organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[(3aRS,7aRS)-Perhydro­benz­imid­azole-1,3-di­yl)bis­­(methyl­ene)]diphenol

aDepartamento de Química, Universidad Nacional de Colombia, Bogotá, AA 14490, Colombia, and bInstitute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: ariverau@unal.edu.co

(Received 10 March 2010; accepted 16 March 2010; online 27 March 2010)

The molecular structure of the title compound, C21H26N2O2, shows two intra­molecular O—H⋯N hydrogen-bonding inter­actions. In the crystal structure, mol­ecular chains are formed along the c axis through weak C—H⋯O inter­actions. Neighbouring chains are weakly associated along the a axis via C—H⋯π inter­actions.

Related literature

For a related structure, see: Rivera et al. (2009[Rivera, A., Quiroga, D., Rios-Motta, J., Carda, J. & Peris, G. (2009). J. Chem. Crystallogr. 39, 827-830.]). For uses of di-Mannich bases, see Mitra et al. (2006[Mitra, A., Harvey, M. J., Proffitt, M. K., DePue, L. J., Parkin, S. & Atwood, D. A. (2006). J. Organomet. Chem. 69, 523-528.]); Elias et al. (1997[Elias, H., Stock, F. & Röhr, C. (1997). Acta Cryst. C53, 862-864.]).

[Scheme 1]

Experimental

Crystal data
  • C21H26N2O2

  • Mr = 338.5

  • Triclinic, [P \overline 1]

  • a = 5.5177 (1) Å

  • b = 12.0432 (4) Å

  • c = 14.3752 (4) Å

  • α = 69.705 (3)°

  • β = 89.341 (2)°

  • γ = 81.751 (2)°

  • V = 885.92 (5) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.65 mm−1

  • T = 120 K

  • 0.24 × 0.21 × 0.19 mm

Data collection
  • Oxford Diffraction Xcalibur, diffractometer with an Atlas (Gemini ultra Cu) detector

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.774, Tmax = 1.000

  • 11989 measured reflections

  • 3023 independent reflections

  • 2685 reflections with I > 3σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.118

  • S = 2.41

  • 3023 reflections

  • 232 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C3–C8 and C16–C21 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.85 (2) 1.97 (2) 2.7096 (14) 146 (2)
O2—H2O⋯N2 0.86 (2) 1.91 (2) 2.6894 (14) 150 (2)
C10—H10a⋯O1i 0.96 2.64 3.5666 (17) 163
C13—H13a⋯O2ii 0.96 2.63 3.5458 (17) 160
C10—H10bCg1iii 0.96 2.94 3.5885 (13) 126
C12—H12bCg2iv 0.96 2.93 3.7022 (16) 139
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+2, -y, -z; (iii) -x+2, -y, -z+1; (iv) -x+1, -y+1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Mannich bases are versatile synthetic intermediates and are used as model systems for the study of intramolecular hydrogen bonding and proton transfer (Mitra et al. 2006; Elias et al. 1997). The presence of these interactions is undoubtedly one of the essential factors contributing to their highly thermodynamic stability. Recently, we used (2R,7R,11S,16S)-1,8,10,17-tetraazapentacyclo[8.8.1.18,17. 02,7.011,16]icosane as precursor for a di-Mannich base (Rivera et al. 2009). The X-ray analysis showed the N lone pairs to be anti-axial and both N atoms to be sufficiently basic to form intramolecular hydrogen bonds. In continuation of our research program on the structure, properties, and reactivity of aminal cages (pre-formed Mannich reagents), we report here the synthesis and crystal structure of the title compound, (I).

Compound (I) features intramolecular hydrogen bonds O—H···N, Fig. 1. The bond lengths are normal and comparable to the corresponding values observed in the related structure of 2,2'-(3aR,7aR/3aS,7aS)-hexahydro-1H-benzo[d]imidazole-1,3(2H)-diyl)-bis(methylene)-bis(4-methyl-phenol) (Rivera et al. 2009).

The crystal packing (Fig 2) displays weak intermolecular C–H···O interactions (Table 1) that link pairs of enantiomers alternately to form a racemic chain along the c axis. Chains are linked along the a direction by C–H···π interactions (Table 1).

Related literature top

For a related structure, see: Rivera et al. (2009). For uses of di-Mannich bases, see Mitra et al. (2006); Elias et al. (1997).

Experimental top

A solution of (2R,7R,11S,16S)-1,8,10,17-tetraazapentacyclo[8.8.1.18,17. 02,7.011,16]icosane (276 mg, 1.00 mmol) in dioxane (3 ml) and water (4 ml), prepared beforehand following previously described procedures, was added dropwise into a dioxane solution (3 ml) containing two equivalents of phenol (188 mg, 2.00 mmol) in a two-necked round-bottomed flask. The mixture was refluxed for about 12 h. The solvent was evaporated under reduced pressure until a sticky residue appeared. The product was purified by chromatography on a silica column, and subjected to gradient elution with benzene:ethyl acetate (yield 21%, M.pt. = 413–414 K). Single crystals of racemic (I) were grown from a CHCl3 solution by slow evaporation of the solvent at room temperature over a period of about 2 weeks.

Refinement top

The C-bound H atoms were geometrically placed (C-H = 0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The positions of the hydroxyl-H atoms were refined with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atomic numbering scheme with atomic displacement ellipsoids drawn at the 50% probability level. The dashed lines indicates intramolecular O–H···N hydrogen bonds.
[Figure 2] Fig. 2. Packing diagram for (I) with intermolecular interactions drawn as dashed lines.
2,2'-[(3aRS,7aRS)-Perhydrobenzimidazole- 1,3-diyl)bis(methylene)]diphenol top
Crystal data top
C21H26N2O2Z = 2
Mr = 338.5F(000) = 364
Triclinic, P1Dx = 1.268 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 5.5177 (1) ÅCell parameters from 9142 reflections
b = 12.0432 (4) Åθ = 3.3–65.4°
c = 14.3752 (4) ŵ = 0.65 mm1
α = 69.705 (3)°T = 120 K
β = 89.341 (2)°Prism, colorless
γ = 81.751 (2)°0.24 × 0.21 × 0.19 mm
V = 885.92 (5) Å3
Data collection top
Oxford Diffraction Xcalibur,
diffractometer with an Atlas (Gemini ultra Cu) detector
3023 independent reflections
Radiation source: X-ray tube2685 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 10.3784 pixels mm-1θmax = 65.8°, θmin = 3.3°
Rotation method data acquisition using ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1313
Tmin = 0.774, Tmax = 1.000l = 1616
11989 measured reflections
Refinement top
Refinement on F298 constraints
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
S = 2.41(Δ/σ)max = 0.006
3023 reflectionsΔρmax = 0.25 e Å3
232 parametersΔρmin = 0.19 e Å3
0 restraints
Crystal data top
C21H26N2O2γ = 81.751 (2)°
Mr = 338.5V = 885.92 (5) Å3
Triclinic, P1Z = 2
a = 5.5177 (1) ÅCu Kα radiation
b = 12.0432 (4) ŵ = 0.65 mm1
c = 14.3752 (4) ÅT = 120 K
α = 69.705 (3)°0.24 × 0.21 × 0.19 mm
β = 89.341 (2)°
Data collection top
Oxford Diffraction Xcalibur,
diffractometer with an Atlas (Gemini ultra Cu) detector
3023 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2685 reflections with I > 3σ(I)
Tmin = 0.774, Tmax = 1.000Rint = 0.018
11989 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 2.41Δρmax = 0.25 e Å3
3023 reflectionsΔρmin = 0.19 e Å3
232 parameters
Special details top

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.55804 (17)0.14020 (9)0.44644 (7)0.0291 (4)
O20.83868 (17)0.18264 (9)0.03369 (7)0.0305 (4)
N10.79361 (18)0.08554 (9)0.29799 (7)0.0202 (4)
N20.62975 (19)0.10318 (10)0.14258 (7)0.0213 (4)
C10.6914 (2)0.17421 (12)0.20218 (9)0.0226 (5)
C20.9951 (2)0.12344 (12)0.33988 (9)0.0226 (5)
C30.9035 (2)0.23158 (11)0.36752 (9)0.0216 (4)
C40.6882 (2)0.23380 (12)0.42039 (9)0.0227 (4)
C50.6072 (2)0.33136 (12)0.44923 (9)0.0261 (5)
C60.7390 (2)0.42599 (13)0.42654 (10)0.0289 (5)
C70.9518 (2)0.42527 (13)0.37409 (10)0.0289 (5)
C81.0308 (2)0.32828 (12)0.34497 (10)0.0254 (5)
C90.8513 (2)0.02791 (11)0.27990 (9)0.0210 (4)
C100.8803 (2)0.14204 (12)0.36961 (9)0.0265 (5)
C110.9041 (3)0.24770 (13)0.33239 (10)0.0295 (5)
C120.6923 (3)0.23872 (12)0.26116 (10)0.0295 (5)
C130.6592 (2)0.11997 (12)0.17294 (10)0.0259 (5)
C140.6331 (2)0.01887 (11)0.21374 (9)0.0207 (4)
C150.4060 (2)0.15656 (12)0.07972 (9)0.0231 (5)
C160.4414 (2)0.27197 (12)0.00170 (9)0.0220 (4)
C170.6553 (2)0.27821 (12)0.05575 (9)0.0242 (5)
C180.6825 (3)0.38203 (13)0.13478 (10)0.0297 (5)
C190.4978 (3)0.47854 (13)0.16005 (10)0.0322 (5)
C200.2872 (3)0.47453 (13)0.10655 (10)0.0321 (5)
C210.2613 (2)0.37168 (13)0.02762 (10)0.0273 (5)
H1a0.5446920.220780.2130550.0271*
H1b0.8140390.2218180.1699480.0271*
H2a1.1195240.1424330.2920450.0271*
H2b1.0664630.0590260.3977760.0271*
H50.4594270.3329360.4849530.0313*
H60.6831260.4927260.4471910.0347*
H71.0429870.4911740.3582170.0346*
H81.1772550.3280040.3082880.0304*
H91.0103650.0354870.2530160.0252*
H10a0.7379450.1428070.4087350.0318*
H10b1.0259450.1472120.4076890.0318*
H11a0.9129410.3211130.3880140.0353*
H11b1.0563880.2525890.3000310.0353*
H12a0.5433030.2466190.2964770.0354*
H12b0.7209630.3042890.2370450.0354*
H13a0.8008810.1162920.1331910.031*
H13b0.5135860.1139080.1345040.031*
H140.4784130.0288840.2444250.0249*
H15a0.2739690.1720230.1196980.0277*
H15b0.3617550.101080.0507630.0277*
H180.8294520.3862960.1714790.0356*
H190.5153680.5493720.2154240.0386*
H200.1602160.5425340.1240220.0386*
H210.1158370.3692730.0099090.0328*
H1o0.604 (3)0.0973 (15)0.4118 (12)0.0349*
H2o0.810 (3)0.1344 (15)0.0240 (13)0.0366*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0304 (5)0.0306 (6)0.0309 (6)0.0103 (4)0.0112 (4)0.0146 (4)
O20.0248 (5)0.0374 (6)0.0250 (5)0.0010 (4)0.0063 (4)0.0072 (4)
N10.0204 (5)0.0221 (6)0.0178 (5)0.0029 (4)0.0004 (4)0.0065 (4)
N20.0215 (6)0.0241 (6)0.0173 (5)0.0028 (4)0.0008 (4)0.0061 (4)
C10.0236 (7)0.0238 (7)0.0200 (7)0.0034 (5)0.0002 (5)0.0069 (5)
C20.0198 (6)0.0279 (7)0.0216 (7)0.0042 (5)0.0002 (5)0.0101 (5)
C30.0204 (6)0.0270 (7)0.0161 (6)0.0012 (5)0.0029 (5)0.0067 (5)
C40.0230 (6)0.0269 (7)0.0177 (6)0.0045 (5)0.0006 (5)0.0068 (5)
C50.0239 (7)0.0317 (8)0.0231 (7)0.0014 (5)0.0020 (5)0.0112 (6)
C60.0321 (7)0.0271 (8)0.0282 (7)0.0006 (6)0.0014 (6)0.0124 (6)
C70.0305 (7)0.0278 (7)0.0294 (7)0.0085 (6)0.0003 (6)0.0098 (6)
C80.0215 (7)0.0304 (8)0.0239 (7)0.0042 (5)0.0012 (5)0.0089 (6)
C90.0195 (6)0.0251 (7)0.0198 (6)0.0033 (5)0.0027 (5)0.0097 (5)
C100.0292 (7)0.0266 (7)0.0214 (7)0.0021 (6)0.0025 (5)0.0061 (6)
C110.0333 (8)0.0239 (7)0.0285 (7)0.0024 (6)0.0004 (6)0.0066 (6)
C120.0320 (8)0.0258 (8)0.0321 (7)0.0041 (6)0.0000 (6)0.0118 (6)
C130.0254 (7)0.0292 (7)0.0245 (7)0.0025 (5)0.0020 (5)0.0119 (6)
C140.0193 (6)0.0239 (7)0.0188 (6)0.0034 (5)0.0033 (5)0.0071 (5)
C150.0197 (6)0.0295 (7)0.0186 (6)0.0031 (5)0.0003 (5)0.0068 (5)
C160.0225 (6)0.0276 (7)0.0160 (6)0.0050 (5)0.0022 (5)0.0073 (5)
C170.0226 (7)0.0315 (8)0.0197 (6)0.0043 (5)0.0012 (5)0.0103 (6)
C180.0279 (7)0.0399 (8)0.0220 (7)0.0132 (6)0.0034 (5)0.0086 (6)
C190.0403 (8)0.0296 (8)0.0245 (7)0.0136 (6)0.0028 (6)0.0034 (6)
C200.0354 (8)0.0282 (8)0.0297 (8)0.0025 (6)0.0045 (6)0.0069 (6)
C210.0245 (7)0.0331 (8)0.0241 (7)0.0029 (6)0.0008 (5)0.0104 (6)
Geometric parameters (Å, º) top
O1—C41.3640 (17)C9—H90.96
O1—H1o0.85 (2)C10—C111.531 (2)
O2—C171.3672 (15)C10—H10a0.96
O2—H2o0.860 (16)C10—H10b0.96
N1—C11.4766 (14)C11—C121.530 (2)
N1—C21.4691 (19)C11—H11a0.96
N1—C91.4682 (19)C11—H11b0.96
N2—C11.476 (2)C12—C131.5360 (17)
N2—C141.4686 (15)C12—H12a0.96
N2—C151.4657 (15)C12—H12b0.96
C1—H1a0.96C13—C141.513 (2)
C1—H1b0.96C13—H13a0.96
C2—C31.508 (2)C13—H13b0.96
C2—H2a0.96C14—H140.96
C2—H2b0.96C15—C161.5112 (17)
C3—C41.4045 (18)C15—H15a0.96
C3—C81.387 (2)C15—H15b0.96
C4—C51.391 (2)C16—C171.4021 (18)
C5—C61.382 (2)C16—C211.3873 (18)
C5—H50.96C17—C181.3932 (17)
C6—C71.388 (2)C18—C191.3774 (19)
C6—H60.96C18—H180.96
C7—C81.385 (2)C19—C201.383 (2)
C7—H70.96C19—H190.96
C8—H80.96C20—C211.3836 (18)
C9—C101.5132 (16)C20—H200.96
C9—C141.5110 (18)C21—H210.96
C4—O1—H1o108.2 (12)H10a—C10—H10b111.0115
C17—O2—H2o106.1 (11)C10—C11—C12112.84 (11)
C1—N1—C2113.14 (10)C10—C11—H11a109.4701
C1—N1—C9105.19 (10)C10—C11—H11b109.4716
C2—N1—C9116.16 (9)C12—C11—H11a109.4715
C1—N2—C14105.33 (9)C12—C11—H11b109.4714
C1—N2—C15113.32 (10)H11a—C11—H11b105.8786
C14—N2—C15116.36 (10)C11—C12—C13112.18 (12)
N1—C1—N2105.37 (10)C11—C12—H12a109.4714
N1—C1—H1a109.4708C11—C12—H12b109.4713
N1—C1—H1b109.4714C13—C12—H12a109.4711
N2—C1—H1a109.4714C13—C12—H12b109.4709
N2—C1—H1b109.4717H12a—C12—H12b106.6143
H1a—C1—H1b113.2791C12—C13—C14108.00 (11)
N1—C2—C3110.68 (10)C12—C13—H13a109.4714
N1—C2—H2a109.4709C12—C13—H13b109.4718
N1—C2—H2b109.4709C14—C13—H13a109.4704
C3—C2—H2a109.4716C14—C13—H13b109.4706
C3—C2—H2b109.4715H13a—C13—H13b110.8996
H2a—C2—H2b108.2321N2—C14—C9100.17 (10)
C2—C3—C4119.73 (12)N2—C14—C13117.53 (10)
C2—C3—C8121.68 (11)N2—C14—H14111.415
C4—C3—C8118.55 (13)C9—C14—C13111.83 (10)
O1—C4—C3121.18 (13)C9—C14—H14117.1568
O1—C4—C5118.71 (12)C13—C14—H1499.6523
C3—C4—C5120.10 (13)N2—C15—C16111.17 (11)
C4—C5—C6120.11 (13)N2—C15—H15a109.4717
C4—C5—H5119.9469N2—C15—H15b109.4711
C6—C5—H5119.9479C16—C15—H15a109.4714
C5—C6—C7120.49 (15)C16—C15—H15b109.4709
C5—C6—H6119.7554H15a—C15—H15b107.7171
C7—C6—H6119.7553C15—C16—C17119.99 (11)
C6—C7—C8119.18 (14)C15—C16—C21121.39 (11)
C6—C7—H7120.41C17—C16—C21118.57 (11)
C8—C7—H7120.4116O2—C17—C16121.12 (10)
C3—C8—C7121.58 (12)O2—C17—C18118.62 (11)
C3—C8—H8119.211C16—C17—C18120.25 (11)
C7—C8—H8119.2111C17—C18—C19119.75 (12)
N1—C9—C10117.23 (11)C17—C18—H18120.1267
N1—C9—C14100.32 (9)C19—C18—H18120.1261
N1—C9—H9111.4609C18—C19—C20120.74 (12)
C10—C9—C14111.72 (11)C18—C19—H19119.6301
C10—C9—H999.994C20—C19—H19119.6303
C14—C9—H9116.9901C19—C20—C21119.43 (12)
C9—C10—C11107.89 (11)C19—C20—H20120.2825
C9—C10—H10a109.4713C21—C20—H20120.2833
C9—C10—H10b109.4707C16—C21—C20121.24 (13)
C11—C10—H10a109.4714C16—C21—H21119.3796
C11—C10—H10b109.4712C20—C21—H21119.3801
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C3–C8 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.85 (2)1.97 (2)2.7096 (14)146 (2)
O2—H2O···N20.86 (2)1.91 (2)2.6894 (14)150 (2)
C10—H10a···O1i0.962.643.5666 (17)163
C13—H13a···O2ii0.962.633.5458 (17)160
C10—H10b···Cg1iii0.962.943.5885 (13)126
C12—H12b···Cg2iv0.962.933.7022 (16)139
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z; (iii) x+2, y, z+1; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H26N2O2
Mr338.5
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)5.5177 (1), 12.0432 (4), 14.3752 (4)
α, β, γ (°)69.705 (3), 89.341 (2), 81.751 (2)
V3)885.92 (5)
Z2
Radiation typeCu Kα
µ (mm1)0.65
Crystal size (mm)0.24 × 0.21 × 0.19
Data collection
DiffractometerOxford Diffraction Xcalibur,
diffractometer with an Atlas (Gemini ultra Cu) detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.774, 1.000
No. of measured, independent and
observed [I > 3σ(I)] reflections
11989, 3023, 2685
Rint0.018
(sin θ/λ)max1)0.592
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.118, 2.41
No. of reflections3023
No. of parameters232
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.19

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2006), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C3–C8 and C16–C21 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O···N10.847 (18)1.967 (17)2.7096 (14)145.8 (16)
O2—H2O···N20.860 (18)1.913 (17)2.6894 (14)149.5 (17)
C10—H10a···O1i0.962.643.5666 (17)163
C13—H13a···O2ii0.962.633.5458 (17)160
C10—H10b···Cg1iii0.962.943.5885 (13)126
C12—H12b···Cg2iv0.962.933.7022 (16)139
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z; (iii) x+2, y, z+1; (iv) x+1, y+1, z.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones Sede Bogotá (DIB) of the Universidad Nacional de Colombia for financial support of this work, as well as the Institutional research plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae project of the Academy of Sciences (ASCR).

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationElias, H., Stock, F. & Röhr, C. (1997). Acta Cryst. C53, 862–864.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMitra, A., Harvey, M. J., Proffitt, M. K., DePue, L. J., Parkin, S. & Atwood, D. A. (2006). J. Organomet. Chem. 69, 523–528.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Prague, Czech Republic.  Google Scholar
First citationRivera, A., Quiroga, D., Rios-Motta, J., Carda, J. & Peris, G. (2009). J. Chem. Crystallogr. 39, 827–830.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds