • β = 107.065 (1)°

  • V = 1349.88 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.24 mm−1

  • T = 296 K

  • 0.24 × 0.22 × 0.11 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.509, Tmax = 0.726

  • 14782 measured reflections

  • 3925 independent reflections

  • 2420 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.077

  • S = 1.00

  • 3925 reflections

  • 185 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯N1 0.86 (3) 1.74 (3) 2.533 (2) 151 (3)
N2—H1N2⋯O1i 0.82 (3) 2.33 (3) 3.129 (3) 163 (2)
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases have been studied extensively due to their intriguing biological activities, such as antimicrobial (Azam et al., 2007), and chemical properties as well as corrosion inhibition (Sauri et al., 2009). The structure of a Schiff base synthesized from 1,3-diamino-4-chlorobenzene and 3-methoxysalicylaldehyde in 1:2 ratio has been reported by Yamin et al. (2009). The present Schiff base compound, (I), is also derived from 1,3-diamino-4-chlorobenzene but from an analogous reaction with 5-bromo-2-hydroxyacetophenone.

Compound, (I), exists in an E configuration with respect to the central C7N1 double bond (Fig. 1). The dihedral angle between the two benzene rings is 76.88 (10)°. The amino group (N2) adopts a pyramidal configuration. An intramolecular O1—H1O1···N1 hydrogen bond forms a six-membered ring, generating an S(6) ring motif (Bernstein et al., 1995). In the crystal structure, the molecules are linked into one-dimensional chains along [010] via intermolecular N2—H1N2···O1 hydrogen bonds (Fig. 2, Table 1). The Cg1···Cg2 interaction of 3.6244 (12) Å; x, 5/2-y, 1/2+z, further stabilizes the crystal structure (Cg1 and Cg2 are centroids of benzene rings C8–C13 and C1–C6, respectively).

Related literature top

For the biological activity and chemical properties of Schiff base derivatives, see: Azam et al. (2007); Sauri et al. (2009). For a related structure, see: Yamin et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Compound (I) was synthesized by heating 1,3-diamino-4-chlorobenzene (0.3565 g, 2.5 mmol) with 5-bromo-2-hydroxyacetophenone (0.998 g, 5 mmol) in ethanol for 24 h. The solvent was then evaporated in-vacuo and the oily product was recrystallized from acetone to afford yellow single crystals. Yield 12%. Melting point 448-452 K.

Refinement top

The H1O1, H1N2 and H2N2 hydrogen atoms were located from a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 or 0.96 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(C). The rotating group model was applied for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability ellipsoids for non-H atoms. An intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. A view down the a axis of the unit cell of (I) showing molecules linked into one-dimensional chains along [010]. Intermolecular hydrogen bonds are shown as dashed lines.
(E)-2-[1-(3-Amino-4-chlorophenylimino)ethyl]-4-bromophenol top
Crystal data top
C14H12BrClN2OF(000) = 680
Mr = 339.62Dx = 1.671 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4343 reflections
a = 10.2469 (1) Åθ = 2.7–28.5°
b = 8.7672 (1) ŵ = 3.24 mm1
c = 15.7180 (2) ÅT = 296 K
β = 107.065 (1)°Block, yellow
V = 1349.88 (3) Å30.24 × 0.22 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3925 independent reflections
Radiation source: fine-focus sealed tube2420 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.509, Tmax = 0.726k = 129
14782 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0299P)2 + 0.2742P]
where P = (Fo2 + 2Fc2)/3
3925 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H12BrClN2OV = 1349.88 (3) Å3
Mr = 339.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2469 (1) ŵ = 3.24 mm1
b = 8.7672 (1) ÅT = 296 K
c = 15.7180 (2) Å0.24 × 0.22 × 0.11 mm
β = 107.065 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3925 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2420 reflections with I > 2σ(I)
Tmin = 0.509, Tmax = 0.726Rint = 0.029
14782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.28 e Å3
3925 reflectionsΔρmin = 0.27 e Å3
185 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.82408 (3)0.92283 (3)0.233924 (15)0.05982 (11)
Cl10.55171 (6)1.10458 (7)0.92352 (4)0.05352 (17)
O10.92270 (16)1.31628 (18)0.55948 (10)0.0499 (4)
N10.76555 (17)1.1434 (2)0.61354 (10)0.0391 (4)
N20.7688 (2)0.9064 (2)0.89348 (14)0.0503 (5)
C10.9012 (2)1.2211 (2)0.48934 (12)0.0361 (5)
C20.9613 (2)1.2577 (3)0.42328 (13)0.0415 (5)
H2A1.01681.34350.42980.050*
C30.9398 (2)1.1686 (3)0.34850 (13)0.0411 (5)
H3A0.97951.19440.30430.049*
C40.8588 (2)1.0407 (2)0.33972 (12)0.0376 (5)
C50.7997 (2)1.0004 (2)0.40428 (13)0.0377 (5)
H5A0.74620.91300.39710.045*
C60.81908 (19)1.0898 (2)0.48087 (12)0.0325 (4)
C70.75211 (19)1.0490 (2)0.54920 (13)0.0341 (5)
C80.7052 (2)1.1213 (2)0.68396 (12)0.0349 (5)
C90.7605 (2)1.0181 (2)0.75146 (13)0.0361 (5)
H9A0.83020.95340.74710.043*
C100.71348 (19)1.0095 (2)0.82588 (12)0.0343 (5)
C110.6078 (2)1.1068 (2)0.82884 (13)0.0353 (5)
C120.5507 (2)1.2078 (3)0.76140 (14)0.0457 (5)
H12A0.47901.27030.76480.055*
C130.6000 (2)1.2166 (3)0.68838 (14)0.0442 (5)
H13A0.56261.28570.64290.053*
C140.6714 (2)0.9042 (2)0.53932 (15)0.0497 (6)
H14A0.62920.89730.58620.075*
H14B0.73110.81860.54260.075*
H14C0.60220.90400.48280.075*
H1O10.875 (3)1.280 (3)0.5918 (17)0.090 (10)*
H1N20.845 (3)0.875 (3)0.8945 (15)0.056 (8)*
H2N20.760 (3)0.933 (3)0.9416 (18)0.068 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0789 (2)0.0630 (2)0.04600 (15)0.00123 (13)0.03142 (13)0.01291 (12)
Cl10.0612 (4)0.0630 (4)0.0472 (3)0.0015 (3)0.0328 (3)0.0020 (3)
O10.0632 (10)0.0497 (10)0.0423 (9)0.0224 (8)0.0241 (8)0.0097 (7)
N10.0511 (11)0.0378 (10)0.0321 (9)0.0088 (8)0.0180 (8)0.0014 (8)
N20.0585 (14)0.0534 (14)0.0435 (12)0.0162 (11)0.0222 (11)0.0160 (10)
C10.0383 (11)0.0381 (13)0.0314 (10)0.0005 (9)0.0095 (9)0.0032 (9)
C20.0408 (12)0.0428 (13)0.0425 (12)0.0045 (10)0.0149 (10)0.0046 (10)
C30.0418 (12)0.0469 (14)0.0400 (11)0.0060 (11)0.0206 (10)0.0106 (10)
C40.0426 (11)0.0396 (13)0.0320 (10)0.0090 (10)0.0131 (9)0.0022 (9)
C50.0435 (12)0.0327 (12)0.0391 (11)0.0000 (10)0.0157 (10)0.0005 (9)
C60.0348 (10)0.0327 (12)0.0306 (10)0.0014 (9)0.0106 (8)0.0037 (9)
C70.0378 (11)0.0323 (12)0.0328 (10)0.0004 (9)0.0113 (9)0.0033 (9)
C80.0420 (11)0.0335 (12)0.0303 (10)0.0072 (9)0.0123 (9)0.0034 (9)
C90.0398 (11)0.0340 (12)0.0381 (11)0.0030 (9)0.0169 (9)0.0008 (9)
C100.0388 (11)0.0318 (12)0.0317 (10)0.0037 (9)0.0094 (9)0.0002 (9)
C110.0401 (11)0.0370 (12)0.0329 (10)0.0029 (9)0.0173 (9)0.0036 (9)
C120.0457 (12)0.0461 (14)0.0489 (13)0.0087 (11)0.0195 (11)0.0025 (11)
C130.0499 (13)0.0445 (14)0.0377 (11)0.0061 (11)0.0121 (10)0.0082 (10)
C140.0631 (15)0.0461 (15)0.0480 (13)0.0175 (11)0.0288 (11)0.0101 (11)
Geometric parameters (Å, º) top
Br1—C41.900 (2)C5—C61.401 (3)
Cl1—C111.7458 (18)C5—H5A0.9300
O1—C11.348 (2)C6—C71.478 (2)
O1—H1O10.86 (3)C7—C141.498 (3)
N1—C71.282 (2)C8—C131.382 (3)
N1—C81.431 (2)C8—C91.383 (3)
N2—C101.384 (3)C9—C101.392 (2)
N2—H1N20.82 (3)C9—H9A0.9300
N2—H2N20.82 (3)C10—C111.390 (3)
C1—C21.392 (3)C11—C121.373 (3)
C1—C61.409 (3)C12—C131.385 (3)
C2—C31.374 (3)C12—H12A0.9300
C2—H2A0.9300C13—H13A0.9300
C3—C41.378 (3)C14—H14A0.9600
C3—H3A0.9300C14—H14B0.9600
C4—C51.372 (3)C14—H14C0.9600
C1—O1—H1O1105.6 (19)C6—C7—C14119.31 (17)
C7—N1—C8123.50 (17)C13—C8—C9120.47 (17)
C10—N2—H1N2114.0 (17)C13—C8—N1118.56 (18)
C10—N2—H2N2112.9 (18)C9—C8—N1120.61 (18)
H1N2—N2—H2N2116 (2)C8—C9—C10120.98 (18)
O1—C1—C2117.72 (19)C8—C9—H9A119.5
O1—C1—C6122.22 (17)C10—C9—H9A119.5
C2—C1—C6120.05 (19)N2—C10—C11121.52 (18)
C3—C2—C1120.8 (2)N2—C10—C9121.06 (19)
C3—C2—H2A119.6C11—C10—C9117.42 (18)
C1—C2—H2A119.6C12—C11—C10121.97 (17)
C2—C3—C4119.29 (18)C12—C11—Cl1119.54 (15)
C2—C3—H3A120.4C10—C11—Cl1118.44 (15)
C4—C3—H3A120.4C11—C12—C13119.95 (19)
C5—C4—C3121.26 (19)C11—C12—H12A120.0
C5—C4—Br1119.84 (16)C13—C12—H12A120.0
C3—C4—Br1118.87 (14)C8—C13—C12119.2 (2)
C4—C5—C6120.66 (19)C8—C13—H13A120.4
C4—C5—H5A119.7C12—C13—H13A120.4
C6—C5—H5A119.7C7—C14—H14A109.5
C5—C6—C1117.94 (17)C7—C14—H14B109.5
C5—C6—C7120.68 (18)H14A—C14—H14B109.5
C1—C6—C7121.36 (17)C7—C14—H14C109.5
N1—C7—C6116.84 (17)H14A—C14—H14C109.5
N1—C7—C14123.84 (17)H14B—C14—H14C109.5
O1—C1—C2—C3177.75 (18)C5—C6—C7—C144.6 (3)
C6—C1—C2—C31.2 (3)C1—C6—C7—C14177.06 (19)
C1—C2—C3—C40.8 (3)C7—N1—C8—C13110.9 (2)
C2—C3—C4—C50.2 (3)C7—N1—C8—C976.0 (3)
C2—C3—C4—Br1177.57 (15)C13—C8—C9—C101.2 (3)
C3—C4—C5—C60.6 (3)N1—C8—C9—C10171.82 (18)
Br1—C4—C5—C6177.08 (14)C8—C9—C10—N2180.0 (2)
C4—C5—C6—C10.2 (3)C8—C9—C10—C111.0 (3)
C4—C5—C6—C7178.20 (18)N2—C10—C11—C12178.9 (2)
O1—C1—C6—C5178.19 (18)C9—C10—C11—C120.2 (3)
C2—C1—C6—C50.7 (3)N2—C10—C11—Cl13.7 (3)
O1—C1—C6—C70.2 (3)C9—C10—C11—Cl1177.24 (15)
C2—C1—C6—C7179.09 (18)C10—C11—C12—C131.1 (3)
C8—N1—C7—C6179.02 (17)Cl1—C11—C12—C13176.27 (17)
C8—N1—C7—C140.2 (3)C9—C8—C13—C120.2 (3)
C5—C6—C7—N1174.25 (18)N1—C8—C13—C12172.91 (19)
C1—C6—C7—N14.1 (3)C11—C12—C13—C80.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.86 (3)1.74 (3)2.533 (2)151 (3)
N2—H1N2···O1i0.82 (3)2.33 (3)3.129 (3)163 (2)
Symmetry code: (i) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H12BrClN2O
Mr339.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.2469 (1), 8.7672 (1), 15.7180 (2)
β (°) 107.065 (1)
V3)1349.88 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.24
Crystal size (mm)0.24 × 0.22 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.509, 0.726
No. of measured, independent and
observed [I > 2σ(I)] reflections
14782, 3925, 2420
Rint0.029
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.077, 1.00
No. of reflections3925
No. of parameters185
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···N10.86 (3)1.74 (3)2.533 (2)151 (3)
N2—H1N2···O1i0.82 (3)2.33 (3)3.129 (3)163 (2)
Symmetry code: (i) x+2, y1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5523-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HB, SNAB and KK wish to thank both Universiti Teknologi MARA and Universiti Sains Malaysia (USM) for research facilities, and the Malaysian Ministry of Higher Education for the research grant FRGS UiTM 5/3/FST/(12/2008). HKF and CSY thank USM for the Research University Golden Goose grant (1001/PFIZIK/811012). CSY also thanks USM for the award of a USM Fellowship.

References

First citationAzam, F., Singh, S., Khokhra, S. L. & Prakash, O. (2007). J. Zhejiang Univ. Sci. B, 8, 446–452.  CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSauri, A. S. M., Kassim, K., Bahron, H., Yahya, M. Z. A. & Harun, M. K. (2009). Mater. Res. Innovations, 13, 305–308.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamin, B. M., Bakar, S. N. A., Kassim, K. & Bahron, H. (2009). Acta Cryst. E65, o2573.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds