metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m459-m460

catena-Poly[[(2-methyl­benzoato-κ2O,O′)sodium]-di-μ-aqua-κ4O:O′]

aDepartment of Chemistry, University of Sargodha, Sargodha 40100, Pakistan, and bInstitute of Nuclear Chemistry and Technology, ul. Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: drdanish62@gmail.com

(Received 11 March 2010; accepted 21 March 2010; online 27 March 2010)

In the title coordination polymer, [Na(C8H7O2)(H2O)2]n, the cation is chelated by the carboxyl­ate O atoms of the anion in a bidentate mode and is surrounded by the O atoms of four water mol­ecules. The coordination of the Na+ cation is distorted octa­hedral. The water mol­ecules bridge adjacent metal cations, forming polymeric layers parallel to (100). The structure is stabilized by an extensive network of O—H⋯O hydrogen bonds.

Related literature

Tin complexes with organic ligands have been studied intensively due to their biological activity, see, for example: Shahzadi et al. (2007[Shahzadi, S., Shahid, K. & Ali, S. (2007). Russ. J. Coord. Chem. 33, 403-411.]). For 2-methyl­benzoic and 4-methyl­benzoic acids as potent allergic sensitizers when applied to human skin, see: Emmet & Suskind (1973[Emmet, E. A. & Suskind, R. R. (1973). J. Investig. Dermitol. 61, 282-285.]), and as inhibitors of lettuce fruit germination, see: Reynolds (1978[Reynolds, T. (1978). Ann. Bot. 42, 419-427.]). Sodium 2-methyl­benzoate has been studied as a precursor in the synthesis of biologically active tin(IV) complexes. For the structure of a sodium complex with a 2-methyl-3,5-dinitro­benzoate ligand, see: Danish et al. (2010[Danish, M., Saleem, I., Ahmad, N., Raza, A. R., Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m137.]).

[Scheme 1]

Experimental

Crystal data
  • [Na(C8H7O2)(H2O)2]

  • Mr = 194.16

  • Monoclinic, P 21 /c

  • a = 16.145 (3) Å

  • b = 8.1155 (16) Å

  • c = 7.3986 (15) Å

  • β = 92.98 (3)°

  • V = 968.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.55 × 0.41 × 0.11 mm

Data collection
  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England]) Tmin = 0.952, Tmax = 0.991

  • 3057 measured reflections

  • 2845 independent reflections

  • 1919 reflections with I > 2σ(I)

  • Rint = 0.024

  • 3 standard reflections every 200 reflections intensity decay: 0.8%

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.141

  • S = 1.02

  • 2845 reflections

  • 151 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Selected bond lengths (Å)

Na1—O4 2.3599 (13)
Na1—O4i 2.3689 (13)
Na1—O1 2.4141 (13)
Na1—O3 2.4245 (13)
Na1—O3ii 2.5086 (13)
Na1—O2 2.5387 (14)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H42⋯O1iii 0.84 (3) 1.94 (3) 2.7582 (17) 163 (2)
O4—H41⋯O2iv 0.76 (3) 2.03 (3) 2.7874 (17) 171 (2)
O3—H31⋯O1v 0.88 (3) 1.97 (3) 2.7716 (16) 151 (2)
O3—H32⋯O2i 0.77 (3) 2.10 (3) 2.8265 (16) 158 (2)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y+1, -z+1; (v) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-methylbenzoic and 4-methylbenzoic acids were studied as potent allergic sensitizers when applied to human skin (Emmet & Suskind, 1973). They are also used for the inhibition of lettuce fruit germination (Reynolds, 1978). The title compound was isolated as an intermediate during synthesis of biologically active organotin carboxylates (Shahzadi et al., 2007).

In the polymeric structure of the title compound, [Na(C8H7O2)(H2O)2]n, each sodium ion is coordinated by the carboxylic O atoms of the bidentate anion and by four bridging water O atoms (Fig.1). The coordination geometry around the Na+ cation is distorted octahedral with the equatorial plane composed of the carboxylate atoms O1 and O2 and the symmetry-related water O4 and O4i atoms [r.m.s. is 0.0580 (2) Å]. Water O3 and O3ii atoms are at the apical positions. The resulting coordination differs from the one reported in the structure of the Na+ complex with the 2-methyl-3,5-dinitrobenzoate anion. Here the metal exhibits coordination number 7 (Danish et al., 2010). The 2-methylbenzoate ring in the title compound is planar with a r.m.s. of 0.0089 (2) Å; the carboxylic group C17/O1/O2 makes an dihedral angle of 37.1 (2)° with the aromatic ring. Na+ cations form sheets parallel to the (100) plane in which they are grouped into pairs (Fig. 2). In such a pair, Na+ cations are coordinated by ligands with their 2-methylbenzoate rings pointing in the same direction but twisted by an angle of 73.0 (2)° relative to each other. Water O atoms bridge in two directions: via O4 atoms along the b axis and via O3 atoms along the c axis. Water molecules act as donors and carboxylate O atoms as acceptors in a network of O—H··· O hydrogen bonds that consolidate the crystal structure. Geometrical parameters of the hydrogen bonding are listed in Table 2.

Related literature top

Tin complexes with organic ligands have been studied intensively due to their biological activity, see, for example: Shahzadi et al. (2007). For 2-methylbenzoic and 4-methylbenzoic acids as potent allergic sensitizers when applied to human skin, see: Emmet & Suskind (1973), and as inhibitors of lettuce fruit germination, see: Reynolds (1978). Sodium 2-methylbenzoate has been studied as a precursor in the synthesis of biologically active tin(IV) complexes. For the structure of a sodium complex with a 2-methyl-3,5-dinitrobenzoate ligand, see: Danish et al. (2010).

Experimental top

50 ml of an aqueous solution containing 0.0147 mmol of 2-methylbenzoic acid were added dropwise with continuous stirring at room trmperature to 50 ml of an aqueous solution of sodium bicarbonate (0.0147 mmol). The mixture was then refluxed for 3 hours, cooled to room temperature and concentrated under reduced pressure to afford a dry solid mass which was then purified by re-crystallization from a distilled water-ethanol (4:1) mixture to obtain single crystals.

Refinement top

Water H atoms were localized from Fourier maps and refined isotropically without constraints. H atoms attached to toluene-ring C atoms were positioned geometrically and refined with a riding model.

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A structural unit of (1) with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code: (I) x,-y+3/2,z-1;2; (II) -x,y-1/2,-z+1/2.
[Figure 2] Fig. 2. Packing diagram of the structure.
catena-Poly[[(2-methylbenzoato-κ2O,O')sodium]- di-µ-aqua-κ4O:O'] top
Crystal data top
[Na(C8H7O2)(H2O)2]F(000) = 408
Mr = 194.16Dx = 1.332 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 16.145 (3) Åθ = 6–15°
b = 8.1155 (16) ŵ = 0.14 mm1
c = 7.3986 (15) ÅT = 293 K
β = 92.98 (3)°Block, colourless
V = 968.1 (3) Å30.55 × 0.41 × 0.11 mm
Z = 4
Data collection top
Kuma KM-4 four-circle
diffractometer
1919 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 30.1°, θmin = 1.3°
profile data from ω/2θ scansh = 2222
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 011
Tmin = 0.952, Tmax = 0.991l = 100
3057 measured reflections3 standard reflections every 200 reflections
2845 independent reflections intensity decay: 0.8%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0889P)2 + 0.1369P]
where P = (Fo2 + 2Fc2)/3
2845 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
[Na(C8H7O2)(H2O)2]V = 968.1 (3) Å3
Mr = 194.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.145 (3) ŵ = 0.14 mm1
b = 8.1155 (16) ÅT = 293 K
c = 7.3986 (15) Å0.55 × 0.41 × 0.11 mm
β = 92.98 (3)°
Data collection top
Kuma KM-4 four-circle
diffractometer
1919 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.024
Tmin = 0.952, Tmax = 0.9913 standard reflections every 200 reflections
3057 measured reflections intensity decay: 0.8%
2845 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.44 e Å3
2845 reflectionsΔρmin = 0.21 e Å3
151 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.01791 (3)0.64831 (7)0.25611 (7)0.03320 (17)
O20.14852 (7)0.53347 (14)0.41532 (13)0.0386 (2)
C70.18004 (8)0.53264 (15)0.26404 (16)0.0273 (2)
C10.27247 (8)0.53757 (16)0.25234 (17)0.0305 (3)
C20.32656 (10)0.4527 (2)0.3718 (2)0.0425 (3)
C60.30354 (11)0.6271 (3)0.1107 (2)0.0492 (4)
C30.41092 (11)0.4583 (3)0.3414 (3)0.0562 (5)
C80.29779 (16)0.3518 (4)0.5275 (4)0.0852 (9)
H8A0.27740.42390.61810.128*
H8B0.34340.28840.57880.128*
H8C0.25420.27890.48480.128*
C50.38805 (13)0.6352 (3)0.0885 (4)0.0694 (6)
C40.44096 (12)0.5494 (3)0.2038 (4)0.0672 (6)
O10.13648 (6)0.53062 (13)0.11780 (13)0.0367 (2)
O30.08470 (7)0.91596 (13)0.25956 (15)0.0365 (2)
O40.05771 (7)0.74541 (15)0.49901 (14)0.0357 (2)
H320.1128 (15)0.918 (3)0.179 (4)0.055 (6)*
H310.1175 (16)0.921 (3)0.357 (4)0.069 (7)*
H410.0863 (15)0.676 (3)0.526 (3)0.057 (7)*
H420.0901 (14)0.819 (3)0.458 (3)0.056 (6)*
H50.2640 (13)0.693 (3)0.026 (3)0.056 (6)*
H20.4464 (15)0.395 (3)0.412 (3)0.060 (6)*
H40.4058 (17)0.705 (4)0.018 (4)0.092 (9)*
H30.495 (2)0.556 (4)0.179 (4)0.096 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0366 (3)0.0334 (3)0.0296 (3)0.0032 (2)0.0015 (2)0.0004 (2)
O20.0421 (5)0.0471 (6)0.0270 (4)0.0009 (4)0.0063 (4)0.0023 (4)
C70.0323 (6)0.0244 (5)0.0251 (5)0.0006 (4)0.0012 (4)0.0000 (4)
C10.0319 (6)0.0309 (6)0.0286 (6)0.0002 (5)0.0002 (5)0.0024 (5)
C20.0395 (7)0.0431 (8)0.0439 (8)0.0023 (6)0.0073 (6)0.0027 (6)
C60.0441 (8)0.0588 (10)0.0452 (9)0.0034 (7)0.0089 (7)0.0115 (7)
C30.0379 (8)0.0628 (12)0.0664 (12)0.0075 (7)0.0114 (8)0.0096 (9)
C80.0650 (13)0.106 (2)0.0834 (16)0.0098 (13)0.0112 (12)0.0597 (15)
C50.0497 (11)0.0876 (16)0.0730 (14)0.0130 (10)0.0234 (10)0.0141 (12)
C40.0341 (8)0.0854 (16)0.0830 (15)0.0045 (9)0.0118 (9)0.0171 (12)
O10.0374 (5)0.0440 (6)0.0279 (5)0.0005 (4)0.0045 (4)0.0024 (4)
O30.0474 (6)0.0369 (5)0.0253 (5)0.0008 (4)0.0018 (4)0.0001 (4)
O40.0415 (5)0.0336 (5)0.0320 (5)0.0002 (5)0.0009 (4)0.0016 (4)
Geometric parameters (Å, º) top
Na1—O42.3599 (13)C2—C81.506 (3)
Na1—O4i2.3689 (13)C6—C51.384 (3)
Na1—O12.4141 (13)C6—H51.02 (2)
Na1—O32.4245 (13)C3—C41.367 (4)
Na1—O3ii2.5086 (13)C3—H20.91 (3)
Na1—O22.5387 (14)C8—H8A0.9600
Na1—C72.7787 (14)C8—H8B0.9600
Na1—Na1i4.0508 (8)C8—H8C0.9600
Na1—Na1iii4.0508 (8)C5—C41.366 (4)
Na1—Na1ii4.0990 (8)C5—H41.02 (3)
Na1—Na1iv4.0991 (8)C4—H30.90 (3)
O2—C71.2534 (16)O3—Na1iv2.5087 (13)
C7—O11.2596 (16)O3—H320.77 (3)
C7—C11.4999 (18)O3—H310.88 (3)
C1—C61.390 (2)O4—Na1iii2.3689 (13)
C1—C21.392 (2)O4—H410.76 (3)
C2—C31.393 (3)O4—H420.84 (3)
O4—Na1—O4i102.97 (4)O2—Na1—Na1iv119.11 (3)
O4—Na1—O1155.22 (5)C7—Na1—Na1iv117.81 (3)
O4i—Na1—O1100.99 (4)Na1i—Na1—Na1iv65.37 (2)
O4—Na1—O386.57 (5)Na1iii—Na1—Na1iv67.05 (2)
O4i—Na1—O383.84 (5)Na1ii—Na1—Na1iv163.72 (3)
O1—Na1—O389.82 (4)C7—O2—Na187.34 (8)
O4—Na1—O3ii85.39 (5)O2—C7—O1122.18 (12)
O4i—Na1—O3ii85.70 (5)O2—C7—C1120.18 (11)
O1—Na1—O3ii102.67 (4)O1—C7—C1117.62 (12)
O3—Na1—O3ii165.05 (4)O2—C7—Na165.88 (8)
O4—Na1—O2102.67 (5)O1—C7—Na160.19 (7)
O4i—Na1—O2152.54 (4)C1—C7—Na1158.26 (9)
O1—Na1—O252.67 (4)C6—C1—C2119.88 (15)
O3—Na1—O288.04 (4)C6—C1—C7117.16 (13)
O3ii—Na1—O2106.03 (4)C2—C1—C7122.92 (13)
O4—Na1—C7128.38 (5)C1—C2—C3117.90 (16)
O4i—Na1—C7125.85 (5)C1—C2—C8123.11 (16)
O1—Na1—C726.92 (4)C3—C2—C8118.97 (17)
O3—Na1—C783.36 (4)C5—C6—C1120.70 (18)
O3ii—Na1—C7111.48 (4)C5—C6—H5119.4 (12)
O2—Na1—C726.78 (3)C1—C6—H5119.8 (12)
O4—Na1—Na1i125.73 (4)C4—C3—C2121.71 (18)
O4i—Na1—Na1i30.99 (3)C4—C3—H2119.7 (15)
O1—Na1—Na1i74.72 (3)C2—C3—H2118.5 (15)
O3—Na1—Na1i67.88 (3)C2—C8—H8A109.5
O3ii—Na1—Na1i107.18 (3)C2—C8—H8B109.5
O2—Na1—Na1i122.27 (3)H8A—C8—H8B109.5
C7—Na1—Na1i96.45 (4)C2—C8—H8C109.5
O4—Na1—Na1iii31.13 (3)H8A—C8—H8C109.5
O4i—Na1—Na1iii124.09 (4)H8B—C8—H8C109.5
O1—Na1—Na1iii125.87 (3)C4—C5—C6119.3 (2)
O3—Na1—Na1iii69.30 (4)C4—C5—H4124.9 (16)
O3ii—Na1—Na1iii108.49 (3)C6—C5—H4115.8 (16)
O2—Na1—Na1iii76.42 (3)C5—C4—C3120.39 (17)
C7—Na1—Na1iii99.38 (4)C5—C4—H3115 (2)
Na1i—Na1—Na1iii131.91 (3)C3—C4—H3125 (2)
O4—Na1—Na1ii105.63 (4)C7—O1—Na192.89 (8)
O4i—Na1—Na1ii106.05 (4)Na1—O3—Na1iv112.37 (5)
O1—Na1—Na1ii73.32 (3)Na1—O3—H32107.0 (18)
O3—Na1—Na1ii161.66 (4)Na1iv—O3—H32111.3 (18)
O3ii—Na1—Na1ii33.16 (3)Na1—O3—H31107.4 (17)
O2—Na1—Na1ii76.09 (3)Na1iv—O3—H31111.9 (17)
C7—Na1—Na1ii78.33 (3)H32—O3—H31106 (2)
Na1i—Na1—Na1ii112.95 (2)Na1—O4—Na1iii117.88 (5)
Na1iii—Na1—Na1ii114.63 (2)Na1—O4—H41107.1 (18)
O4—Na1—Na1iv66.94 (3)Na1iii—O4—H41110.8 (17)
O4i—Na1—Na1iv63.62 (3)Na1—O4—H42107.3 (15)
O1—Na1—Na1iv119.76 (4)Na1iii—O4—H42108.5 (16)
O3—Na1—Na1iv34.47 (3)H41—O4—H42104 (2)
O3ii—Na1—Na1iv130.62 (4)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y1/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H42···O1iv0.84 (3)1.94 (3)2.7582 (17)163 (2)
O4—H41···O2v0.76 (3)2.03 (3)2.7874 (17)171 (2)
O3—H31···O1iii0.88 (3)1.97 (3)2.7716 (16)151 (2)
O3—H32···O2i0.77 (3)2.10 (3)2.8265 (16)158 (2)
Symmetry codes: (i) x, y+3/2, z1/2; (iii) x, y+3/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Na(C8H7O2)(H2O)2]
Mr194.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.145 (3), 8.1155 (16), 7.3986 (15)
β (°) 92.98 (3)
V3)968.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.55 × 0.41 × 0.11
Data collection
DiffractometerKuma KM-4 four-circle
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.952, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
3057, 2845, 1919
Rint0.024
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.141, 1.02
No. of reflections2845
No. of parameters151
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.21

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Na1—O42.3599 (13)Na1—O32.4245 (13)
Na1—O4i2.3689 (13)Na1—O3ii2.5086 (13)
Na1—O12.4141 (13)Na1—O22.5387 (14)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H42···O1iii0.84 (3)1.94 (3)2.7582 (17)163 (2)
O4—H41···O2iv0.76 (3)2.03 (3)2.7874 (17)171 (2)
O3—H31···O1v0.88 (3)1.97 (3)2.7716 (16)151 (2)
O3—H32···O2i0.77 (3)2.10 (3)2.8265 (16)158 (2)
Symmetry codes: (i) x, y+3/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+1, z+1; (v) x, y+3/2, z+1/2.
 

Acknowledgements

MD acknowledges the Australian Government for the award of an Endeavour Post Doctoral Fellowship for the year 2009–2010.

References

First citationDanish, M., Saleem, I., Ahmad, N., Raza, A. R., Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m137.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEmmet, E. A. & Suskind, R. R. (1973). J. Investig. Dermitol. 61, 282–285.  CrossRef Web of Science Google Scholar
First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England  Google Scholar
First citationReynolds, T. (1978). Ann. Bot. 42, 419–427.  CAS Google Scholar
First citationShahzadi, S., Shahid, K. & Ali, S. (2007). Russ. J. Coord. Chem. 33, 403–411.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m459-m460
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds