organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o776-o777

Ethyl 1-tert-butyl-2-(4-meth­oxy­phen­yl)-1H-benzimidazole-5-carboxyl­ate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bKulliyyah of Science, International Islamic University Malaysia (IIUM), Jalan Istana, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 25 February 2010; accepted 2 March 2010; online 6 March 2010)

In the title mol­ecule, C21H24N2O3, the imidazole ring is essentially planar, with a maxium deviation of 0.015 (1) Å. The dihedral angle between the benzene and imidazole rings is 65.47 (6)°. The crystal packing is stabilized by weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds, forming zigzag chains along the c axis. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For background to benzimidazole derivatives, their biological activity and medical applications, see: Orjales et al. (1997[Orjales, A., Mosquera, R., Labeaga, L. & Rodes, R. (1997). J. Med. Chem. 40, 586-593.]); Andrzejewska et al. (2002[Andrzejewska, M., Yépez-Mulia, L., Cedillo-Rivera, R., Tapia, A., Vilpo, L., Vilpo, J. & Kazimierczuk, Z. (2002). Eur. J. Med. Chem. 37, 973-978.]); Garuti et al. (2000[Garuti, L., Roberti, M., Malagoli, M., Rossi, T. & Castelli, M. (2000). Bioorg. Med. Chem. Lett. 10, 2193-2195.]); Lukevics et al. (2001[Lukevics, E., Arsenyan, P., Shestakova, I., Domracheva, I., Nesterova, A. & Pudova, O. (2001). Eur. J. Med. Chem. 36, 507-515.]); Komazin et al. (2003[Komazin, G., Ptak, R. G., Emmer, B. T., Townsend, L. B. & Drach, J. C. (2003). Nucleosides Nucleotides Nucleic Acids, 22, 1725-1727.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding, A Theoretical Perspective. Oxford University Press.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H24N2O3

  • Mr = 352.42

  • Orthorhombic, P n a 21

  • a = 14.3963 (7) Å

  • b = 8.6206 (5) Å

  • c = 15.1609 (8) Å

  • V = 1881.54 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.53 × 0.42 × 0.27 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.978

  • 17426 measured reflections

  • 4233 independent reflections

  • 3951 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.113

  • S = 1.13

  • 4233 reflections

  • 240 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the rings N1,N2,C7–C9 and C1–C6 and C8–C13, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯O2i 0.93 2.57 3.3822 (16) 146
C13—H13A⋯O2ii 0.93 2.52 3.4116 (16) 160
C19—H19C⋯N2iii 0.96 2.57 3.4976 (19) 164
C2—H2ACg3iv 0.93 2.75 3.5594 (14) 146
C18—H18CCg2v 0.96 2.74 3.6878 (16) 168
C21—H21BCg1iv 0.96 2.78 3.4703 (16) 130
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (iv) x, y+1, z; (v) [-x-{\script{1\over 2}}, y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzimidazole derivatives are reported to be physiologically and pharmacologically active and find applications in the treatment of several diseases, such as epilepsy, diabetes and infertility (Orjales et al., 1997). In addition, they also show clinical benefit toward breast cancer (Andrzejewska et al., 2002), leukemia (Garuti et al., 2000), tumor cells (Lukevics et al., 2001) and possess potent antiviral activities (Komazin et al., 2003). We present here the crystal structure of the title compound.

In the asymmetric unit of the title compound (Fig. 1), the imidazole ring is essentially planar, with a maximum deviation of 0.015 (1) Å for atom C8. The dihedral angle between the imidazole ring (N1/N2/C7–C9) and the benzene ring (C1–C6) is 65.47 (6)° .

In the crystal structure (Fig. 2), neighbouring molecules are connected by weak intermolecular C5—H5A···O2, C13—H13A···O2 and C19—H19C···N2 hydrogen bonds (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997), forming zigzag chains along the c-axis. The crystal structure is further stabilized by C—H···π interactions (Table 1), involving the N1/N2/C7–C9 (centroid Cg1), C1–C6 (centroid Cg2) and C8–C13 (centroid Cg3) rings.

Related literature top

For background to benzimidazole derivatives, their biological activity and medical applications, see: Orjales et al. (1997); Andrzejewska et al. (2002); Garuti et al. (2000); Lukevics et al. (2001); Komazin et al. (2003). For details of hydrogen bonding see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Ethyl-3-amino-4-(tert-butylamino) benzoate (200 mg, 0.84 mmol) and the sodium metabisulfite adduct of 4-methoxybenzaldehyde (406 mg, 1.68 mmol) were dissolved in DMF. The reaction mixture was irradiated under microwave conditions at 130 °C for 2 minutes. After completion, the reaction mixture was diluted in EtOAc (20 ml) and washed with H2O (20 ml). The organic layer was collected, dried over Na2SO4 and then evaporated in vacuo to yield the crude product. The product was recrystallised from EtOAc as colourless crystals.

Refinement top

All hydrogen atoms were positioned geometrically [C—H = 0.93 - 0.97 Å] and were refined using a riding model, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms. A rotating group model was applied to the methyl groups. In the absence of significant anomalous scattering effects, 3066 Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the hydrogen-bonded (dashed lines) network. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
Ethyl 1-tert-butyl-2-(4-methoxyphenyl)-1H-benzimidazole-5-carboxylate top
Crystal data top
C21H24N2O3F(000) = 752
Mr = 352.42Dx = 1.244 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 6765 reflections
a = 14.3963 (7) Åθ = 2.7–36.9°
b = 8.6206 (5) ŵ = 0.08 mm1
c = 15.1609 (8) ÅT = 100 K
V = 1881.54 (17) Å3Block, colourless
Z = 40.53 × 0.42 × 0.27 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4233 independent reflections
Radiation source: fine-focus sealed tube3951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 35.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2312
Tmin = 0.957, Tmax = 0.978k = 1213
17426 measured reflectionsl = 2421
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0773P)2]
where P = (Fo2 + 2Fc2)/3
4233 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 0.60 e Å3
1 restraintΔρmin = 0.57 e Å3
Crystal data top
C21H24N2O3V = 1881.54 (17) Å3
Mr = 352.42Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 14.3963 (7) ŵ = 0.08 mm1
b = 8.6206 (5) ÅT = 100 K
c = 15.1609 (8) Å0.53 × 0.42 × 0.27 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4233 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3951 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.978Rint = 0.032
17426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.113H-atom parameters constrained
S = 1.13Δρmax = 0.60 e Å3
4233 reflectionsΔρmin = 0.57 e Å3
240 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12374 (8)1.21773 (11)0.18521 (7)0.02061 (19)
O20.25619 (7)0.09272 (11)0.59077 (8)0.02019 (19)
O30.11256 (7)0.01389 (12)0.63146 (8)0.02132 (19)
N10.00387 (7)0.60189 (11)0.40798 (7)0.01307 (17)
N20.16125 (7)0.58244 (12)0.40296 (7)0.01439 (18)
C10.07671 (9)0.95165 (14)0.37017 (8)0.0159 (2)
H1A0.05600.95220.42830.019*
C20.08488 (9)1.09163 (14)0.32461 (9)0.0158 (2)
H2A0.06941.18490.35180.019*
C30.11669 (9)1.08946 (13)0.23757 (8)0.01465 (19)
C40.14432 (9)0.95031 (14)0.19836 (8)0.0156 (2)
H4A0.16850.95030.14150.019*
C50.13556 (8)0.81218 (14)0.24449 (8)0.01461 (19)
H5A0.15410.71950.21840.018*
C60.09897 (8)0.81128 (13)0.33013 (8)0.01312 (18)
C70.08802 (8)0.66340 (14)0.37851 (8)0.01293 (19)
C80.02836 (8)0.47467 (13)0.45937 (8)0.01276 (18)
C90.12598 (8)0.46271 (13)0.45378 (8)0.01270 (18)
C100.17417 (8)0.34437 (14)0.49659 (8)0.01382 (19)
H10A0.23840.33600.49210.017*
C110.12284 (8)0.23910 (13)0.54632 (8)0.01365 (18)
C120.02572 (8)0.25487 (14)0.55447 (8)0.0156 (2)
H12A0.00680.18450.58920.019*
C130.02274 (8)0.37223 (14)0.51221 (8)0.0157 (2)
H13A0.08670.38260.51870.019*
C140.17224 (8)0.10981 (14)0.59068 (9)0.01472 (19)
C150.14999 (11)0.12009 (16)0.67719 (10)0.0227 (2)
H15A0.11570.13750.73140.027*
H15B0.21450.10170.69230.027*
C160.14263 (14)0.26002 (18)0.61893 (12)0.0300 (3)
H16A0.16310.35010.65070.045*
H16B0.18090.24580.56770.045*
H16C0.07920.27380.60100.045*
C170.09468 (8)0.64670 (15)0.38647 (9)0.0157 (2)
C180.14919 (10)0.50058 (19)0.36114 (13)0.0279 (3)
H18A0.15440.43370.41150.042*
H18B0.11720.44710.31460.042*
H18C0.21010.52940.34140.042*
C190.13666 (11)0.7233 (2)0.46773 (11)0.0290 (3)
H19A0.09930.81060.48460.044*
H19B0.13860.64990.51530.044*
H19C0.19850.75780.45450.044*
C200.10132 (11)0.7557 (2)0.30761 (12)0.0305 (4)
H20A0.07520.85450.32290.046*
H20B0.16530.76880.29140.046*
H20C0.06770.71240.25880.046*
C210.09176 (12)1.36157 (16)0.22065 (10)0.0232 (3)
H21A0.09651.44090.17650.035*
H21B0.12911.38940.27070.035*
H21C0.02811.35110.23870.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0309 (5)0.0144 (4)0.0165 (4)0.0019 (3)0.0026 (4)0.0018 (3)
O20.0146 (4)0.0221 (4)0.0239 (4)0.0031 (3)0.0012 (3)0.0034 (4)
O30.0189 (4)0.0182 (4)0.0269 (5)0.0009 (3)0.0004 (4)0.0079 (4)
N10.0101 (4)0.0151 (4)0.0141 (4)0.0004 (3)0.0000 (3)0.0013 (3)
N20.0117 (4)0.0141 (4)0.0174 (4)0.0014 (3)0.0000 (3)0.0012 (3)
C10.0196 (5)0.0144 (5)0.0138 (5)0.0004 (4)0.0016 (4)0.0007 (4)
C20.0195 (5)0.0135 (5)0.0145 (5)0.0007 (4)0.0013 (4)0.0010 (4)
C30.0165 (5)0.0137 (4)0.0137 (5)0.0022 (4)0.0007 (4)0.0003 (4)
C40.0172 (5)0.0162 (5)0.0134 (5)0.0025 (4)0.0015 (4)0.0012 (4)
C50.0140 (4)0.0142 (4)0.0156 (5)0.0008 (4)0.0012 (4)0.0019 (4)
C60.0126 (4)0.0127 (4)0.0140 (4)0.0014 (3)0.0001 (4)0.0000 (4)
C70.0114 (4)0.0134 (4)0.0140 (5)0.0009 (3)0.0008 (3)0.0013 (4)
C80.0105 (4)0.0142 (4)0.0136 (4)0.0001 (3)0.0007 (3)0.0006 (4)
C90.0102 (4)0.0130 (4)0.0149 (4)0.0006 (3)0.0001 (3)0.0000 (3)
C100.0101 (4)0.0142 (4)0.0172 (5)0.0002 (3)0.0010 (4)0.0003 (4)
C110.0128 (4)0.0140 (4)0.0142 (4)0.0012 (3)0.0004 (4)0.0000 (4)
C120.0127 (4)0.0170 (5)0.0170 (5)0.0005 (4)0.0017 (4)0.0030 (4)
C130.0113 (4)0.0181 (5)0.0177 (5)0.0007 (4)0.0016 (4)0.0028 (4)
C140.0151 (5)0.0143 (4)0.0147 (5)0.0008 (3)0.0012 (4)0.0005 (4)
C150.0261 (6)0.0183 (5)0.0236 (6)0.0020 (5)0.0020 (5)0.0058 (5)
C160.0397 (8)0.0215 (6)0.0288 (7)0.0028 (6)0.0070 (6)0.0002 (5)
C170.0101 (4)0.0204 (5)0.0165 (5)0.0025 (4)0.0005 (4)0.0039 (4)
C180.0166 (5)0.0265 (6)0.0407 (8)0.0035 (5)0.0102 (5)0.0018 (6)
C190.0214 (6)0.0409 (8)0.0248 (7)0.0142 (6)0.0012 (5)0.0047 (6)
C200.0176 (6)0.0428 (9)0.0310 (8)0.0059 (6)0.0073 (5)0.0231 (7)
C210.0339 (7)0.0139 (5)0.0220 (6)0.0002 (5)0.0013 (5)0.0024 (4)
Geometric parameters (Å, º) top
O1—C31.3649 (15)C11—C121.4102 (16)
O1—C211.4277 (17)C11—C141.4833 (16)
O2—C141.2174 (15)C12—C131.3860 (16)
O3—C141.3432 (16)C12—H12A0.9300
O3—C151.4509 (16)C13—H13A0.9300
N1—C81.3908 (15)C15—C161.499 (2)
N1—C71.3958 (15)C15—H15A0.9700
N1—C171.5061 (15)C15—H15B0.9700
N2—C71.3176 (15)C16—H16A0.9600
N2—C91.3845 (15)C16—H16B0.9600
C1—C61.3912 (16)C16—H16C0.9600
C1—C21.3954 (17)C17—C191.523 (2)
C1—H1A0.9300C17—C201.5236 (19)
C2—C31.3970 (18)C17—C181.5330 (19)
C2—H2A0.9300C18—H18A0.9600
C3—C41.3966 (17)C18—H18B0.9600
C4—C51.3868 (16)C18—H18C0.9600
C4—H4A0.9300C19—H19A0.9600
C5—C61.4011 (17)C19—H19B0.9600
C5—H5A0.9300C19—H19C0.9600
C6—C71.4792 (16)C20—H20A0.9600
C8—C131.4010 (16)C20—H20B0.9600
C8—C91.4117 (15)C20—H20C0.9600
C9—C101.3941 (16)C21—H21A0.9600
C10—C111.3921 (16)C21—H21B0.9600
C10—H10A0.9300C21—H21C0.9600
C3—O1—C21117.44 (11)O2—C14—O3124.05 (11)
C14—O3—C15118.20 (11)O2—C14—C11124.57 (11)
C8—N1—C7105.00 (9)O3—C14—C11111.38 (10)
C8—N1—C17124.22 (9)O3—C15—C16109.43 (13)
C7—N1—C17130.60 (10)O3—C15—H15A109.8
C7—N2—C9104.95 (10)C16—C15—H15A109.8
C6—C1—C2121.12 (11)O3—C15—H15B109.8
C6—C1—H1A119.4C16—C15—H15B109.8
C2—C1—H1A119.4H15A—C15—H15B108.2
C1—C2—C3118.93 (11)C15—C16—H16A109.5
C1—C2—H2A120.5C15—C16—H16B109.5
C3—C2—H2A120.5H16A—C16—H16B109.5
O1—C3—C4115.29 (11)C15—C16—H16C109.5
O1—C3—C2124.26 (11)H16A—C16—H16C109.5
C4—C3—C2120.46 (11)H16B—C16—H16C109.5
C5—C4—C3119.80 (11)N1—C17—C19108.05 (11)
C5—C4—H4A120.1N1—C17—C20112.78 (10)
C3—C4—H4A120.1C19—C17—C20110.03 (13)
C4—C5—C6120.42 (11)N1—C17—C18109.01 (10)
C4—C5—H5A119.8C19—C17—C18110.85 (13)
C6—C5—H5A119.8C20—C17—C18106.14 (12)
C1—C6—C5119.08 (11)C17—C18—H18A109.5
C1—C6—C7120.58 (10)C17—C18—H18B109.5
C5—C6—C7120.29 (10)H18A—C18—H18B109.5
N2—C7—N1113.78 (10)C17—C18—H18C109.5
N2—C7—C6120.71 (10)H18A—C18—H18C109.5
N1—C7—C6125.36 (10)H18B—C18—H18C109.5
N1—C8—C13133.18 (10)C17—C19—H19A109.5
N1—C8—C9106.04 (10)C17—C19—H19B109.5
C13—C8—C9120.74 (10)H19A—C19—H19B109.5
N2—C9—C10128.47 (10)C17—C19—H19C109.5
N2—C9—C8110.13 (10)H19A—C19—H19C109.5
C10—C9—C8121.39 (10)H19B—C19—H19C109.5
C11—C10—C9117.71 (10)C17—C20—H20A109.5
C11—C10—H10A121.1C17—C20—H20B109.5
C9—C10—H10A121.1H20A—C20—H20B109.5
C10—C11—C12120.73 (10)C17—C20—H20C109.5
C10—C11—C14118.74 (10)H20A—C20—H20C109.5
C12—C11—C14120.53 (10)H20B—C20—H20C109.5
C13—C12—C11121.94 (11)O1—C21—H21A109.5
C13—C12—H12A119.0O1—C21—H21B109.5
C11—C12—H12A119.0H21A—C21—H21B109.5
C12—C13—C8117.39 (10)O1—C21—H21C109.5
C12—C13—H13A121.3H21A—C21—H21C109.5
C8—C13—H13A121.3H21B—C21—H21C109.5
C6—C1—C2—C30.48 (19)C7—N2—C9—C80.18 (13)
C21—O1—C3—C4176.78 (12)N1—C8—C9—N22.09 (13)
C21—O1—C3—C23.48 (19)C13—C8—C9—N2175.77 (11)
C1—C2—C3—O1177.04 (12)N1—C8—C9—C10178.71 (11)
C1—C2—C3—C43.22 (18)C13—C8—C9—C103.43 (18)
O1—C3—C4—C5176.84 (11)N2—C9—C10—C11178.14 (12)
C2—C3—C4—C53.40 (18)C8—C9—C10—C110.90 (18)
C3—C4—C5—C60.13 (18)C9—C10—C11—C121.53 (18)
C2—C1—C6—C53.95 (18)C9—C10—C11—C14178.49 (11)
C2—C1—C6—C7178.63 (11)C10—C11—C12—C131.53 (19)
C4—C5—C6—C13.76 (17)C14—C11—C12—C13178.48 (12)
C4—C5—C6—C7178.81 (11)C11—C12—C13—C80.94 (19)
C9—N2—C7—N11.88 (14)N1—C8—C13—C12179.47 (12)
C9—N2—C7—C6173.81 (11)C9—C8—C13—C123.35 (18)
C8—N1—C7—N23.19 (14)C15—O3—C14—O21.2 (2)
C17—N1—C7—N2172.05 (11)C15—O3—C14—C11179.23 (11)
C8—N1—C7—C6172.26 (11)C10—C11—C14—O24.03 (19)
C17—N1—C7—C612.49 (19)C12—C11—C14—O2175.95 (13)
C1—C6—C7—N2110.78 (14)C10—C11—C14—O3176.36 (11)
C5—C6—C7—N266.61 (15)C12—C11—C14—O33.65 (16)
C1—C6—C7—N164.39 (16)C14—O3—C15—C1697.76 (15)
C5—C6—C7—N1118.22 (13)C8—N1—C17—C1976.40 (15)
C7—N1—C8—C13174.46 (13)C7—N1—C17—C19109.15 (15)
C17—N1—C8—C139.9 (2)C8—N1—C17—C20161.76 (13)
C7—N1—C8—C93.02 (12)C7—N1—C17—C2012.69 (19)
C17—N1—C8—C9172.61 (11)C8—N1—C17—C1844.15 (16)
C7—N2—C9—C10179.31 (12)C7—N1—C17—C18130.30 (14)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the rings N1,N2,C7–C9 and C1–C6 and C8–C13, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5A···O2i0.932.573.3822 (16)146
C13—H13A···O2ii0.932.523.4116 (16)160
C19—H19C···N2iii0.962.573.4976 (19)164
C2—H2A···Cg3iv0.932.753.5594 (14)146
C18—H18C···Cg2v0.962.743.6878 (16)168
C21—H21B···Cg1iv0.962.783.4703 (16)130
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z; (iii) x1/2, y+3/2, z; (iv) x, y+1, z; (v) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H24N2O3
Mr352.42
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)14.3963 (7), 8.6206 (5), 15.1609 (8)
V3)1881.54 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.53 × 0.42 × 0.27
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.957, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
17426, 4233, 3951
Rint0.032
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.113, 1.13
No. of reflections4233
No. of parameters240
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.57

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the rings N1,N2,C7–C9 and C1–C6 and C8–C13, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5A···O2i0.93002.57003.3822 (16)146.00
C13—H13A···O2ii0.93002.52003.4116 (16)160.00
C19—H19C···N2iii0.96002.57003.4976 (19)164.00
C2—H2A···Cg3iv0.93002.75003.5594 (14)146.00
C18—H18C···Cg2v0.96002.74003.6878 (16)168.00
C21—H21B···Cg1iv0.96002.78003.4703 (16)130.00
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x1/2, y+1/2, z; (iii) x1/2, y+3/2, z; (iv) x, y+1, z; (v) x1/2, y+3/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: aisyah@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

NA, SAH and ASAR are grateful to Universiti Sains Malaysia (USM) and the Inter­national Islamic University Malaysia (IIUM) for funding the synthetic chemistry work under the USM Research University Grant (1001/PFARMASI/815026) and the IIUM Research Endowment Grant (EDW B 0902-206). NA thanks USM for the award of a post-doctoral fellowship. HKF and MH thank the Malaysian Government and USM for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks USM for a post-doctoral research fellowship.

References

First citationAndrzejewska, M., Yépez-Mulia, L., Cedillo-Rivera, R., Tapia, A., Vilpo, L., Vilpo, J. & Kazimierczuk, Z. (2002). Eur. J. Med. Chem. 37, 973–978.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGaruti, L., Roberti, M., Malagoli, M., Rossi, T. & Castelli, M. (2000). Bioorg. Med. Chem. Lett. 10, 2193–2195.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKomazin, G., Ptak, R. G., Emmer, B. T., Townsend, L. B. & Drach, J. C. (2003). Nucleosides Nucleotides Nucleic Acids, 22, 1725–1727.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLukevics, E., Arsenyan, P., Shestakova, I., Domracheva, I., Nesterova, A. & Pudova, O. (2001). Eur. J. Med. Chem. 36, 507–515.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOrjales, A., Mosquera, R., Labeaga, L. & Rodes, R. (1997). J. Med. Chem. 40, 586–593.  CrossRef CAS PubMed Web of Science Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding, A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o776-o777
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds