organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o846-o847

Ethyl 4-(2-hy­droxy­ethyl­amino)-3-nitro­benzoate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bKulliyyah of Science, International Islamic University Malaysia (IIUM), Jalan Istana, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 25 February 2010; accepted 3 March 2010; online 17 March 2010)

In the title compound, C11H14N2O5, the mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond, which generates an S(6) ring motif. The nitro group is twisted slightly from the attached benzene ring, forming a dihedral angle of 5.2 (2)°. In the crystal packing, inter­molecular O—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. The crystal studied was a non-merohedral twin, the refined ratio of the twin components being 0.264 (2):0.736 (2).

Related literature

For background to benzimidazoles, see: Mayer et al. (1998[Mayer, J. P., Lewis, G. S., McGee, C. & Bankaitis-Davis, D. (1998). Tetrahedron Lett. 39, 6655-6658.]); Brouillette et al. (1999[Brouillette, J. W., Atigadda, V. R., Luo, M., Air, G. M., Babu, Y. S. & Bantia, S. (1999). Bioorg. Med. Chem. Lett. 9, 1901-1906.]); Williams et al. (1995[Williams, M., Bischofberger, N., Swaminathan, S. & Kim, C. U. (1995). Bioorg. Med. Chem. Lett. 5, 2251-2254.]); Wright (1951[Wright, J. B. (1951). Chem. Rev. 48, 397-541.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Narendra Babu, Abdul Rahim, Abd Hamid et al. (2009[Narendra Babu, S. N., Abdul Rahim, A. S., Abd Hamid, S., Quah, C. K. & Fun, H.-K. (2009). Acta Cryst. E65, o1079.]); Narendra Babu, Abdul Rahim, Osman et al. (2009[Narendra Babu, S. N., Abdul Rahim, A. S., Osman, H., Quah, C. K. & Fun, H.-K. (2009). Acta Cryst. E65, o1566-o1567.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N2O5

  • Mr = 254.24

  • Monoclinic, P 21 /c

  • a = 10.6422 (6) Å

  • b = 14.9954 (9) Å

  • c = 7.1975 (4) Å

  • β = 99.607 (2)°

  • V = 1132.50 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.43 × 0.13 × 0.03 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 209[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]0) Tmin = 0.951, Tmax = 0.997

  • 8457 measured reflections

  • 2587 independent reflections

  • 2026 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.129

  • S = 1.04

  • 2587 reflections

  • 173 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2 0.84 (3) 1.99 (3) 2.642 (2) 134 (2)
O5—H5B⋯O3i 0.83 (3) 2.02 (3) 2.851 (2) 177 (3)
C8—H8A⋯O5ii 0.97 2.51 3.271 (3) 135
C10—H10A⋯O5iii 0.97 2.54 3.267 (3) 132
C10—H10B⋯O1iv 0.97 2.43 3.168 (3) 133
C11—H11A⋯O2v 0.97 2.59 3.403 (3) 142
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzimidazoles serve as a common scaffold used worldwide for various successful drugs (Mayer et al., 1998). Construction of pharmacologically important benzimidazoles could be accessed via nitrobenzoic acid precursors (Brouillette et al., 1999; Williams et al., 1995; Wright, 1951). The title compound was obtained as an intermediate in the synthesis of benzimidazole derivatives; we present here its crystal structure.

In the title compound (Fig. 1), the molecular structure is stabilized by an intramolecular N2—H2A···O2 hydrogen bond which generates an S(6) ring motif (Bernstein et al., 1995). The nitro group is slightly twisted away from the benzene ring, the dihedral angle between N1/O1/O2/C2 and C1–C6 being 5.2 (2)°. The bond lengths (Allen et al., 1987) and angles in the molecule are within normal ranges and are similiar to those in other related structures (Narendra Babu, Abdul Rahim, Abd Hamid et al., 2009; Narendra Babu, Abdul Rahim, Osman et al., 2009).

In the crystal packing (Fig. 2), intermolecular O5—H5B···O3, C8—H8A···O5, C10—H10A···O5, C10—H10B···O1 and C11—H11A···O2 hydrogen bonds (Table 1) link the molecules into a three-dimensional network.

Related literature top

For background to benzimidazoles, see: Mayer et al. (1998); Brouillette et al. (1999); Williams et al. (1995); Wright (1951). For reference bond-length data, see: Allen et al. (1987). For related structures, see: Narendra Babu, Abdul Rahim, Abd Hamid et al. (2009); Narendra Babu, Abdul Rahim, Osman et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The synthesis of the title compound was performed by the dropwise addition of N,N-diisopropyl ethylamine (1.1 mmol) to a stirred solution of ethyl 4-fluoro-3-nitrobenzoate (1.0 mmol) in dry dichloromethane (10.0 ml), followed by ethanolamine (1.1 mmol). The reaction mixture was left stirring overnight at room temperature under an inert atmosphere. Upon completion, the reaction mixture was washed with 10% Na2CO3 (3 x 10.0 ml). The combined organic fractions were dried over MgSO4 and evaporated in vacuo. Recrystallisation with hot hexane gave the title compound as bright yellow crystals, which were found to be suitable for characterisation by X-ray crystallography.

Refinement top

H2A and H5B were located in a difference Fourier map and were refined freely [N—H = 0.84 (3) Å; O—H = 0.83 (3) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93 to 0.97 Å] and were refined using a riding model, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms. A rotating group model was applied to the methyl group. The crystal studied was a non-merohedral twin, the refined ratio of the twin components being 0.264 (2):0.736 (2).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius. The dashed line indicates an intramolecular hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
Ethyl 4-(2-hydroxyethylamino)-3-nitrobenzoate top
Crystal data top
C11H14N2O5F(000) = 536
Mr = 254.24Dx = 1.491 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1880 reflections
a = 10.6422 (6) Åθ = 2.4–28.1°
b = 14.9954 (9) ŵ = 0.12 mm1
c = 7.1975 (4) ÅT = 100 K
β = 99.607 (2)°Needle, yellow
V = 1132.50 (11) Å30.43 × 0.13 × 0.03 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2587 independent reflections
Radiation source: fine-focus sealed tube2026 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2090)
h = 1313
Tmin = 0.951, Tmax = 0.997k = 1919
8457 measured reflectionsl = 89
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.3204P]
where P = (Fo2 + 2Fc2)/3
2587 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C11H14N2O5V = 1132.50 (11) Å3
Mr = 254.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6422 (6) ŵ = 0.12 mm1
b = 14.9954 (9) ÅT = 100 K
c = 7.1975 (4) Å0.43 × 0.13 × 0.03 mm
β = 99.607 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2587 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2090)
2026 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.997Rint = 0.050
8457 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.50 e Å3
2587 reflectionsΔρmin = 0.31 e Å3
173 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38669 (15)0.04338 (11)1.1300 (3)0.0285 (4)
O20.57298 (13)0.09227 (10)1.2508 (2)0.0193 (4)
O30.04479 (14)0.22764 (10)0.8325 (2)0.0194 (4)
O40.07343 (13)0.37665 (10)0.8413 (2)0.0170 (4)
O50.82105 (15)0.33071 (11)1.0883 (2)0.0192 (4)
N10.46108 (17)0.10564 (12)1.1729 (3)0.0157 (4)
N20.61527 (17)0.26565 (12)1.2825 (3)0.0147 (4)
C10.29266 (19)0.20462 (14)1.0362 (3)0.0141 (5)
H1A0.24450.15390.99980.017*
C20.4166 (2)0.19539 (14)1.1327 (3)0.0135 (4)
C30.49466 (19)0.27115 (14)1.1919 (3)0.0135 (4)
C40.43542 (19)0.35571 (14)1.1508 (3)0.0148 (5)
H4A0.48110.40711.19010.018*
C50.3135 (2)0.36374 (14)1.0555 (3)0.0148 (5)
H5A0.27840.42021.03080.018*
C60.2402 (2)0.28743 (14)0.9938 (3)0.0150 (5)
C70.11002 (19)0.29283 (14)0.8828 (3)0.0148 (5)
C80.05110 (19)0.38757 (14)0.7226 (3)0.0168 (5)
H8A0.11430.35170.77090.020*
H8B0.04730.36850.59490.020*
C90.0866 (2)0.48440 (16)0.7242 (4)0.0254 (6)
H9A0.16950.49290.65010.038*
H9B0.02510.51920.67220.038*
H9C0.08790.50310.85150.038*
C100.69687 (19)0.34151 (14)1.3465 (3)0.0142 (4)
H10A0.76730.32101.44000.017*
H10B0.64840.38411.40730.017*
C110.75012 (19)0.38863 (14)1.1886 (3)0.0157 (5)
H11A0.68010.41411.10110.019*
H11B0.80470.43721.24190.019*
H2A0.642 (2)0.2141 (18)1.310 (4)0.021 (7)*
H5B0.888 (3)0.3148 (18)1.156 (4)0.028 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0224 (8)0.0119 (8)0.0480 (12)0.0046 (7)0.0035 (8)0.0003 (8)
O20.0169 (8)0.0143 (8)0.0252 (9)0.0027 (6)0.0004 (7)0.0010 (7)
O30.0145 (7)0.0177 (8)0.0243 (9)0.0040 (6)0.0011 (7)0.0005 (7)
O40.0118 (7)0.0168 (8)0.0207 (9)0.0003 (6)0.0024 (6)0.0005 (7)
O50.0149 (8)0.0216 (9)0.0204 (9)0.0025 (6)0.0012 (7)0.0020 (7)
N10.0146 (9)0.0129 (9)0.0192 (10)0.0015 (7)0.0018 (7)0.0009 (8)
N20.0116 (8)0.0115 (9)0.0201 (10)0.0007 (7)0.0002 (8)0.0017 (8)
C10.0153 (11)0.0145 (10)0.0130 (11)0.0038 (8)0.0036 (8)0.0026 (9)
C20.0151 (10)0.0119 (10)0.0144 (11)0.0002 (8)0.0051 (8)0.0017 (8)
C30.0145 (10)0.0142 (11)0.0118 (11)0.0018 (8)0.0029 (8)0.0001 (8)
C40.0135 (10)0.0123 (10)0.0188 (12)0.0012 (8)0.0030 (8)0.0016 (9)
C50.0169 (10)0.0128 (10)0.0147 (11)0.0014 (8)0.0027 (8)0.0010 (9)
C60.0132 (10)0.0165 (11)0.0156 (11)0.0003 (8)0.0030 (9)0.0013 (9)
C70.0148 (10)0.0159 (11)0.0144 (11)0.0004 (8)0.0045 (9)0.0007 (9)
C80.0116 (10)0.0203 (11)0.0161 (11)0.0004 (8)0.0045 (9)0.0015 (9)
C90.0198 (11)0.0226 (13)0.0301 (14)0.0053 (9)0.0069 (10)0.0019 (11)
C100.0116 (9)0.0147 (10)0.0148 (11)0.0009 (8)0.0017 (8)0.0004 (9)
C110.0127 (10)0.0128 (10)0.0208 (11)0.0013 (8)0.0005 (9)0.0004 (9)
Geometric parameters (Å, º) top
O1—N11.230 (2)C4—C51.368 (3)
O2—N11.245 (2)C4—H4A0.9300
O3—C71.218 (3)C5—C61.414 (3)
O4—C71.335 (3)C5—H5A0.9300
O4—C81.461 (2)C6—C71.482 (3)
O5—C111.424 (3)C8—C91.501 (3)
O5—H5B0.83 (3)C8—H8A0.9700
N1—C21.440 (3)C8—H8B0.9700
N2—C31.342 (3)C9—H9A0.9600
N2—C101.459 (3)C9—H9B0.9600
N2—H2A0.84 (3)C9—H9C0.9600
C1—C61.375 (3)C10—C111.526 (3)
C1—C21.391 (3)C10—H10A0.9700
C1—H1A0.9300C10—H10B0.9700
C2—C31.430 (3)C11—H11A0.9700
C3—C41.425 (3)C11—H11B0.9700
C7—O4—C8116.01 (16)O3—C7—C6123.46 (19)
C11—O5—H5B110 (2)O4—C7—C6112.56 (18)
O1—N1—O2121.21 (17)O4—C8—C9107.99 (17)
O1—N1—C2118.86 (17)O4—C8—H8A110.1
O2—N1—C2119.92 (17)C9—C8—H8A110.1
C3—N2—C10125.21 (19)O4—C8—H8B110.1
C3—N2—H2A115.5 (18)C9—C8—H8B110.1
C10—N2—H2A119.1 (18)H8A—C8—H8B108.4
C6—C1—C2121.12 (19)C8—C9—H9A109.5
C6—C1—H1A119.4C8—C9—H9B109.5
C2—C1—H1A119.4H9A—C9—H9B109.5
C1—C2—C3121.68 (19)C8—C9—H9C109.5
C1—C2—N1116.49 (18)H9A—C9—H9C109.5
C3—C2—N1121.82 (19)H9B—C9—H9C109.5
N2—C3—C4120.65 (19)N2—C10—C11113.65 (18)
N2—C3—C2123.9 (2)N2—C10—H10A108.8
C4—C3—C2115.47 (18)C11—C10—H10A108.8
C5—C4—C3122.1 (2)N2—C10—H10B108.8
C5—C4—H4A118.9C11—C10—H10B108.8
C3—C4—H4A118.9H10A—C10—H10B107.7
C4—C5—C6120.9 (2)O5—C11—C10112.94 (18)
C4—C5—H5A119.5O5—C11—H11A109.0
C6—C5—H5A119.5C10—C11—H11A109.0
C1—C6—C5118.61 (19)O5—C11—H11B109.0
C1—C6—C7118.53 (19)C10—C11—H11B109.0
C5—C6—C7122.85 (19)H11A—C11—H11B107.8
O3—C7—O4123.96 (19)
C6—C1—C2—C30.0 (3)C3—C4—C5—C60.3 (3)
C6—C1—C2—N1178.9 (2)C2—C1—C6—C51.9 (3)
O1—N1—C2—C13.9 (3)C2—C1—C6—C7177.1 (2)
O2—N1—C2—C1176.5 (2)C4—C5—C6—C11.8 (3)
O1—N1—C2—C3175.0 (2)C4—C5—C6—C7177.2 (2)
O2—N1—C2—C34.6 (3)C8—O4—C7—O32.2 (3)
C10—N2—C3—C40.1 (3)C8—O4—C7—C6176.60 (18)
C10—N2—C3—C2179.3 (2)C1—C6—C7—O32.8 (3)
C1—C2—C3—N2178.8 (2)C5—C6—C7—O3178.3 (2)
N1—C2—C3—N22.4 (3)C1—C6—C7—O4176.1 (2)
C1—C2—C3—C42.0 (3)C5—C6—C7—O42.9 (3)
N1—C2—C3—C4176.81 (19)C7—O4—C8—C9168.7 (2)
N2—C3—C4—C5178.7 (2)C3—N2—C10—C1176.3 (3)
C2—C3—C4—C52.1 (3)N2—C10—C11—O557.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.84 (3)1.99 (3)2.642 (2)134 (2)
O5—H5B···O3i0.83 (3)2.02 (3)2.851 (2)177 (3)
C8—H8A···O5ii0.972.513.271 (3)135
C10—H10A···O5iii0.972.543.267 (3)132
C10—H10B···O1iv0.972.433.168 (3)133
C11—H11A···O2v0.972.593.403 (3)142
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+5/2; (v) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H14N2O5
Mr254.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.6422 (6), 14.9954 (9), 7.1975 (4)
β (°) 99.607 (2)
V3)1132.50 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.43 × 0.13 × 0.03
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2090)
Tmin, Tmax0.951, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
8457, 2587, 2026
Rint0.050
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.129, 1.04
No. of reflections2587
No. of parameters173
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.31

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O20.84 (3)1.99 (3)2.642 (2)134 (2)
O5—H5B···O3i0.83 (3)2.02 (3)2.851 (2)177 (3)
C8—H8A···O5ii0.97002.51003.271 (3)135.00
C10—H10A···O5iii0.972.543.267 (3)132.0
C10—H10B···O1iv0.97002.43003.168 (3)133.00
C11—H11A···O2v0.972.593.403 (3)141.6
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x1, y, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+5/2; (v) x, y+1/2, z1/2.
 

Footnotes

Additional correspondence author, e-mail: aisyah@usm.my.

§Thomson Reuters ResearcherID: C-7581-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of a Research Fellowship. ASAR, SAH and SNNB thank USM for funding the synthetic chemistry work under the University Research Grant (1001/PFARMASI/815026). SNNB acknowledges USM for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrouillette, J. W., Atigadda, V. R., Luo, M., Air, G. M., Babu, Y. S. & Bantia, S. (1999). Bioorg. Med. Chem. Lett. 9, 1901–1906.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMayer, J. P., Lewis, G. S., McGee, C. & Bankaitis-Davis, D. (1998). Tetrahedron Lett. 39, 6655–6658.  Web of Science CrossRef CAS Google Scholar
First citationNarendra Babu, S. N., Abdul Rahim, A. S., Abd Hamid, S., Quah, C. K. & Fun, H.-K. (2009). Acta Cryst. E65, o1079.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNarendra Babu, S. N., Abdul Rahim, A. S., Osman, H., Quah, C. K. & Fun, H.-K. (2009). Acta Cryst. E65, o1566–o1567.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilliams, M., Bischofberger, N., Swaminathan, S. & Kim, C. U. (1995). Bioorg. Med. Chem. Lett. 5, 2251–2254.  CrossRef CAS Web of Science Google Scholar
First citationWright, J. B. (1951). Chem. Rev. 48, 397–541.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o846-o847
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds