organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Pivaloyl-5,6-di­hydro-4H-naphtho[3,2,1-de]iso­quinoline-4,6-dione

aSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: njubilly@gmail.com

(Received 22 December 2009; accepted 4 March 2010; online 13 March 2010)

In the crystal structure of the title compound, C21H17NO3, the dibenzo–isoquinoline–dione unit has a planar structure, the maximum atomic deviation being 0.091 (3) Å. The crystal structure is stabilized by ππ stacking [centroid–centroid distance = 3.851 (2) Å] and inter­molecular N—H⋯O hydrogen bonding.

Related literature

The title compound is an azonafide analogue. For the bio­logical activity of 1,3,4(2H)-isoquinoline­trione derivatives, see: Malamas et al. (1994[Malamas, M. S., Hohman, T. C. & Millen, J. (1994). J. Med. Chem. 37, 2043-2058.]); Hall et al. (1994[Hall, I. H., Chapman, J. M. & Wong, O. T. (1994). Anticancer Drugs, 5, 75-82.]). For the anti­tumor properties of azonafide and analogues, see: Sami et al. (2000[Sami, S. M., Dorr, R. T., Alberts, D. S., Solyom, A. M. & Remers, W. A. (2000). J. Med. Chem. 43, 3067-3073.]); Hutchings et al. (1988[Hutchings, M. G., Chippendale, A. M. & Ferguson, I. (1988). Tetrahedron, 44, 3727-3734.]). For the synthesis, see: Zhang et al. (2000[Zhang, Y., Qian, S.-P., Fun, H.-K. & Xu, J.-H. (2000). Tetrahedron Lett. 41, 8141-8145.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17NO3

  • Mr = 331.36

  • Monoclinic, P 21 /c

  • a = 11.569 (2) Å

  • b = 9.1150 (18) Å

  • c = 15.746 (3) Å

  • β = 101.12 (3)°

  • V = 1629.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.10 × 0.10 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CAD-4 EXPRESS; Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]) Tmin = 0.991, Tmax = 0.996

  • 3103 measured reflections

  • 2950 independent reflections

  • 1264 reflections with I > 2σ(I)

  • Rint = 0.056

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.077

  • S = 1.00

  • 2950 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯O2i 0.86 2.05 2.911 (3) 174
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4(2H)-Isoquinolinetrione derivatives have a variety of biological activities and are synthetic precursors for many naturally occurring alkaloids (Malamas et al. 1994; Hall et al. 1994). Moreover, many 2-[2'-(dimethyl-amino)ethyl]-1,2-dihydro-3H-dibenz[de, h]- isoquinoline-1,3-dione(azonafide) analogues with structural variations in the side chain and the bent phenanthrene nucleus have shown significant antitumor properties (Sami et al. 2000; Hutchings et al. 1988). As part of our work involving the synthesis of a series of azonafide analogues from 1,3,4(2H)-isoquinolinetrione we report herein the crystal structure of the title compound (Fig. 1).

The carbonyl group forms a dihedral angle of 78.8 (3)° with the phenanthrene moiety. The crystal structure is stabilized by intermolecular π-π stacking; centroids distance between nearly parallel C6-benzene and C17ii-benzene rings is 3.851 (2) Å (symmetry code: (ii) 2-x, -y, 1-z]. In addition the intermolecular N—H···O hydrogen bonding further stabilize the crystal structure.

Related literature top

The title compound is an azonafide analogue. For the biological activity of 1,3,4(2H)-isoquinolinetrione derivatives, see: Malamas et al. (1994); Hall et al. (1994). For the antitumor properties of azonafide and analogues, see: Sami et al. (2000); Hutchings et al. (1988). For the synthesis, see: Zhang et al. (2000).

Experimental top

A solution of 1,3,4(2H)-isoquinolinetriones (175 mg, 1 mmol) and tert-butyl phenyl acetylene (316 mg, 2 mmol) in anhydrous acetonitrile (50 ml) was purged with dry argon for 10 min and then irradiated for 24 h under continuous argon purging. The single crystals of the title compound were obtained from the reaction mixture. The light source was a medium-pressure mercury lamp (500 W) in a cooling water jacket that was further surrounded by a layer of filter solution (1 cm thick, 20% aqueous sodium nitrite) to cut off light of wavelength shorter than 400 nm (Zhang et al., 2000).

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for the aromatic atoms, 0.96 Å for the CH3 groups and 0.86 Å for the N—H group, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids shown at 30% probability ellipsoids for non-H atoms.
7-Pivaloyl-5,6-dihydro-4H-naphtho[3,2,1-de]isoquinoline-4,6-dione top
Crystal data top
C21H17NO3F(000) = 696
Mr = 331.36Dx = 1.351 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.569 (2) Åθ = 9–12°
b = 9.1150 (18) ŵ = 0.09 mm1
c = 15.746 (3) ÅT = 298 K
β = 101.12 (3)°Block, light-yellow
V = 1629.3 (6) Å30.10 × 0.10 × 0.05 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1264 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 25.3°, θmin = 1.8°
ω/2θ scansh = 013
Absorption correction: ψ scan
(CAD-4 EXPRESS; Enraf–Nonius, 1994)
k = 010
Tmin = 0.991, Tmax = 0.996l = 1818
3103 measured reflections3 standard reflections every 200 reflections
2950 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.001P)2]
where P = (Fo2 + 2Fc2)/3
2950 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C21H17NO3V = 1629.3 (6) Å3
Mr = 331.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.569 (2) ŵ = 0.09 mm1
b = 9.1150 (18) ÅT = 298 K
c = 15.746 (3) Å0.10 × 0.10 × 0.05 mm
β = 101.12 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1264 reflections with I > 2σ(I)
Absorption correction: ψ scan
(CAD-4 EXPRESS; Enraf–Nonius, 1994)
Rint = 0.056
Tmin = 0.991, Tmax = 0.9963 standard reflections every 200 reflections
3103 measured reflections intensity decay: 1%
2950 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.00Δρmax = 0.19 e Å3
2950 reflectionsΔρmin = 0.19 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N0.9224 (2)0.3212 (3)0.52319 (16)0.0380 (8)
H0A0.94330.40460.54670.046*
O10.7998 (2)0.0308 (3)0.72692 (14)0.0517 (7)
O20.9979 (2)0.3921 (2)0.40785 (14)0.0494 (7)
O30.8470 (2)0.2652 (2)0.64021 (14)0.0508 (7)
C10.5388 (3)0.0139 (4)0.6829 (2)0.0769 (14)
H1A0.52280.08120.63520.115*
H1B0.46700.03330.68970.115*
H1C0.57130.06640.73490.115*
C20.5766 (3)0.1815 (4)0.5817 (2)0.0675 (13)
H2A0.56300.11230.53490.101*
H2B0.63100.25520.57040.101*
H2C0.50350.22710.58700.101*
C30.6483 (3)0.2081 (4)0.7420 (2)0.0781 (15)
H3A0.70270.28320.73260.117*
H3B0.68030.15510.79390.117*
H3C0.57500.25240.74780.117*
C40.6277 (3)0.1027 (4)0.6652 (2)0.0461 (10)
C50.7422 (3)0.0215 (4)0.6623 (2)0.0358 (9)
C60.7748 (3)0.0144 (4)0.5757 (2)0.0337 (9)
C70.7494 (3)0.1610 (4)0.5410 (2)0.0358 (9)
C80.7003 (3)0.2677 (4)0.5887 (2)0.0504 (11)
H8A0.68610.24450.64330.061*
C90.6734 (3)0.4046 (4)0.5553 (3)0.0584 (12)
H9A0.64090.47360.58740.070*
C100.6942 (3)0.4420 (4)0.4742 (2)0.0560 (12)
H10A0.67380.53460.45140.067*
C110.7448 (3)0.3419 (4)0.4277 (2)0.0457 (11)
H11A0.76060.36900.37420.055*
C120.7736 (3)0.1988 (4)0.4589 (2)0.0351 (9)
C130.8287 (3)0.0921 (4)0.4115 (2)0.0361 (9)
C140.8587 (3)0.0469 (4)0.4492 (2)0.0314 (9)
C150.8305 (3)0.0825 (4)0.5310 (2)0.0320 (9)
C160.8571 (3)0.1202 (4)0.3306 (2)0.0430 (10)
H16A0.83790.21100.30480.052*
C170.9120 (3)0.0188 (4)0.2882 (2)0.0480 (11)
H17A0.92990.04150.23460.058*
C180.9412 (3)0.1181 (4)0.3250 (2)0.0417 (10)
H18A0.97820.18720.29590.050*
C190.9154 (3)0.1513 (4)0.4046 (2)0.0324 (9)
C200.9491 (3)0.2966 (4)0.4427 (2)0.0358 (9)
C210.8659 (3)0.2269 (4)0.5700 (2)0.0364 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N0.052 (2)0.0271 (19)0.0377 (18)0.0090 (16)0.0150 (16)0.0042 (15)
O10.0629 (19)0.0489 (18)0.0445 (16)0.0042 (15)0.0135 (14)0.0078 (14)
O20.070 (2)0.0339 (16)0.0499 (16)0.0110 (14)0.0247 (14)0.0060 (13)
O30.073 (2)0.0420 (17)0.0425 (15)0.0127 (15)0.0247 (15)0.0123 (13)
C10.061 (3)0.071 (3)0.109 (4)0.017 (3)0.044 (3)0.007 (3)
C20.058 (3)0.052 (3)0.090 (3)0.008 (2)0.009 (3)0.009 (3)
C30.079 (3)0.070 (3)0.094 (3)0.002 (3)0.040 (3)0.031 (3)
C40.046 (3)0.041 (3)0.054 (3)0.001 (2)0.017 (2)0.004 (2)
C50.050 (3)0.024 (2)0.035 (2)0.004 (2)0.011 (2)0.0057 (18)
C60.044 (2)0.027 (2)0.030 (2)0.0027 (19)0.0083 (18)0.0013 (18)
C70.044 (3)0.022 (2)0.042 (2)0.0019 (19)0.010 (2)0.0068 (19)
C80.067 (3)0.032 (2)0.056 (3)0.002 (2)0.020 (2)0.005 (2)
C90.074 (3)0.040 (3)0.067 (3)0.005 (3)0.027 (3)0.007 (2)
C100.069 (3)0.026 (2)0.073 (3)0.008 (2)0.014 (3)0.000 (2)
C110.057 (3)0.027 (2)0.052 (3)0.000 (2)0.005 (2)0.007 (2)
C120.037 (2)0.028 (2)0.040 (2)0.0029 (19)0.0064 (19)0.0003 (19)
C130.039 (2)0.035 (2)0.034 (2)0.002 (2)0.0067 (19)0.0011 (19)
C140.032 (2)0.029 (2)0.034 (2)0.0041 (18)0.0072 (18)0.0045 (18)
C150.036 (2)0.026 (2)0.036 (2)0.0004 (18)0.0107 (18)0.0004 (18)
C160.055 (3)0.034 (2)0.041 (2)0.006 (2)0.014 (2)0.004 (2)
C170.069 (3)0.046 (3)0.033 (2)0.001 (2)0.020 (2)0.000 (2)
C180.052 (3)0.036 (2)0.039 (2)0.003 (2)0.013 (2)0.001 (2)
C190.037 (2)0.027 (2)0.034 (2)0.0038 (19)0.0084 (18)0.0022 (18)
C200.046 (3)0.029 (2)0.033 (2)0.004 (2)0.0090 (19)0.0032 (18)
C210.038 (2)0.037 (2)0.037 (2)0.001 (2)0.0119 (19)0.002 (2)
Geometric parameters (Å, º) top
N—C211.376 (4)C7—C121.417 (4)
N—C201.379 (3)C8—C91.366 (4)
N—H0A0.8600C8—H8A0.9300
O1—C51.201 (3)C9—C101.387 (4)
O2—C201.224 (3)C9—H9A0.9300
O3—C211.219 (3)C10—C111.369 (4)
C1—C41.541 (4)C10—H10A0.9300
C1—H1A0.9600C11—C121.410 (4)
C1—H1B0.9600C11—H11A0.9300
C1—H1C0.9600C12—C131.447 (4)
C2—C41.514 (4)C13—C161.399 (4)
C2—H2A0.9600C13—C141.413 (4)
C2—H2B0.9600C14—C191.416 (4)
C2—H2C0.9600C14—C151.426 (4)
C3—C41.527 (4)C15—C211.476 (4)
C3—H3A0.9600C16—C171.366 (4)
C3—H3B0.9600C16—H16A0.9300
C3—H3C0.9600C17—C181.390 (4)
C4—C51.526 (4)C17—H17A0.9300
C5—C61.520 (4)C18—C191.378 (4)
C6—C151.365 (4)C18—H18A0.9300
C6—C71.452 (4)C19—C201.475 (4)
C7—C81.413 (4)
C21—N—C20127.1 (3)C8—C9—C10120.8 (4)
C21—N—H0A116.4C8—C9—H9A119.6
C20—N—H0A116.4C10—C9—H9A119.6
C4—C1—H1A109.5C11—C10—C9119.7 (4)
C4—C1—H1B109.5C11—C10—H10A120.1
H1A—C1—H1B109.5C9—C10—H10A120.1
C4—C1—H1C109.5C10—C11—C12121.8 (4)
H1A—C1—H1C109.5C10—C11—H11A119.1
H1B—C1—H1C109.5C12—C11—H11A119.1
C4—C2—H2A109.5C11—C12—C7117.8 (3)
C4—C2—H2B109.5C11—C12—C13122.7 (3)
H2A—C2—H2B109.5C7—C12—C13119.4 (3)
C4—C2—H2C109.5C16—C13—C14117.7 (3)
H2A—C2—H2C109.5C16—C13—C12123.4 (3)
H2B—C2—H2C109.5C14—C13—C12118.9 (3)
C4—C3—H3A109.5C13—C14—C19119.6 (3)
C4—C3—H3B109.5C13—C14—C15120.2 (3)
H3A—C3—H3B109.5C19—C14—C15120.2 (3)
C4—C3—H3C109.5C6—C15—C14122.1 (3)
H3A—C3—H3C109.5C6—C15—C21118.9 (3)
H3B—C3—H3C109.5C14—C15—C21119.0 (3)
C2—C4—C5113.6 (3)C17—C16—C13122.3 (3)
C2—C4—C3111.3 (3)C17—C16—H16A118.8
C5—C4—C3108.9 (3)C13—C16—H16A118.8
C2—C4—C1108.8 (3)C16—C17—C18120.1 (3)
C5—C4—C1106.5 (3)C16—C17—H17A120.0
C3—C4—C1107.4 (3)C18—C17—H17A120.0
O1—C5—C6118.8 (3)C19—C18—C17119.9 (3)
O1—C5—C4120.7 (3)C19—C18—H18A120.0
C6—C5—C4119.9 (3)C17—C18—H18A120.0
C15—C6—C7118.9 (3)C18—C19—C14120.4 (3)
C15—C6—C5123.1 (3)C18—C19—C20118.7 (3)
C7—C6—C5117.9 (3)C14—C19—C20120.9 (3)
C8—C7—C12119.2 (3)O2—C20—N120.0 (3)
C8—C7—C6120.4 (3)O2—C20—C19124.4 (3)
C12—C7—C6120.4 (3)N—C20—C19115.5 (3)
C9—C8—C7120.6 (4)O3—C21—N119.6 (3)
C9—C8—H8A119.7O3—C21—C15123.3 (3)
C7—C8—H8A119.7N—C21—C15117.2 (3)
C2—C4—C5—O1170.9 (3)C12—C13—C14—C152.5 (5)
C3—C4—C5—O146.3 (4)C7—C6—C15—C143.4 (5)
C1—C4—C5—O169.3 (4)C5—C6—C15—C14179.1 (3)
C2—C4—C5—C618.5 (5)C7—C6—C15—C21174.6 (3)
C3—C4—C5—C6143.2 (3)C5—C6—C15—C212.9 (5)
C1—C4—C5—C6101.2 (4)C13—C14—C15—C60.2 (5)
O1—C5—C6—C15105.0 (4)C19—C14—C15—C6179.3 (3)
C4—C5—C6—C1584.3 (4)C13—C14—C15—C21178.3 (3)
O1—C5—C6—C772.5 (4)C19—C14—C15—C212.7 (5)
C4—C5—C6—C798.2 (4)C14—C13—C16—C170.1 (5)
C15—C6—C7—C8175.1 (3)C12—C13—C16—C17178.2 (3)
C5—C6—C7—C82.5 (5)C13—C16—C17—C180.3 (6)
C15—C6—C7—C124.9 (5)C16—C17—C18—C190.4 (5)
C5—C6—C7—C12177.5 (3)C17—C18—C19—C140.3 (5)
C12—C7—C8—C91.7 (6)C17—C18—C19—C20179.0 (3)
C6—C7—C8—C9178.3 (4)C13—C14—C19—C180.1 (5)
C7—C8—C9—C100.2 (6)C15—C14—C19—C18179.0 (3)
C8—C9—C10—C111.6 (6)C13—C14—C19—C20179.2 (3)
C9—C10—C11—C122.0 (6)C15—C14—C19—C201.7 (5)
C10—C11—C12—C70.5 (5)C21—N—C20—O2178.6 (3)
C10—C11—C12—C13179.0 (4)C21—N—C20—C191.6 (5)
C8—C7—C12—C111.3 (5)C18—C19—C20—O20.9 (6)
C6—C7—C12—C11178.7 (3)C14—C19—C20—O2179.8 (3)
C8—C7—C12—C13177.3 (3)C18—C19—C20—N178.9 (3)
C6—C7—C12—C132.7 (5)C14—C19—C20—N0.4 (5)
C11—C12—C13—C160.7 (5)C20—N—C21—O3179.0 (3)
C7—C12—C13—C16179.3 (3)C20—N—C21—C150.6 (5)
C11—C12—C13—C14177.6 (3)C6—C15—C21—O30.7 (5)
C7—C12—C13—C141.0 (5)C14—C15—C21—O3178.8 (3)
C16—C13—C14—C190.0 (5)C6—C15—C21—N179.6 (3)
C12—C13—C14—C19178.4 (3)C14—C15—C21—N1.6 (5)
C16—C13—C14—C15179.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O2i0.862.052.911 (3)174
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H17NO3
Mr331.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.569 (2), 9.1150 (18), 15.746 (3)
β (°) 101.12 (3)
V3)1629.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.10 × 0.10 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(CAD-4 EXPRESS; Enraf–Nonius, 1994)
Tmin, Tmax0.991, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
3103, 2950, 1264
Rint0.056
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.077, 1.00
No. of reflections2950
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···O2i0.862.052.911 (3)174
Symmetry code: (i) x+2, y+1, z+1.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province, China (BK2007132).

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHall, I. H., Chapman, J. M. & Wong, O. T. (1994). Anticancer Drugs, 5, 75–82.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHutchings, M. G., Chippendale, A. M. & Ferguson, I. (1988). Tetrahedron, 44, 3727–3734.  CrossRef CAS Web of Science Google Scholar
First citationMalamas, M. S., Hohman, T. C. & Millen, J. (1994). J. Med. Chem. 37, 2043–2058.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSami, S. M., Dorr, R. T., Alberts, D. S., Solyom, A. M. & Remers, W. A. (2000). J. Med. Chem. 43, 3067–3073.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Qian, S.-P., Fun, H.-K. & Xu, J.-H. (2000). Tetrahedron Lett. 41, 8141–8145.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds