metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m443-m444

Poly[bis­­{3,3′-[(bi­phenyl-4,4′-di­yl)di­methyl­ene]diimidazol-1-ium} γ-octa­molybdate(VI)]

aSchool of Chemistry and Chemical Engineering, Daqing Normal University, Daqing 163712, People's Republic of China
*Correspondence e-mail: liuhsdqnu@yahoo.cn

(Received 28 February 2010; accepted 17 March 2010; online 24 March 2010)

In the title compound, {(C20H20N4)2[Mo8O26]}n, the asymmetric unit contains half of an [Mo8O26]4− anion and one 3,3′-[(biphenyl-4,4′-di­yl)dimethyl­ene]diimidazol-1-ium dication. In the anion, four distorted [MoO6] octa­hedra are connected via edge-sharing, forming an [Mo4O13]2− building block, composed of Mo—O(t), Mo—O(μ2), Mo—O(μ3) and Mo—O(μ4) units, with Mo—O distances ranging from 1.6858 (15) to 2.4785 (13) Å. The γ-type [Mo8O26]4− anion is completed by crystallographic inversion symmetry and is linked into an infinite chain along [100] by corner-sharing. The anionic chains and the cations are joined by N—H⋯O hydrogen bonds, generating layers extending parallel to (001).

Related literature

For backgroud to polyoxomolybdates, see: Zaworotko (1998[Zaworotko, M. J. (1998). Angew. Chem. Int. Ed. 37, 1211-1213.]); Hong & Do (1998[Hong, C. S. & Do, Y. (1998). Inorg. Chem. 37, 4470-4472.]); Carlucci et al. (2003[Carlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev. 246, 247-289.]); Moulton & Zaworotko (2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]). For a similar structure, see: Modec et al. (2003[Modec, B., Brenčič, J. V. & Zubieta, J. (2003). Inorg. Chem. Commun. 6, 506-512.]). For the synthesis of 3,3′-(p-biphenyl­enedimethyl­ene)diimidazole, see: Fei et al. (2000[Fei, B.-L., Sun, W.-Y., Zhang, Y.-A., Yu, K.-B. & Tang, W.-X. (2000). J. Chem. Soc. Dalton Trans. pp. 2345-2348.]).

[Scheme 1]

Experimental

Crystal data
  • (C20H20N4)2[Mo8O26]

  • Mr = 1816.32

  • Monoclinic, P 21 /n

  • a = 9.6460 (4) Å

  • b = 17.3370 (6) Å

  • c = 16.6620 (6) Å

  • β = 106.145 (1)°

  • V = 2676.54 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.90 mm−1

  • T = 293 K

  • 0.28 × 0.27 × 0.23 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.559, Tmax = 0.616

  • 16209 measured reflections

  • 6405 independent reflections

  • 5716 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.051

  • S = 1.03

  • 6405 reflections

  • 378 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.01 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Selected bond lengths (Å)

Mo3—O7 1.6929 (15)
Mo3—O8 1.7365 (14)
Mo3—O6 1.8705 (13)
Mo3—O9 1.9774 (13)
Mo3—O3 2.1723 (14)
Mo3—O9i 2.4785 (13)
Mo1—O1 1.6958 (16)
Mo1—O2 1.6996 (15)
Mo1—O13 1.8952 (13)
Mo1—O3 1.9789 (13)
Mo1—O9 2.2882 (14)
Mo1—O8i 2.4032 (14)
Mo2—O10 1.6858 (15)
Mo2—O11 1.7665 (15)
Mo2—O12 1.8428 (14)
Mo2—O13 2.0340 (14)
Mo2—O9 2.0869 (12)
Mo2—O6i 2.4210 (14)
Mo4—O5 1.6870 (16)
Mo4—O4 1.7163 (16)
Mo4—O12ii 1.9289 (14)
Mo4—O3 1.9958 (13)
Mo4—O6 2.1806 (14)
Mo4—O11i 2.2857 (15)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4iii 0.92 (3) 1.96 (3) 2.854 (4) 165 (3)
N4—H4N⋯O13iv 0.92 (3) 1.77 (2) 2.658 (3) 163 (3)
Symmetry codes: (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997)[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Crystal Impact, 2008[Crystal Impact (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Polyoxometalates of molybdenum are an interesting class of metal-oxido compounds. Recently, many organic-inorganic hybrids have been reported (Zaworotko, 1998; Hong & Do, 1998) because they possess unique architectures and their cooperative functional properties have attracted considerable attention (Carlucci et al., 2003; Moulton & Zaworotko, 2001). In this paper, we present the hydrothermal synthesis and crystal structure of the title compound, (C20H20N4)2[Mo8O26], (I), based on the protonated 3,3'-(p-biphenylenedimethylene)diimidazole ligand (hereafter L), and a γ-type [Mo8O26]4- POM anion.

In the structure of compound (I), the asymmetric unit contains half of a γ-type [Mo8O26]4- anion, which is completed by inversion symmetry, and one H2L2+ cation (Fig. 1). The four unique [MoO6] octahedra are considerably distorted. They are connected via edge-sharing to form the [Mo4O13]2- unit, which is further linked together by edge-sharing to give rise to γ-[Mo8O26]4- octamolybdate units. Four sets of Mo-O distances, corresponding to their function as Mo-O(t), Mo-O(µ2), Mo-O(µ3) and Mo-O(µ4) units, are observed and range from 1.6858 (15) Å to 2.4785 (13) Å. These distances are similar to those in comparable structures (Modec et al., 2003). The γ-octamolybdate units are finally linked together through sharing common vertices to form infinite chains extending along [100] (Fig. 2). These chains are linked through N—H···O hydrogen bonding to generate layers extending parallel to (001) (Fig. 3).

Related literature top

For backgroud to polyoxomolybdates, see: Zaworotko (1998); Hong & Do (1998); Carlucci et al. (2003); Moulton & Zaworotko (2001). For a similar structure, see: Modec et al. (2003). For the synthesis of 3,3'-(p-biphenylenedimethylene)diimidazole, see: Fei et al. (2000).

Experimental top

A mixture of (NH4)6Mo7O24.4H2O (0.12 g, 0.1 mmol), L (0.031 g, 0.2 mmol) (Fei et al., 2000) and H2O (10 ml) was adjusted with HCl (6M) to pH = 4-5. Then the mixture was placed in a 23 ml Teflon-lined stainless steel container. The container was heated to 423 K and held at that temperature for 72 h, and cooled to room temperature. Colorless crystals were collected in 67% yield.

Refinement top

All H atoms on C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å for aromatic C atoms and C—H = 0.97 Å for aliphatic C atoms, and Uiso(H) = 1.2Ueq and 1.5Ueq(C), respectively. H atoms of the protonated N atoms in the cation were located in a difference Fourier map and were refined freely.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A displacement ellipsoids view of the building units of (I), drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the [Mo8O26]n4n- chain.
[Figure 3] Fig. 3. View of the layer structure formed by N-H···O hydrogen bonds.
Poly[bis{3,3'-[(biphenyl-4,4'-diyl)dimethylene]diimidazol-1-ium} γ-octamolybdate(VI)] top
Crystal data top
(C20H20N4)2[Mo8O26]F(000) = 1760
Mr = 1816.32Dx = 2.254 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 139 reflections
a = 9.6460 (4) Åθ = 1.7–28.3°
b = 17.3370 (6) ŵ = 1.90 mm1
c = 16.6620 (6) ÅT = 293 K
β = 106.145 (1)°Block, colorless
V = 2676.54 (17) Å30.28 × 0.27 × 0.23 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
6405 independent reflections
Radiation source: fine-focus sealed tube5716 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 912
Tmin = 0.559, Tmax = 0.616k = 2323
16209 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0254P)2 + 0.027P]
where P = (Fo2 + 2Fc2)/3
6405 reflections(Δ/σ)max = 0.001
378 parametersΔρmax = 1.01 e Å3
2 restraintsΔρmin = 0.57 e Å3
Crystal data top
(C20H20N4)2[Mo8O26]V = 2676.54 (17) Å3
Mr = 1816.32Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.6460 (4) ŵ = 1.90 mm1
b = 17.3370 (6) ÅT = 293 K
c = 16.6620 (6) Å0.28 × 0.27 × 0.23 mm
β = 106.145 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
6405 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5716 reflections with I > 2σ(I)
Tmin = 0.559, Tmax = 0.616Rint = 0.020
16209 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0212 restraints
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.01 e Å3
6405 reflectionsΔρmin = 0.57 e Å3
378 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo30.589310 (17)0.411089 (9)0.498376 (10)0.02082 (5)
Mo10.363467 (17)0.472925 (10)0.320138 (10)0.02348 (5)
Mo20.172190 (17)0.433192 (10)0.449319 (11)0.02298 (5)
Mo40.773555 (17)0.457531 (10)0.370756 (11)0.02573 (5)
C80.1996 (3)0.51860 (14)0.97308 (16)0.0430 (6)
O110.20748 (15)0.42795 (8)0.55905 (9)0.0297 (3)
O70.56742 (16)0.31831 (8)0.46558 (10)0.0361 (4)
O80.60243 (15)0.40726 (8)0.60437 (9)0.0287 (3)
C140.4967 (3)0.33842 (16)1.08281 (18)0.0495 (7)
O90.39012 (13)0.45144 (8)0.45911 (8)0.0226 (3)
O20.34754 (16)0.38200 (9)0.28046 (10)0.0388 (4)
O40.74877 (17)0.51414 (10)0.28339 (10)0.0410 (4)
C70.1760 (3)0.57956 (18)1.02188 (17)0.0569 (8)
H70.22220.57991.07890.068*
O100.17148 (18)0.33876 (9)0.42508 (11)0.0420 (4)
O50.76131 (17)0.36631 (10)0.33422 (11)0.0441 (4)
C170.6025 (3)0.27601 (17)1.1218 (2)0.0643 (9)
H17A0.62990.24811.07810.077*
H17B0.68880.29951.15780.077*
O60.77906 (14)0.43579 (8)0.50051 (9)0.0251 (3)
C110.3006 (3)0.45522 (15)1.01032 (16)0.0420 (6)
O120.01976 (15)0.46101 (10)0.41738 (10)0.0375 (4)
O130.18052 (14)0.48333 (8)0.34039 (9)0.0264 (3)
O30.57176 (14)0.46661 (8)0.37908 (9)0.0253 (3)
N20.0262 (2)0.75613 (12)0.81224 (14)0.0502 (6)
C190.4540 (3)0.17163 (17)1.2659 (2)0.0614 (8)
H190.42470.16391.31390.074*
C180.4929 (3)0.15197 (14)1.14441 (19)0.0488 (7)
H180.49540.12931.09420.059*
C120.4210 (3)0.46984 (15)1.07717 (16)0.0471 (6)
H120.43710.51961.09850.057*
N30.5424 (2)0.22120 (11)1.17101 (14)0.0443 (5)
C100.0366 (3)0.57963 (16)0.85391 (17)0.0501 (7)
H100.01080.57900.79710.060*
C200.5186 (3)0.23459 (16)1.24635 (19)0.0596 (8)
H200.54260.27911.27840.071*
C60.0857 (3)0.63925 (18)0.98732 (18)0.0605 (8)
H60.07260.67961.02130.073*
N10.1007 (3)0.84206 (16)0.7726 (3)0.0811 (9)
C160.2814 (3)0.37990 (17)0.9806 (2)0.0592 (7)
H160.20190.36820.93600.071*
C20.0738 (3)0.81019 (17)0.8382 (2)0.0602 (8)
H20.11750.82330.89360.072*
C40.0864 (3)0.70583 (17)0.86535 (18)0.0559 (7)
H4A0.17760.68470.83220.067*
H4B0.10540.73630.91000.067*
C150.3770 (3)0.32231 (17)1.0156 (2)0.0640 (8)
H150.36190.27240.99440.077*
N40.4398 (2)0.12085 (13)1.20108 (16)0.0506 (6)
C30.0639 (4)0.7547 (2)0.7282 (2)0.0794 (10)
H30.13230.72250.69380.095*
C50.0136 (3)0.64072 (15)0.90269 (17)0.0473 (6)
O10.35190 (17)0.53203 (10)0.23743 (10)0.0406 (4)
C130.5162 (3)0.41255 (16)1.11222 (17)0.0496 (6)
H130.59570.42421.15690.059*
C90.1282 (3)0.52027 (15)0.88812 (17)0.0493 (6)
H90.14280.48050.85390.059*
C10.0152 (5)0.8082 (2)0.7031 (3)0.0932 (12)
H10.01200.81990.64820.112*
H4N0.396 (3)0.0737 (9)1.1971 (17)0.057 (8)*
H1N0.163 (3)0.8830 (14)0.777 (2)0.102 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo30.01444 (8)0.02311 (9)0.02444 (10)0.00012 (6)0.00463 (6)0.00029 (7)
Mo10.01472 (8)0.03481 (10)0.02030 (9)0.00007 (7)0.00384 (6)0.00334 (7)
Mo20.01459 (8)0.02982 (9)0.02530 (10)0.00497 (6)0.00681 (7)0.00595 (7)
Mo40.01425 (8)0.03941 (10)0.02425 (10)0.00371 (7)0.00657 (7)0.00845 (8)
C80.0415 (14)0.0504 (14)0.0407 (14)0.0023 (11)0.0170 (11)0.0041 (12)
O110.0254 (8)0.0355 (8)0.0298 (8)0.0068 (6)0.0105 (6)0.0017 (6)
O70.0346 (9)0.0276 (7)0.0442 (10)0.0007 (7)0.0079 (7)0.0045 (7)
O80.0253 (7)0.0331 (8)0.0274 (8)0.0014 (6)0.0068 (6)0.0033 (6)
C140.0369 (14)0.0525 (16)0.0620 (18)0.0001 (12)0.0186 (13)0.0083 (14)
O90.0146 (6)0.0288 (7)0.0237 (7)0.0016 (5)0.0045 (5)0.0018 (6)
O20.0276 (8)0.0468 (9)0.0410 (10)0.0002 (7)0.0080 (7)0.0174 (8)
O40.0357 (9)0.0605 (11)0.0289 (9)0.0051 (8)0.0127 (7)0.0036 (8)
C70.0601 (19)0.075 (2)0.0342 (15)0.0158 (15)0.0107 (13)0.0071 (14)
O100.0454 (10)0.0343 (8)0.0469 (11)0.0085 (8)0.0140 (8)0.0126 (8)
O50.0322 (9)0.0491 (10)0.0513 (11)0.0022 (7)0.0119 (8)0.0216 (8)
C170.0440 (17)0.0597 (18)0.092 (3)0.0050 (14)0.0239 (16)0.0152 (17)
O60.0139 (6)0.0326 (7)0.0282 (8)0.0001 (5)0.0047 (5)0.0022 (6)
C110.0411 (14)0.0490 (14)0.0395 (14)0.0016 (11)0.0175 (11)0.0023 (11)
O120.0154 (7)0.0637 (11)0.0346 (9)0.0039 (7)0.0088 (6)0.0116 (8)
O130.0152 (6)0.0377 (8)0.0248 (8)0.0013 (6)0.0034 (5)0.0035 (6)
O30.0149 (7)0.0379 (8)0.0235 (7)0.0012 (6)0.0061 (5)0.0010 (6)
N20.0476 (13)0.0443 (12)0.0503 (14)0.0066 (10)0.0002 (10)0.0195 (11)
C190.068 (2)0.0582 (18)0.059 (2)0.0014 (16)0.0190 (16)0.0012 (15)
C180.0382 (14)0.0418 (14)0.0654 (19)0.0008 (11)0.0128 (13)0.0155 (13)
C120.0548 (17)0.0480 (15)0.0405 (15)0.0017 (13)0.0166 (13)0.0030 (12)
N30.0352 (11)0.0356 (10)0.0589 (14)0.0023 (9)0.0079 (10)0.0045 (10)
C100.0451 (16)0.0588 (17)0.0380 (15)0.0015 (13)0.0023 (11)0.0092 (12)
C200.072 (2)0.0412 (14)0.062 (2)0.0015 (14)0.0122 (16)0.0134 (14)
C60.065 (2)0.071 (2)0.0432 (17)0.0190 (16)0.0125 (14)0.0144 (15)
N10.066 (2)0.0483 (16)0.135 (3)0.0127 (15)0.039 (2)0.0014 (19)
C160.0421 (16)0.0581 (18)0.069 (2)0.0050 (13)0.0012 (13)0.0070 (15)
C20.0354 (15)0.0547 (17)0.085 (2)0.0081 (13)0.0071 (15)0.0322 (17)
C40.0434 (16)0.0637 (18)0.0559 (18)0.0078 (13)0.0058 (13)0.0137 (15)
C150.0540 (19)0.0477 (16)0.084 (2)0.0041 (14)0.0095 (16)0.0063 (16)
N40.0356 (12)0.0392 (12)0.0733 (17)0.0051 (10)0.0089 (11)0.0091 (12)
C30.116 (3)0.059 (2)0.051 (2)0.000 (2)0.0034 (19)0.0105 (17)
C50.0365 (14)0.0552 (16)0.0483 (16)0.0029 (12)0.0084 (11)0.0095 (13)
O10.0363 (9)0.0583 (11)0.0261 (9)0.0010 (8)0.0067 (7)0.0061 (8)
C130.0428 (15)0.0604 (17)0.0438 (16)0.0044 (13)0.0091 (12)0.0008 (13)
C90.0518 (16)0.0482 (15)0.0462 (16)0.0018 (12)0.0107 (13)0.0136 (13)
C10.129 (4)0.078 (3)0.072 (3)0.014 (3)0.027 (3)0.007 (2)
Geometric parameters (Å, º) top
Mo3—O71.6929 (15)O6—Mo2i2.4210 (14)
Mo3—O81.7365 (14)C11—C121.390 (4)
Mo3—O61.8705 (13)C11—C161.391 (4)
Mo3—O91.9774 (13)O12—Mo4iii1.9289 (14)
Mo3—O32.1723 (14)N2—C21.328 (3)
Mo3—O9i2.4785 (13)N2—C31.346 (4)
Mo1—O11.6958 (16)N2—C41.472 (4)
Mo1—O21.6996 (15)C19—C201.341 (4)
Mo1—O131.8952 (13)C19—N41.370 (4)
Mo1—O31.9789 (13)C19—H190.9300
Mo1—O92.2882 (14)C18—N41.309 (4)
Mo1—O8i2.4032 (14)C18—N31.322 (3)
Mo2—O101.6858 (15)C18—H180.9300
Mo2—O111.7665 (15)C12—C131.369 (4)
Mo2—O121.8428 (14)C12—H120.9300
Mo2—O132.0340 (14)N3—C201.357 (3)
Mo2—O92.0869 (12)C10—C91.373 (4)
Mo2—O6i2.4210 (14)C10—C51.390 (4)
Mo4—O51.6870 (16)C10—H100.9300
Mo4—O41.7163 (16)C20—H200.9300
Mo4—O12ii1.9289 (14)C6—C51.388 (4)
Mo4—O31.9958 (13)C6—H60.9300
Mo4—O62.1806 (14)N1—C21.314 (4)
Mo4—O11i2.2857 (15)N1—C11.354 (5)
C8—C71.390 (3)N1—H1N0.92 (3)
C8—C91.392 (4)C16—C151.374 (4)
C8—C111.485 (4)C16—H160.9300
O11—Mo4i2.2857 (15)C2—H20.9300
O8—Mo1i2.4032 (14)C4—C51.503 (4)
C14—C131.370 (4)C4—H4A0.9700
C14—C151.396 (4)C4—H4B0.9700
C14—C171.505 (4)C15—H150.9300
O9—Mo3i2.4785 (13)N4—H4N0.92 (3)
C7—C61.372 (4)C3—C11.339 (5)
C7—H70.9300C3—H30.9300
C17—N31.475 (3)C13—H130.9300
C17—H17A0.9700C9—H90.9300
C17—H17B0.9700C1—H10.9300
O7—Mo3—O8105.02 (7)N3—C17—C14112.3 (2)
O7—Mo3—O6104.90 (7)N3—C17—H17A109.1
O8—Mo3—O6101.26 (6)C14—C17—H17A109.1
O7—Mo3—O9101.94 (7)N3—C17—H17B109.1
O8—Mo3—O998.01 (6)C14—C17—H17B109.1
O6—Mo3—O9141.35 (6)H17A—C17—H17B107.9
O7—Mo3—O398.90 (7)Mo3—O6—Mo4105.48 (6)
O8—Mo3—O3155.88 (6)Mo3—O6—Mo2i108.45 (6)
O6—Mo3—O375.10 (6)Mo4—O6—Mo2i97.41 (5)
O9—Mo3—O373.69 (5)C12—C11—C16117.1 (3)
O7—Mo3—O9i177.09 (6)C12—C11—C8120.3 (2)
O8—Mo3—O9i76.63 (6)C16—C11—C8122.6 (3)
O6—Mo3—O9i76.95 (5)Mo2—O12—Mo4iii162.00 (10)
O9—Mo3—O9i75.38 (5)Mo1—O13—Mo2112.83 (7)
O3—Mo3—O9i79.34 (5)Mo1—O3—Mo4147.69 (8)
O1—Mo1—O2105.42 (8)Mo1—O3—Mo3106.78 (6)
O1—Mo1—O13103.48 (7)Mo4—O3—Mo3101.50 (6)
O2—Mo1—O1399.76 (6)C2—N2—C3108.3 (3)
O1—Mo1—O3105.37 (7)C2—N2—C4126.5 (3)
O2—Mo1—O396.38 (7)C3—N2—C4125.3 (3)
O13—Mo1—O3141.63 (6)C20—C19—N4106.5 (3)
O1—Mo1—O9152.15 (7)C20—C19—H19126.8
O2—Mo1—O9102.43 (7)N4—C19—H19126.8
O13—Mo1—O971.54 (5)N4—C18—N3108.0 (2)
O3—Mo1—O971.09 (5)N4—C18—H18126.0
O1—Mo1—O8i82.62 (7)N3—C18—H18126.0
O2—Mo1—O8i171.74 (7)C13—C12—C11121.4 (2)
O13—Mo1—O8i79.82 (5)C13—C12—H12119.3
O3—Mo1—O8i79.38 (5)C11—C12—H12119.3
O9—Mo1—O8i69.54 (5)C18—N3—C20109.1 (2)
O10—Mo2—O11100.65 (8)C18—N3—C17124.0 (3)
O10—Mo2—O12104.37 (8)C20—N3—C17126.7 (2)
O11—Mo2—O12101.62 (7)C9—C10—C5121.2 (2)
O10—Mo2—O13101.52 (7)C9—C10—H10119.4
O11—Mo2—O13154.35 (6)C5—C10—H10119.4
O12—Mo2—O1385.20 (6)C19—C20—N3107.1 (3)
O10—Mo2—O995.90 (7)C19—C20—H20126.4
O11—Mo2—O991.54 (6)N3—C20—H20126.4
O12—Mo2—O9153.16 (7)C7—C6—C5121.4 (3)
O13—Mo2—O973.51 (5)C7—C6—H6119.3
O10—Mo2—O6i168.92 (7)C5—C6—H6119.3
O11—Mo2—O6i74.21 (6)C2—N1—C1108.3 (3)
O12—Mo2—O6i86.40 (6)C2—N1—H1N123 (3)
O13—Mo2—O6i81.67 (5)C1—N1—H1N129 (3)
O9—Mo2—O6i74.69 (5)C15—C16—C11121.6 (3)
O5—Mo4—O4104.52 (8)C15—C16—H16119.2
O5—Mo4—O12ii97.79 (7)C11—C16—H16119.2
O4—Mo4—O12ii102.02 (7)N1—C2—N2108.6 (3)
O5—Mo4—O397.31 (7)N1—C2—H2125.7
O4—Mo4—O396.05 (7)N2—C2—H2125.7
O12ii—Mo4—O3152.67 (6)N2—C4—C5112.3 (2)
O5—Mo4—O6100.12 (7)N2—C4—H4A109.2
O4—Mo4—O6154.02 (7)C5—C4—H4A109.2
O12ii—Mo4—O682.45 (6)N2—C4—H4B109.2
O3—Mo4—O672.55 (5)C5—C4—H4B109.2
O5—Mo4—O11i170.62 (7)H4A—C4—H4B107.9
O4—Mo4—O11i84.82 (7)C16—C15—C14120.2 (3)
O12ii—Mo4—O11i80.80 (6)C16—C15—H15119.9
O3—Mo4—O11i80.61 (5)C14—C15—H15119.9
O6—Mo4—O11i70.51 (5)C18—N4—C19109.3 (2)
C7—C8—C9117.6 (2)C18—N4—H4N125.6 (17)
C7—C8—C11120.9 (2)C19—N4—H4N125.0 (17)
C9—C8—C11121.5 (2)C1—C3—N2107.4 (3)
Mo2—O11—Mo4i116.73 (7)C1—C3—H3126.3
Mo3—O8—Mo1i117.38 (7)N2—C3—H3126.3
C13—C14—C15118.4 (3)C6—C5—C10117.6 (3)
C13—C14—C17120.7 (3)C6—C5—C4121.1 (2)
C15—C14—C17120.9 (3)C10—C5—C4121.3 (2)
Mo3—O9—Mo2146.85 (7)C12—C13—C14121.3 (3)
Mo3—O9—Mo1102.58 (5)C12—C13—H13119.4
Mo2—O9—Mo196.79 (5)C14—C13—H13119.4
Mo3—O9—Mo3i104.62 (5)C10—C9—C8121.2 (2)
Mo2—O9—Mo3i99.61 (5)C10—C9—H9119.4
Mo1—O9—Mo3i96.33 (5)C8—C9—H9119.4
C6—C7—C8121.1 (3)C3—C1—N1107.4 (4)
C6—C7—H7119.5C3—C1—H1126.3
C8—C7—H7119.5N1—C1—H1126.3
O10—Mo2—O11—Mo4i178.62 (8)O10—Mo2—O12—Mo4iii5.7 (3)
O12—Mo2—O11—Mo4i74.14 (8)O11—Mo2—O12—Mo4iii110.1 (3)
O13—Mo2—O11—Mo4i29.20 (17)O13—Mo2—O12—Mo4iii94.9 (3)
O9—Mo2—O11—Mo4i82.32 (7)O9—Mo2—O12—Mo4iii132.1 (3)
O6i—Mo2—O11—Mo4i8.70 (5)O6i—Mo2—O12—Mo4iii176.9 (3)
O7—Mo3—O8—Mo1i179.62 (7)O1—Mo1—O13—Mo2170.08 (8)
O6—Mo3—O8—Mo1i70.66 (8)O2—Mo1—O13—Mo281.34 (8)
O9—Mo3—O8—Mo1i75.66 (7)O3—Mo1—O13—Mo232.19 (13)
O3—Mo3—O8—Mo1i7.98 (18)O9—Mo1—O13—Mo218.61 (6)
O9i—Mo3—O8—Mo1i2.85 (6)O8i—Mo1—O13—Mo290.29 (7)
O7—Mo3—O9—Mo245.50 (14)O10—Mo2—O13—Mo172.56 (9)
O8—Mo3—O9—Mo261.79 (14)O11—Mo2—O13—Mo176.76 (15)
O6—Mo3—O9—Mo2178.76 (10)O12—Mo2—O13—Mo1176.27 (8)
O3—Mo3—O9—Mo2141.41 (14)O9—Mo2—O13—Mo120.25 (6)
O9i—Mo3—O9—Mo2135.65 (16)O6i—Mo2—O13—Mo196.67 (7)
O7—Mo3—O9—Mo178.78 (7)O1—Mo1—O3—Mo441.21 (16)
O8—Mo3—O9—Mo1173.93 (6)O2—Mo1—O3—Mo466.75 (15)
O6—Mo3—O9—Mo154.48 (11)O13—Mo1—O3—Mo4178.65 (11)
O3—Mo3—O9—Mo117.13 (5)O9—Mo1—O3—Mo4167.74 (16)
O9i—Mo3—O9—Mo1100.07 (6)O8i—Mo1—O3—Mo4120.42 (15)
O7—Mo3—O9—Mo3i178.85 (6)O1—Mo1—O3—Mo3168.78 (7)
O8—Mo3—O9—Mo3i73.85 (6)O2—Mo1—O3—Mo383.27 (8)
O6—Mo3—O9—Mo3i45.59 (11)O13—Mo1—O3—Mo331.33 (12)
O3—Mo3—O9—Mo3i82.95 (6)O9—Mo1—O3—Mo317.72 (5)
O9i—Mo3—O9—Mo3i0.0O8i—Mo1—O3—Mo389.56 (6)
O10—Mo2—O9—Mo340.83 (14)O5—Mo4—O3—Mo168.50 (15)
O11—Mo2—O9—Mo360.04 (13)O4—Mo4—O3—Mo137.03 (15)
O12—Mo2—O9—Mo3179.98 (11)O12ii—Mo4—O3—Mo1168.42 (12)
O13—Mo2—O9—Mo3141.13 (14)O6—Mo4—O3—Mo1166.86 (15)
O6i—Mo2—O9—Mo3133.21 (14)O11i—Mo4—O3—Mo1120.74 (15)
O10—Mo2—O9—Mo184.87 (7)O5—Mo4—O3—Mo382.27 (8)
O11—Mo2—O9—Mo1174.26 (6)O4—Mo4—O3—Mo3172.19 (7)
O12—Mo2—O9—Mo154.32 (15)O12ii—Mo4—O3—Mo340.81 (17)
O13—Mo2—O9—Mo115.43 (5)O6—Mo4—O3—Mo316.09 (5)
O6i—Mo2—O9—Mo1101.10 (6)O11i—Mo4—O3—Mo388.48 (6)
O10—Mo2—O9—Mo3i177.51 (7)O7—Mo3—O3—Mo179.61 (7)
O11—Mo2—O9—Mo3i76.64 (6)O8—Mo3—O3—Mo192.96 (14)
O12—Mo2—O9—Mo3i43.30 (15)O6—Mo3—O3—Mo1177.22 (7)
O13—Mo2—O9—Mo3i82.19 (6)O9—Mo3—O3—Mo120.31 (6)
O6i—Mo2—O9—Mo3i3.47 (4)O9i—Mo3—O3—Mo198.04 (6)
O1—Mo1—O9—Mo3106.35 (13)O7—Mo3—O3—Mo484.57 (7)
O2—Mo1—O9—Mo373.42 (7)O8—Mo3—O3—Mo4102.86 (14)
O13—Mo1—O9—Mo3169.71 (7)O6—Mo3—O3—Mo418.60 (6)
O3—Mo1—O9—Mo319.15 (6)O9—Mo3—O3—Mo4175.51 (7)
O8i—Mo1—O9—Mo3104.55 (6)O9i—Mo3—O3—Mo497.78 (6)
O1—Mo1—O9—Mo2100.72 (13)C16—C11—C12—C130.1 (4)
O2—Mo1—O9—Mo279.51 (7)C8—C11—C12—C13179.6 (2)
O13—Mo1—O9—Mo216.78 (5)N4—C18—N3—C200.6 (3)
O3—Mo1—O9—Mo2172.08 (7)N4—C18—N3—C17176.1 (2)
O8i—Mo1—O9—Mo2102.52 (6)C14—C17—N3—C18101.9 (3)
O1—Mo1—O9—Mo3i0.21 (15)C14—C17—N3—C2072.8 (4)
O2—Mo1—O9—Mo3i179.98 (6)N4—C19—C20—N30.1 (3)
O13—Mo1—O9—Mo3i83.73 (6)C18—N3—C20—C190.4 (3)
O3—Mo1—O9—Mo3i87.41 (5)C17—N3—C20—C19175.7 (3)
O8i—Mo1—O9—Mo3i2.01 (4)C8—C7—C6—C50.6 (5)
C9—C8—C7—C60.1 (4)C12—C11—C16—C150.1 (4)
C11—C8—C7—C6178.2 (3)C8—C11—C16—C15179.4 (3)
C13—C14—C17—N3108.2 (3)C1—N1—C2—N20.6 (4)
C15—C14—C17—N372.2 (4)C3—N2—C2—N10.7 (3)
O7—Mo3—O6—Mo478.17 (8)C4—N2—C2—N1179.3 (2)
O8—Mo3—O6—Mo4172.77 (6)C2—N2—C4—C578.1 (3)
O9—Mo3—O6—Mo454.32 (11)C3—N2—C4—C5101.9 (3)
O3—Mo3—O6—Mo417.26 (5)C11—C16—C15—C140.3 (5)
O9i—Mo3—O6—Mo499.52 (6)C13—C14—C15—C160.3 (4)
O7—Mo3—O6—Mo2i178.32 (7)C17—C14—C15—C16180.0 (3)
O8—Mo3—O6—Mo2i69.27 (7)N3—C18—N4—C190.6 (3)
O9—Mo3—O6—Mo2i49.18 (12)C20—C19—N4—C180.3 (3)
O3—Mo3—O6—Mo2i86.24 (6)C2—N2—C3—C10.5 (4)
O9i—Mo3—O6—Mo2i3.98 (5)C4—N2—C3—C1179.4 (3)
O5—Mo4—O6—Mo375.45 (8)C7—C6—C5—C100.4 (5)
O4—Mo4—O6—Mo385.95 (15)C7—C6—C5—C4179.3 (3)
O12ii—Mo4—O6—Mo3172.07 (8)C9—C10—C5—C60.4 (4)
O3—Mo4—O6—Mo319.10 (6)C9—C10—C5—C4179.9 (3)
O11i—Mo4—O6—Mo3105.07 (7)N2—C4—C5—C6108.8 (3)
O5—Mo4—O6—Mo2i173.01 (6)N2—C4—C5—C1071.5 (3)
O4—Mo4—O6—Mo2i25.59 (16)C11—C12—C13—C140.0 (4)
O12ii—Mo4—O6—Mo2i76.39 (6)C15—C14—C13—C120.2 (4)
O3—Mo4—O6—Mo2i92.44 (6)C17—C14—C13—C12179.9 (2)
O11i—Mo4—O6—Mo2i6.47 (4)C5—C10—C9—C80.9 (4)
C7—C8—C11—C1231.8 (4)C7—C8—C9—C100.7 (4)
C9—C8—C11—C12146.5 (3)C11—C8—C9—C10179.0 (2)
C7—C8—C11—C16148.8 (3)N2—C3—C1—N10.1 (4)
C9—C8—C11—C1632.9 (4)C2—N1—C1—C30.3 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4iv0.92 (3)1.96 (3)2.854 (4)165 (3)
N4—H4N···O13v0.92 (3)1.77 (2)2.658 (3)163 (3)
Symmetry codes: (iv) x1/2, y+3/2, z+1/2; (v) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula(C20H20N4)2[Mo8O26]
Mr1816.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.6460 (4), 17.3370 (6), 16.6620 (6)
β (°) 106.145 (1)
V3)2676.54 (17)
Z2
Radiation typeMo Kα
µ (mm1)1.90
Crystal size (mm)0.28 × 0.27 × 0.23
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.559, 0.616
No. of measured, independent and
observed [I > 2σ(I)] reflections
16209, 6405, 5716
Rint0.020
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.051, 1.03
No. of reflections6405
No. of parameters378
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.01, 0.57

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Crystal Impact, 2008).

Selected bond lengths (Å) top
Mo3—O71.6929 (15)Mo2—O101.6858 (15)
Mo3—O81.7365 (14)Mo2—O111.7665 (15)
Mo3—O61.8705 (13)Mo2—O121.8428 (14)
Mo3—O91.9774 (13)Mo2—O132.0340 (14)
Mo3—O32.1723 (14)Mo2—O92.0869 (12)
Mo3—O9i2.4785 (13)Mo2—O6i2.4210 (14)
Mo1—O11.6958 (16)Mo4—O51.6870 (16)
Mo1—O21.6996 (15)Mo4—O41.7163 (16)
Mo1—O131.8952 (13)Mo4—O12ii1.9289 (14)
Mo1—O31.9789 (13)Mo4—O31.9958 (13)
Mo1—O92.2882 (14)Mo4—O62.1806 (14)
Mo1—O8i2.4032 (14)Mo4—O11i2.2857 (15)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O4iii0.92 (3)1.96 (3)2.854 (4)165 (3)
N4—H4N···O13iv0.92 (3)1.77 (2)2.658 (3)163 (3)
Symmetry codes: (iii) x1/2, y+3/2, z+1/2; (iv) x+1/2, y1/2, z+3/2.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarlucci, L., Ciani, G. & Proserpio, D. M. (2003). Coord. Chem. Rev. 246, 247–289.  Web of Science CrossRef CAS Google Scholar
First citationCrystal Impact (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFei, B.-L., Sun, W.-Y., Zhang, Y.-A., Yu, K.-B. & Tang, W.-X. (2000). J. Chem. Soc. Dalton Trans. pp. 2345–2348.  Web of Science CSD CrossRef Google Scholar
First citationHong, C. S. & Do, Y. (1998). Inorg. Chem. 37, 4470–4472.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationModec, B., Brenčič, J. V. & Zubieta, J. (2003). Inorg. Chem. Commun. 6, 506–512.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaworotko, M. J. (1998). Angew. Chem. Int. Ed. 37, 1211–1213.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m443-m444
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds