metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[aqua­dioxidouranium(VI)]-μ3-4,4′-oxydibenzoato]

aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: zhangping@jlu.edu.cn.

(Received 22 December 2009; accepted 22 March 2010; online 27 March 2010)

The title compound, [UO2(C14H8O5)(H2O)]n, is a polymeric UO2 complex bridged by 4,4′-oxydibenzoate ligands. One carboxyl­ate group of the bridging ligand chelates a uranyl cation while the other carboxyl­ate group of the ligand bridges two other two uranyl cations, forming a double-chain polymeric structure. The central UVI atom is seven-coordin­ated in a distorted UO7 penta­gonal-bipyramidal geometry. In the crystal structure, O—H⋯O hydrogen bonding links the polymeric chains into a three-dimensional supra­molecular framework. Within the bridging ligand, the two benzene rings are oriented at a dihedral angle of 59.0 (2)°.

Related literature

For the potential applications of porous uranyl-organic frameworks, see: Thuéry & Masci (2008[Thuéry, P. & Masci, B. (2008). Cryst. Growth Des. 8, 3430-3436.]); Cahill et al. (2007[Cahill, C. L., de Lilla, D. T. & Frisch, M. (2007). CrystEngComm, 9, 15-26.]); Masci & Thuéry (2008[Masci, B. & Thuéry, P. (2008). CrystEngComm, 10, 1082-1087.]). For a related structure, see: Yu et al. (2004[Yu, Z.-T., Liao, Z.-L., Jiang, Y.-S., Li, G.-D. & Chen, J.-S. (2004). Chem. Commun. pp. 1814-1815.]).

[Scheme 1]

Experimental

Crystal data
  • [U(C14H8O5)O2(H2O)]

  • Mr = 544.25

  • Monoclinic, P 21 /c

  • a = 16.0160 (6) Å

  • b = 8.8832 (3) Å

  • c = 10.1952 (4) Å

  • β = 95.736 (1)°

  • V = 1443.24 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 11.29 mm−1

  • T = 296 K

  • 0.19 × 0.18 × 0.17 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.135, Tmax = 0.147

  • 10376 measured reflections

  • 3606 independent reflections

  • 3188 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.064

  • S = 1.17

  • 3606 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Selected bond lengths (Å)

U1—O1i 2.337 (3)
U1—O2 2.315 (3)
U1—O4ii 2.407 (3)
U1—O5ii 2.437 (3)
U1—O6 1.759 (3)
U1—O7 1.765 (3)
U1—O8 2.461 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8⋯O7iii 0.85 2.05 2.812 (4) 150
O8—H11⋯O2iv 0.85 2.37 3.083 (4) 142
Symmetry codes: (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently the design and synthesis of porous uranyl-organic frameworks (UOFs) have received rather considerable attention due to their potential applications (Thuéry & Masci, 2008; Cahill et al., 2007; Masci & Thuéry, 2008; Yu et al., 2004; Chen et al., 2003). However the coordination polymers of uranyl with 4,4'-oxydibenzoate ligand (oba) have not been reported to our knowledge. We are currently interested in using oba as a bridging ligand to build novel UOFs. Herein we report a novel UOF of [UO2(oba)(H2O)]n.

The compound possesses a 1-D double chain architecture, in which the asymmetric unit consists of one UO22+ cation, one oxy-bis(benzoate) anion and one coordinated water molecule. The central U atom is seven-coordinated in a UO7 pentagonal-bipyramidal geometry by four O atoms from three different oba2- ligands and one water O atom, and other two O atoms are oxo groups in axial positions (Fig. 1). The coordinate bond distances are listed in Table 1, which are comparable to the related uranyl carboxylate compound (Yu et al., 2004). The terminal groups of the oba ligand coordinate to three U centers to form the 1D double chain framework (Fig. 2). The O—H···O hydrogen bonding links the polymeric chains into 3D supramolecular structure (Table 2 and Fig. 3).

Related literature top

For the potential applications of porous uranyl-organic frameworks, see: Thuéry & Masci (2008); Cahill et al. (2007); Masci & Thuéry (2008). For a related structure, see: Yu et al. (2004).

Experimental top

For the preparation of the title compound, a mixture of uranium oxynitrate hexahydrate (0.1025 g, 0.21 mmol), 4,4'-oxybis(benzoic acid) (0.1092 g, 0.42 mmol), potassium hydroxide (0.0470 g, 0.84 mmol) and 6 mL water was sealed in a 23 mLstainless steel reactor with a Teflon liner. The reaction system was heated at 423 K for 48 h, and then cooled slowly to room temperature. A large number of pale-yellow crystals of the title compound were obtained and collected by filtration, washed with water and dried in air.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic) and with Uiso(H) = 1.2Ueq(C). Water H atoms were initially located in a difference Fourier map, but they were treated as riding on their parent atoms with O—H = 0.85 Å and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of a portion of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry codes (A): -x + 1, -y + 1, -z + 1; (B): -x + 2, -y + 1, -z + 1].
[Figure 2] Fig. 2. View of one-dimensional double chain structure of the title compound.
[Figure 3] Fig. 3. View of three-dimensional supramolecular structure with hydrogen bond interactions shown as dashed lines.
catena-Poly[[aquadioxidouranium(VI)]-µ3-4,4'-oxydibenzoato] top
Crystal data top
[U(C14H8O5)O2(H2O)]F(000) = 1000
Mr = 544.25Dx = 2.505 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4425 reflections
a = 16.0160 (6) Åθ = 2.5–25.0°
b = 8.8832 (3) ŵ = 11.29 mm1
c = 10.1952 (4) ÅT = 296 K
β = 95.736 (1)°Block, yellow
V = 1443.24 (9) Å30.19 × 0.18 × 0.17 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3606 independent reflections
Radiation source: fine-focus sealed tube3188 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scanθmax = 28.4°, θmin = 1.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2120
Tmin = 0.135, Tmax = 0.147k = 1111
10376 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0365P)2]
where P = (Fo2 + 2Fc2)/3
3606 reflections(Δ/σ)max = 0.002
208 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.88 e Å3
Crystal data top
[U(C14H8O5)O2(H2O)]V = 1443.24 (9) Å3
Mr = 544.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.0160 (6) ŵ = 11.29 mm1
b = 8.8832 (3) ÅT = 296 K
c = 10.1952 (4) Å0.19 × 0.18 × 0.17 mm
β = 95.736 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3606 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3188 reflections with I > 2σ(I)
Tmin = 0.135, Tmax = 0.147Rint = 0.020
10376 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.17Δρmax = 0.74 e Å3
3606 reflectionsΔρmin = 0.88 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.586399 (8)0.547362 (15)0.296990 (13)0.02255 (6)
O10.55538 (19)0.4926 (4)0.6780 (3)0.0334 (6)
O41.2633 (2)0.4586 (4)0.6570 (3)0.0393 (8)
O51.31269 (18)0.3423 (4)0.8388 (3)0.0366 (7)
C141.2507 (3)0.3891 (5)0.7634 (4)0.0287 (8)
C111.1633 (2)0.3682 (4)0.7976 (4)0.0259 (8)
C121.0998 (3)0.4558 (4)0.7347 (4)0.0293 (9)
H121.11170.52180.66830.035*
C101.1455 (3)0.2688 (5)0.8968 (4)0.0303 (8)
H101.18820.21150.94080.036*
C131.0187 (3)0.4458 (4)0.7699 (4)0.0316 (9)
H130.97650.50670.72940.038*
C91.0644 (2)0.2558 (5)0.9295 (4)0.0308 (8)
H91.05210.18770.99410.037*
C81.0012 (2)0.3435 (5)0.8665 (4)0.0269 (8)
C10.6145 (3)0.4466 (4)0.6168 (4)0.0251 (8)
C20.6980 (2)0.4239 (4)0.6891 (4)0.0243 (8)
C70.7623 (2)0.3572 (5)0.6279 (4)0.0279 (8)
H70.75350.33280.53890.033*
C60.8389 (3)0.3266 (5)0.6969 (4)0.0304 (9)
H60.88140.28070.65550.037*
C50.8514 (2)0.3659 (5)0.8298 (4)0.0273 (8)
C40.7882 (3)0.4337 (5)0.8920 (4)0.0321 (9)
H40.79740.45960.98060.038*
C30.7115 (3)0.4629 (4)0.8222 (4)0.0307 (9)
H30.66900.50840.86380.037*
O30.92367 (17)0.3279 (4)0.9105 (3)0.0370 (7)
O20.60500 (19)0.4162 (4)0.4939 (3)0.0345 (7)
O70.5825 (2)0.7188 (3)0.3837 (3)0.0359 (7)
O60.58900 (19)0.3749 (3)0.2127 (3)0.0350 (7)
O80.50947 (19)0.6486 (3)0.0952 (3)0.0369 (7)
H110.46130.68830.07870.055*
H80.53750.65470.02880.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.01670 (9)0.02981 (9)0.02128 (9)0.00041 (5)0.00266 (6)0.00035 (5)
O10.0196 (15)0.0439 (16)0.0374 (17)0.0045 (13)0.0064 (12)0.0048 (14)
O40.0205 (16)0.066 (2)0.0309 (16)0.0022 (14)0.0011 (12)0.0114 (14)
O50.0197 (14)0.0566 (19)0.0330 (15)0.0005 (14)0.0010 (12)0.0132 (14)
C140.022 (2)0.037 (2)0.0282 (19)0.0036 (17)0.0037 (15)0.0004 (17)
C110.0195 (18)0.032 (2)0.0260 (18)0.0040 (16)0.0004 (14)0.0040 (16)
C120.023 (2)0.036 (2)0.029 (2)0.0037 (16)0.0002 (16)0.0052 (16)
C100.023 (2)0.035 (2)0.031 (2)0.0035 (17)0.0028 (15)0.0052 (17)
C130.022 (2)0.038 (2)0.035 (2)0.0007 (16)0.0016 (17)0.0073 (17)
C90.022 (2)0.038 (2)0.032 (2)0.0036 (17)0.0006 (15)0.0086 (17)
C80.0161 (18)0.040 (2)0.0235 (18)0.0034 (16)0.0017 (14)0.0002 (16)
C10.0184 (19)0.0268 (19)0.030 (2)0.0022 (14)0.0024 (15)0.0066 (15)
C20.0156 (18)0.0284 (19)0.029 (2)0.0013 (14)0.0012 (15)0.0050 (15)
C70.024 (2)0.036 (2)0.0233 (18)0.0026 (17)0.0018 (15)0.0009 (16)
C60.0204 (19)0.044 (2)0.027 (2)0.0069 (17)0.0026 (15)0.0029 (17)
C50.0165 (18)0.038 (2)0.0270 (18)0.0005 (16)0.0020 (14)0.0056 (16)
C40.025 (2)0.044 (2)0.026 (2)0.0015 (18)0.0005 (16)0.0021 (17)
C30.023 (2)0.040 (2)0.030 (2)0.0051 (16)0.0025 (17)0.0051 (16)
O30.0169 (14)0.066 (2)0.0278 (14)0.0009 (14)0.0014 (11)0.0103 (14)
O20.0238 (16)0.0517 (17)0.0270 (15)0.0005 (13)0.0015 (12)0.0113 (13)
O70.0363 (17)0.0354 (16)0.0362 (16)0.0002 (13)0.0045 (13)0.0099 (13)
O60.0298 (16)0.0351 (16)0.0399 (17)0.0026 (13)0.0024 (12)0.0072 (13)
O80.0334 (17)0.0473 (17)0.0298 (15)0.0056 (14)0.0027 (12)0.0101 (13)
Geometric parameters (Å, º) top
U1—O1i2.337 (3)C10—H100.9300
U1—O22.315 (3)C13—C81.389 (6)
U1—O4ii2.407 (3)C13—H130.9300
U1—O5ii2.437 (3)C9—C81.384 (5)
U1—O61.759 (3)C9—H90.9300
U1—O71.765 (3)C8—O31.369 (5)
U1—O82.461 (3)C1—O21.275 (5)
U1—C14ii2.798 (4)C1—C21.475 (5)
O1—C11.254 (5)C2—C71.389 (5)
O1—U1i2.337 (3)C2—C31.396 (6)
O4—C141.282 (5)C7—C61.379 (5)
O4—U1ii2.407 (3)C7—H70.9300
O5—C141.263 (5)C6—C51.395 (5)
O5—U1ii2.437 (3)C6—H60.9300
C14—C111.488 (5)C5—C41.385 (6)
C14—U1ii2.798 (4)C5—O31.393 (4)
C11—C121.386 (6)C4—C31.381 (6)
C11—C101.393 (5)C4—H40.9300
C12—C131.384 (6)C3—H30.9300
C12—H120.9300O8—H110.8499
C10—C91.377 (6)O8—H80.8500
O6—U1—O7178.90 (14)C13—C12—H12119.7
O6—U1—O288.75 (12)C11—C12—H12119.7
O7—U1—O290.45 (12)C9—C10—C11119.6 (4)
O6—U1—O1i89.53 (13)C9—C10—H10120.2
O7—U1—O1i89.62 (13)C11—C10—H10120.2
O2—U1—O1i82.59 (10)C12—C13—C8119.2 (4)
O6—U1—O4ii90.22 (13)C12—C13—H13120.4
O7—U1—O4ii90.34 (13)C8—C13—H13120.4
O2—U1—O4ii77.30 (10)C10—C9—C8120.3 (4)
O1i—U1—O4ii159.90 (11)C10—C9—H9119.8
O6—U1—O5ii91.33 (12)C8—C9—H9119.8
O7—U1—O5ii89.77 (13)O3—C8—C9115.9 (3)
O2—U1—O5ii131.32 (10)O3—C8—C13123.5 (4)
O1i—U1—O5ii146.09 (10)C9—C8—C13120.5 (4)
O4ii—U1—O5ii54.01 (10)O1—C1—O2122.4 (4)
O6—U1—O886.79 (12)O1—C1—C2119.2 (4)
O7—U1—O893.66 (12)O2—C1—C2118.4 (4)
O2—U1—O8156.87 (10)C7—C2—C3119.5 (4)
O1i—U1—O874.70 (10)C7—C2—C1120.6 (4)
O4ii—U1—O8125.36 (10)C3—C2—C1119.8 (4)
O5ii—U1—O871.51 (10)C6—C7—C2121.1 (4)
O6—U1—C14ii90.00 (13)C6—C7—H7119.4
O7—U1—C14ii90.93 (13)C2—C7—H7119.4
O2—U1—C14ii104.52 (11)C7—C6—C5118.7 (4)
O1i—U1—C14ii172.86 (11)C7—C6—H6120.6
O4ii—U1—C14ii27.22 (11)C5—C6—H6120.6
O5ii—U1—C14ii26.82 (10)C4—C5—O3116.0 (3)
O8—U1—C14ii98.17 (11)C4—C5—C6120.9 (4)
C1—O1—U1i142.7 (3)O3—C5—C6122.9 (4)
C14—O4—U1ii93.6 (2)C3—C4—C5119.9 (4)
C14—O5—U1ii92.7 (2)C3—C4—H4120.0
O5—C14—O4119.6 (4)C5—C4—H4120.0
O5—C14—C11121.1 (3)C4—C3—C2119.9 (4)
O4—C14—C11119.3 (4)C4—C3—H3120.1
O5—C14—U1ii60.5 (2)C2—C3—H3120.1
O4—C14—U1ii59.2 (2)C8—O3—C5120.7 (3)
C11—C14—U1ii175.5 (3)C1—O2—U1137.5 (3)
C12—C11—C10119.9 (4)U1—O8—H11133.3
C12—C11—C14119.1 (4)U1—O8—H8115.4
C10—C11—C14121.0 (4)H11—O8—H8110.9
C13—C12—C11120.5 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O7iii0.852.052.812 (4)150
O8—H11···O2iv0.852.373.083 (4)142
Symmetry codes: (iii) x, y+3/2, z1/2; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[U(C14H8O5)O2(H2O)]
Mr544.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)16.0160 (6), 8.8832 (3), 10.1952 (4)
β (°) 95.736 (1)
V3)1443.24 (9)
Z4
Radiation typeMo Kα
µ (mm1)11.29
Crystal size (mm)0.19 × 0.18 × 0.17
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.135, 0.147
No. of measured, independent and
observed [I > 2σ(I)] reflections
10376, 3606, 3188
Rint0.020
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.064, 1.17
No. of reflections3606
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.88

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
U1—O1i2.337 (3)U1—O61.759 (3)
U1—O22.315 (3)U1—O71.765 (3)
U1—O4ii2.407 (3)U1—O82.461 (3)
U1—O5ii2.437 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O7iii0.852.052.812 (4)149.7
O8—H11···O2iv0.852.373.083 (4)141.8
Symmetry codes: (iii) x, y+3/2, z1/2; (iv) x+1, y+1/2, z+1/2.
 

Acknowledgements

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (No. 50573030).

References

First citationCahill, C. L., de Lilla, D. T. & Frisch, M. (2007). CrystEngComm, 9, 15–26.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMasci, B. & Thuéry, P. (2008). CrystEngComm, 10, 1082–1087.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThuéry, P. & Masci, B. (2008). Cryst. Growth Des. 8, 3430–3436.  Google Scholar
First citationYu, Z.-T., Liao, Z.-L., Jiang, Y.-S., Li, G.-D. & Chen, J.-S. (2004). Chem. Commun. pp. 1814–1815.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds