organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3S,NR)-3-Hy­droxy­methyl-2-methyl-2-(3-methyl­but-2-en-1-yl)-1,2,3,4-tetra­hydro­isoquinolinium bromide–1,1′-bi-2-naphthol (1/1)

aChengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China, and bChengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
*Correspondence e-mail: zhanggl@cib.ac.cn,

(Received 13 January 2010; accepted 2 March 2010; online 6 March 2010)

In the title compound, C16H24NO+·Br·C20H14O2, the N-hetero­cyclic six-membered ring assumes a half-chair conformation. The two naphthalene ring systems are nearly perpendicular to one another, making a dihedral angle of 89.5 (2)°. Inter­molecular O—H⋯Br hydrogen bonding helps to stabilize the crystal structure.

Related literature

For the optical properties of binaphthalen-2-ol, see: Tayama & Tanaka (2007[Tayama, E. & Tanaka, H. (2007). Tetrahedron Lett. 48, 4183-4185.]). For related structures with nearly perpendicular naphthyl rings, see: Fukushima et al. (1999[Fukushima, S., Hosomi, H., Ohba, S. & Kawashima, M. (1999). Acta Cryst. C55, 120-123.]); Mori et al. (1993[Mori, K., Masuda, Y. & Kashino, S. (1993). Acta Cryst. C49, 1224-1227.]). For the synthesis, see: Schultz et al. (1998[Schultz, A. G., Guzi, T. J., Larsson, E., Rahm, R., Thakkar, K. & Bidlack, J. M. (1998). J. Org. Chem. 63, 7795-7804.]); Tayama & Tanaka (2007[Tayama, E. & Tanaka, H. (2007). Tetrahedron Lett. 48, 4183-4185.]).

[Scheme 1]

Experimental

Crystal data
  • C16H24NO+·C20H14O2·Br·C20H14O2

  • Mr = 612.58

  • Monoclinic, P 21

  • a = 11.3972 (5) Å

  • b = 10.1329 (4) Å

  • c = 13.8151 (5) Å

  • β = 107.976 (1)°

  • V = 1517.58 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.39 mm−1

  • T = 153 K

  • 0.42 × 0.31 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.593, Tmax = 0.788

  • 15042 measured reflections

  • 6319 independent reflections

  • 4162 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.180

  • S = 1.00

  • 6319 reflections

  • 386 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.68 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2637 Friedel pairs

  • Flack parameter: −0.002 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯Br1i 0.74 (7) 2.56 (7) 3.294 (5) 170 (6)
O2—H2O⋯Br1 0.83 (6) 2.50 (6) 3.291 (4) 161 (6)
O3—H3O⋯Br1ii 0.85 (10) 2.50 (10) 3.344 (4) 174 (9)
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+1].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The molecular is formed with (3S,NR)-1,2,3,4- tetrahydro-3-(hydroxymethyl)-2-methyl-2-(3-methylbut-2-en-1-yl) isoquinolinium bromide and (S)-1,1'-binaphthalenol. The molecular structure is shown in Fig. 1.

In the molecular, the N-Chiral molecue contain two six-membered rings A (atom C2–C7) and B (C1,C2,C7–C9,N1), and the ring A is benzene ring, the ring B exists in half-chair conformation with N1, C9 at the flap. The C1–C8; C8,C9,N1 and C1,N1,C9 respectively form least square plane D, E, F, and the dihedral angel between the plane D and E is -47.4 (7)°[C7—C8—C9—N1], between the plane E and F is 63.9 (6)° [C1—N1—C9—C8], between the plane D and F is -51.6 (6)° [C9—N1—C1—C2]. The N-Chiral QASs molecule have two chiral center. The optical resolution can be efficiently carried out by an isomerization/crystallization method utilizing the axial chiral diol (S)-1,1'-binaphthyl-2,2'-diol (Tayama & Tanaka, 2007). The two naphthyl rings of (S)-1,1'-binaphthyl-2,2'-diol are approximately perpendicular to each other (Fig. 1) as observed in crystals (Mori et al., 1993; Fukushima et al., 1999). Intermolacular O—H···Br hydrogen bonding present in the crystal structure (Table 1).

Related literature top

For the optical properties of binaphthalen-2-ol, see: Tayama & Tanaka (2007). For related structures with nearly perpendicular naphthyl rings, see: Fukushima et al. (1999); Mori et al. (1993). For the synthesis, see: Schultz et al. (1998); Tayama & Tanaka (2007).

Experimental top

(3S)-(2-Methyl-1,2,3,4-tetrahydroisoquinolin-3-yl)methanol (Schultz et al., 1998) (1 mmol) and 3-methylbut-2-en-1-yl bromide (2 mmol) were dissolved in absolute acetonitrile (5 ml), refluxed for 42 h. After being cooled to room temperature, the excess 3-methylbut-2-en-1-yl bromide and acetonitrile were removed under reduced pressure. The residue was purified by flash chromatography eluted with ethyl acetate/methanol (8:1) to afford the diastereomeric mixtures of the salt. The two diastereomers of the salt was separated by Tayama and Tanaka's Method (Tayama & Tanaka, 2007).

Refinement top

Hydroxy H atoms were located in a difference Fourier map and were refined isotropically. Other H atoms were placed in calculated positions with C—H = 0.95-1.00 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the molecule of (1) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
(3S,NR)-3-Hydroxymethyl-2-methyl-2-(3-methylbut-2-en-1-yl)- 1,2,3,4-tetrahydroisoquinolinium bromide–1,1'-bi-2-naphthol (1/1) top
Crystal data top
C16H24NO+·C20H14O2·Br·C20H14O2F(000) = 640
Mr = 612.58Dx = 1.341 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 10834 reflections
a = 11.3972 (5) Åθ = 3.1–27.5°
b = 10.1329 (4) ŵ = 1.39 mm1
c = 13.8151 (5) ÅT = 153 K
β = 107.976 (1)°Block, colorless
V = 1517.58 (11) Å30.42 × 0.31 × 0.18 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6319 independent reflections
Radiation source: Rotating Anode4162 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.593, Tmax = 0.788k = 1213
15042 measured reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.1P)2 + 1.096P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.180(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.68 e Å3
6319 reflectionsΔρmin = 0.68 e Å3
386 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.031 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2637 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.002 (13)
Crystal data top
C16H24NO+·C20H14O2·Br·C20H14O2V = 1517.58 (11) Å3
Mr = 612.58Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.3972 (5) ŵ = 1.39 mm1
b = 10.1329 (4) ÅT = 153 K
c = 13.8151 (5) Å0.42 × 0.31 × 0.18 mm
β = 107.976 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6319 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4162 reflections with I > 2σ(I)
Tmin = 0.593, Tmax = 0.788Rint = 0.039
15042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.180Δρmax = 0.68 e Å3
S = 1.00Δρmin = 0.68 e Å3
6319 reflectionsAbsolute structure: Flack (1983), 2637 Friedel pairs
386 parametersAbsolute structure parameter: 0.002 (13)
1 restraint
Special details top

Experimental. IR (KBr): 3421, 2976, 2928, 1638, 1454, 1082, 766 cm-1; 13C-NMR (150 MHz, CDCl3): 149.2; 130.0; 128.9; 128.7; 127.5; 127.3; 126.1; 110.8; 66.8; 61.8; 59.4; 44.1;27.6; 26.6; 19.6. HR-ESI-MS: 246.1850 ([M–Br]+, C16H24NO+; calc. 246.1852).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.24874 (5)0.38085 (9)0.48816 (4)0.0613 (2)
O10.4886 (4)0.3748 (8)0.4353 (4)0.0836 (17)
O20.4637 (4)0.2940 (4)0.6986 (3)0.0518 (10)
O30.7346 (4)0.1223 (4)0.6721 (3)0.0472 (9)
N10.2234 (4)0.4165 (4)0.4580 (3)0.0380 (10)
C10.1158 (5)0.4553 (7)0.4230 (4)0.0459 (13)
H1A0.04850.39050.44960.055*
H1B0.08500.54250.45220.055*
C20.1468 (5)0.4623 (6)0.3087 (4)0.0424 (12)
C30.0493 (5)0.4536 (7)0.2679 (4)0.0571 (17)
H30.03190.43440.31040.068*
C40.0728 (6)0.4734 (8)0.1637 (5)0.0650 (18)
H40.00720.46920.13500.078*
C50.1902 (6)0.4989 (8)0.1029 (4)0.0628 (18)
H50.20530.51440.03220.075*
C60.2862 (6)0.5022 (7)0.1429 (4)0.0539 (15)
H60.36760.51750.09940.065*
C70.2658 (5)0.4833 (6)0.2466 (4)0.0438 (12)
C80.3700 (5)0.4857 (6)0.2910 (4)0.0449 (12)
H8A0.41530.40110.27510.054*
H8B0.42780.55700.25770.054*
C90.3304 (5)0.5070 (6)0.4055 (4)0.0437 (12)
H90.29740.59900.41730.052*
C100.4372 (6)0.5020 (8)0.4468 (5)0.0599 (17)
H10A0.40920.52610.51980.072*
H10B0.50070.56650.41030.072*
C110.2518 (6)0.2732 (6)0.4345 (5)0.0513 (14)
H11A0.26760.25800.36150.062*
H11B0.32490.24850.45350.062*
H11C0.18140.21950.47320.062*
C120.1876 (5)0.4348 (7)0.5745 (4)0.0473 (13)
H12A0.17470.53000.59030.057*
H12B0.25730.40530.59760.057*
C130.0749 (5)0.3619 (7)0.6328 (3)0.0468 (12)
H130.08430.26990.64140.056*
C140.0378 (5)0.4109 (6)0.6745 (4)0.0476 (14)
C150.0735 (7)0.5505 (7)0.6669 (5)0.0665 (18)
H15A0.13200.55530.62780.080*
H15B0.11220.58600.73530.080*
H15C0.00010.60240.63260.080*
C160.1391 (6)0.3246 (8)0.7354 (5)0.0677 (19)
H16A0.10790.23460.73620.081*
H16B0.17000.35830.80520.081*
H16C0.20620.32400.70490.081*
C170.5660 (4)0.3709 (6)0.7316 (3)0.0363 (9)
C180.5603 (5)0.5051 (5)0.7061 (4)0.0399 (11)
H180.48520.54320.66530.048*
C190.6647 (6)0.5809 (5)0.7408 (4)0.0467 (13)
H190.66100.67150.72230.056*
C200.7767 (5)0.5286 (5)0.8031 (4)0.0412 (12)
C210.8858 (6)0.6058 (6)0.8398 (5)0.0541 (14)
H210.88380.69670.82230.065*
C220.9932 (6)0.5514 (7)0.8997 (5)0.0615 (17)
H221.06510.60430.92400.074*
C230.9971 (5)0.4173 (6)0.9254 (4)0.0531 (16)
H231.07200.37990.96710.064*
C240.8950 (5)0.3401 (6)0.8912 (4)0.0463 (13)
H240.89980.24930.90930.056*
C250.7809 (4)0.3932 (5)0.8287 (3)0.0356 (9)
C260.6748 (4)0.3142 (5)0.7930 (3)0.0327 (10)
C270.6773 (4)0.1713 (5)0.8183 (3)0.0341 (10)
C280.6523 (4)0.1276 (5)0.9080 (3)0.0339 (10)
C290.6179 (5)0.2139 (6)0.9743 (4)0.0460 (13)
H290.61210.30570.95970.055*
C300.5926 (6)0.1699 (7)1.0584 (4)0.0548 (15)
H300.56940.23091.10150.066*
C310.6007 (6)0.0339 (7)1.0825 (4)0.0555 (15)
H310.58310.00351.14160.067*
C320.6337 (5)0.0525 (6)1.0211 (4)0.0478 (13)
H320.63950.14381.03760.057*
C330.6598 (5)0.0093 (5)0.9326 (4)0.0369 (10)
C340.6936 (5)0.0977 (5)0.8673 (4)0.0413 (11)
H340.69880.18910.88310.050*
C350.7191 (5)0.0567 (5)0.7825 (4)0.0404 (11)
H350.74260.11850.74020.048*
C360.7100 (5)0.0801 (5)0.7579 (4)0.0364 (10)
H1O0.542 (6)0.378 (9)0.455 (5)0.061 (18)*
H2O0.405 (6)0.329 (6)0.655 (5)0.053 (18)*
H3O0.741 (9)0.057 (10)0.635 (7)0.12 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0427 (3)0.0882 (5)0.0533 (3)0.0066 (3)0.0154 (2)0.0232 (4)
O10.051 (3)0.115 (5)0.102 (4)0.008 (4)0.049 (3)0.028 (4)
O20.036 (2)0.049 (2)0.059 (2)0.0024 (17)0.0014 (18)0.014 (2)
O30.059 (3)0.044 (2)0.045 (2)0.0069 (18)0.0260 (18)0.0015 (18)
N10.031 (2)0.048 (3)0.0339 (18)0.0060 (17)0.0091 (15)0.0000 (18)
C10.032 (3)0.070 (4)0.035 (2)0.004 (2)0.009 (2)0.002 (2)
C20.030 (3)0.064 (4)0.032 (2)0.001 (2)0.0084 (19)0.001 (2)
C30.033 (3)0.099 (5)0.041 (3)0.010 (3)0.012 (2)0.006 (3)
C40.047 (4)0.104 (6)0.050 (3)0.001 (4)0.023 (3)0.011 (4)
C50.060 (4)0.099 (5)0.031 (3)0.005 (4)0.017 (3)0.007 (3)
C60.051 (4)0.074 (4)0.033 (3)0.001 (3)0.008 (2)0.008 (3)
C70.038 (3)0.054 (3)0.036 (2)0.003 (2)0.008 (2)0.002 (2)
C80.031 (3)0.063 (3)0.039 (3)0.009 (2)0.007 (2)0.002 (2)
C90.037 (3)0.053 (3)0.038 (3)0.010 (2)0.007 (2)0.001 (2)
C100.039 (3)0.095 (5)0.049 (3)0.012 (3)0.018 (2)0.003 (3)
C110.053 (4)0.046 (3)0.052 (3)0.003 (3)0.013 (3)0.007 (3)
C120.042 (3)0.068 (4)0.031 (2)0.005 (2)0.010 (2)0.001 (2)
C130.047 (3)0.057 (3)0.036 (2)0.003 (3)0.0123 (19)0.006 (3)
C140.042 (3)0.065 (4)0.036 (2)0.000 (2)0.011 (2)0.003 (3)
C150.069 (5)0.065 (4)0.064 (4)0.023 (3)0.020 (3)0.002 (3)
C160.047 (3)0.095 (5)0.055 (3)0.002 (3)0.007 (3)0.009 (3)
C170.036 (2)0.040 (3)0.0346 (19)0.002 (2)0.0119 (16)0.003 (3)
C180.048 (3)0.034 (3)0.038 (2)0.006 (2)0.013 (2)0.005 (2)
C190.063 (4)0.034 (3)0.046 (3)0.000 (2)0.021 (3)0.002 (2)
C200.053 (3)0.035 (3)0.040 (3)0.007 (2)0.020 (2)0.007 (2)
C210.060 (4)0.051 (3)0.055 (3)0.017 (3)0.023 (3)0.014 (3)
C220.054 (4)0.069 (4)0.062 (4)0.023 (3)0.019 (3)0.018 (3)
C230.042 (3)0.074 (5)0.040 (2)0.008 (3)0.008 (2)0.007 (3)
C240.043 (3)0.057 (3)0.038 (2)0.002 (2)0.010 (2)0.002 (2)
C250.044 (2)0.034 (2)0.0299 (18)0.007 (2)0.0132 (16)0.007 (2)
C260.034 (2)0.035 (2)0.028 (2)0.0021 (18)0.0088 (17)0.0005 (18)
C270.039 (3)0.033 (2)0.030 (2)0.0022 (19)0.0096 (18)0.0035 (19)
C280.036 (2)0.032 (2)0.033 (2)0.0035 (19)0.0102 (18)0.004 (2)
C290.058 (3)0.044 (3)0.040 (3)0.003 (2)0.021 (2)0.001 (2)
C300.071 (4)0.061 (4)0.038 (3)0.000 (3)0.026 (3)0.002 (3)
C310.065 (4)0.063 (4)0.041 (3)0.001 (3)0.019 (3)0.009 (3)
C320.053 (3)0.051 (3)0.038 (2)0.002 (3)0.012 (2)0.011 (2)
C330.034 (2)0.041 (3)0.035 (2)0.000 (2)0.0092 (19)0.010 (2)
C340.043 (3)0.034 (3)0.043 (2)0.003 (2)0.0088 (19)0.006 (2)
C350.050 (3)0.030 (2)0.043 (3)0.001 (2)0.018 (2)0.001 (2)
C360.041 (3)0.038 (3)0.032 (2)0.002 (2)0.0137 (19)0.003 (2)
Geometric parameters (Å, º) top
O1—C101.404 (10)C15—H15A0.9800
O1—H1O0.74 (7)C15—H15B0.9800
O2—C171.359 (6)C15—H15C0.9800
O2—H2O0.83 (6)C16—H16A0.9800
O3—C361.367 (6)C16—H16B0.9800
O3—H3O0.85 (10)C16—H16C0.9800
N1—C111.501 (7)C17—C261.392 (6)
N1—C11.503 (7)C17—C181.402 (8)
N1—C91.519 (6)C18—C191.372 (8)
N1—C121.544 (6)C18—H180.9500
C1—C21.510 (7)C19—C201.405 (8)
C1—H1A0.9900C19—H190.9500
C1—H1B0.9900C20—C251.414 (8)
C2—C71.379 (7)C20—C211.423 (8)
C2—C31.396 (8)C21—C221.364 (10)
C3—C41.394 (8)C21—H210.9500
C3—H30.9500C22—C231.402 (9)
C4—C51.367 (9)C22—H220.9500
C4—H40.9500C23—C241.360 (8)
C5—C61.371 (8)C23—H230.9500
C5—H50.9500C24—C251.426 (7)
C6—C71.392 (7)C24—H240.9500
C6—H60.9500C25—C261.407 (7)
C7—C81.496 (8)C26—C271.488 (7)
C8—C91.520 (7)C27—C361.372 (7)
C8—H8A0.9900C27—C281.425 (6)
C8—H8B0.9900C28—C291.407 (7)
C9—C101.497 (8)C28—C331.425 (7)
C9—H91.0000C29—C301.356 (8)
C10—H10A0.9900C29—H290.9500
C10—H10B0.9900C30—C311.414 (9)
C11—H11A0.9800C30—H300.9500
C11—H11B0.9800C31—C321.352 (9)
C11—H11C0.9800C31—H310.9500
C12—C131.486 (7)C32—C331.413 (7)
C12—H12A0.9900C32—H320.9500
C12—H12B0.9900C33—C341.407 (7)
C13—C141.331 (8)C34—C351.355 (7)
C13—H130.9500C34—H340.9500
C14—C161.485 (8)C35—C361.424 (7)
C14—C151.485 (9)C35—H350.9500
C10—O1—H1O106 (7)H15A—C15—H15B109.5
C17—O2—H2O114 (4)C14—C15—H15C109.5
C36—O3—H3O111 (7)H15A—C15—H15C109.5
C11—N1—C1109.0 (4)H15B—C15—H15C109.5
C11—N1—C9113.1 (4)C14—C16—H16A109.5
C1—N1—C9107.7 (4)C14—C16—H16B109.5
C11—N1—C12108.1 (4)H16A—C16—H16B109.5
C1—N1—C12108.9 (4)C14—C16—H16C109.5
C9—N1—C12109.9 (4)H16A—C16—H16C109.5
N1—C1—C2113.5 (4)H16B—C16—H16C109.5
N1—C1—H1A108.9O2—C17—C26118.6 (5)
C2—C1—H1A108.9O2—C17—C18120.3 (4)
N1—C1—H1B108.9C26—C17—C18121.1 (5)
C2—C1—H1B108.9C19—C18—C17119.2 (5)
H1A—C1—H1B107.7C19—C18—H18120.4
C7—C2—C3120.8 (5)C17—C18—H18120.4
C7—C2—C1121.7 (5)C18—C19—C20121.9 (5)
C3—C2—C1117.5 (5)C18—C19—H19119.0
C4—C3—C2118.9 (5)C20—C19—H19119.0
C4—C3—H3120.5C19—C20—C25118.2 (5)
C2—C3—H3120.5C19—C20—C21122.7 (5)
C5—C4—C3120.2 (6)C25—C20—C21119.1 (5)
C5—C4—H4119.9C22—C21—C20121.0 (6)
C3—C4—H4119.9C22—C21—H21119.5
C4—C5—C6120.5 (5)C20—C21—H21119.5
C4—C5—H5119.7C21—C22—C23119.9 (6)
C6—C5—H5119.7C21—C22—H22120.1
C5—C6—C7120.7 (6)C23—C22—H22120.1
C5—C6—H6119.6C24—C23—C22120.9 (6)
C7—C6—H6119.6C24—C23—H23119.6
C2—C7—C6118.8 (5)C22—C23—H23119.6
C2—C7—C8120.0 (5)C23—C24—C25121.0 (5)
C6—C7—C8121.2 (5)C23—C24—H24119.5
C7—C8—C9114.2 (4)C25—C24—H24119.5
C7—C8—H8A108.7C26—C25—C20120.4 (4)
C9—C8—H8A108.7C26—C25—C24121.5 (5)
C7—C8—H8B108.7C20—C25—C24118.2 (5)
C9—C8—H8B108.7C17—C26—C25119.1 (4)
H8A—C8—H8B107.6C17—C26—C27119.6 (4)
C10—C9—N1115.1 (5)C25—C26—C27121.3 (4)
C10—C9—C8112.2 (5)C36—C27—C28119.0 (4)
N1—C9—C8110.4 (4)C36—C27—C26120.1 (4)
C10—C9—H9106.2C28—C27—C26120.8 (4)
N1—C9—H9106.2C29—C28—C33117.3 (4)
C8—C9—H9106.2C29—C28—C27123.0 (4)
O1—C10—C9110.3 (5)C33—C28—C27119.8 (4)
O1—C10—H10A109.6C30—C29—C28122.0 (5)
C9—C10—H10A109.6C30—C29—H29119.0
O1—C10—H10B109.6C28—C29—H29119.0
C9—C10—H10B109.6C29—C30—C31120.4 (6)
H10A—C10—H10B108.1C29—C30—H30119.8
N1—C11—H11A109.5C31—C30—H30119.8
N1—C11—H11B109.5C32—C31—C30119.6 (5)
H11A—C11—H11B109.5C32—C31—H31120.2
N1—C11—H11C109.5C30—C31—H31120.2
H11A—C11—H11C109.5C31—C32—C33121.1 (6)
H11B—C11—H11C109.5C31—C32—H32119.5
C13—C12—N1114.3 (4)C33—C32—H32119.5
C13—C12—H12A108.7C34—C33—C32122.0 (5)
N1—C12—H12A108.7C34—C33—C28118.3 (4)
C13—C12—H12B108.7C32—C33—C28119.7 (5)
N1—C12—H12B108.7C35—C34—C33122.3 (5)
H12A—C12—H12B107.6C35—C34—H34118.9
C14—C13—C12127.4 (6)C33—C34—H34118.9
C14—C13—H13116.3C34—C35—C36119.1 (5)
C12—C13—H13116.3C34—C35—H35120.5
C13—C14—C16120.2 (6)C36—C35—H35120.5
C13—C14—C15125.0 (6)O3—C36—C27118.9 (4)
C16—C14—C15114.8 (6)O3—C36—C35119.5 (4)
C14—C15—H15A109.5C27—C36—C35121.6 (4)
C14—C15—H15B109.5
C11—N1—C1—C271.5 (6)C22—C23—C24—C250.3 (8)
C9—N1—C1—C251.6 (6)C19—C20—C25—C260.4 (7)
C12—N1—C1—C2170.7 (5)C21—C20—C25—C26179.6 (4)
N1—C1—C2—C724.1 (8)C19—C20—C25—C24179.5 (4)
N1—C1—C2—C3159.1 (5)C21—C20—C25—C240.3 (7)
C7—C2—C3—C43.4 (10)C23—C24—C25—C26180.0 (5)
C1—C2—C3—C4173.4 (7)C23—C24—C25—C200.1 (7)
C2—C3—C4—C51.0 (12)O2—C17—C26—C25179.1 (4)
C3—C4—C5—C61.5 (12)C18—C17—C26—C250.8 (7)
C4—C5—C6—C71.8 (11)O2—C17—C26—C271.7 (6)
C3—C2—C7—C63.2 (10)C18—C17—C26—C27179.9 (4)
C1—C2—C7—C6173.5 (6)C20—C25—C26—C170.3 (6)
C3—C2—C7—C8177.0 (6)C24—C25—C26—C17179.5 (4)
C1—C2—C7—C86.3 (9)C20—C25—C26—C27179.5 (4)
C5—C6—C7—C20.6 (10)C24—C25—C26—C270.4 (7)
C5—C6—C7—C8179.6 (6)C17—C26—C27—C3691.4 (6)
C2—C7—C8—C918.2 (8)C25—C26—C27—C3687.7 (6)
C6—C7—C8—C9161.6 (6)C17—C26—C27—C2892.0 (6)
C11—N1—C9—C1071.5 (6)C25—C26—C27—C2888.9 (6)
C1—N1—C9—C10167.9 (5)C36—C27—C28—C29179.9 (5)
C12—N1—C9—C1049.4 (6)C26—C27—C28—C293.5 (7)
C11—N1—C9—C856.7 (6)C36—C27—C28—C331.0 (7)
C1—N1—C9—C863.9 (6)C26—C27—C28—C33177.6 (4)
C12—N1—C9—C8177.6 (5)C33—C28—C29—C300.0 (8)
C7—C8—C9—C10177.2 (5)C27—C28—C29—C30178.9 (5)
C7—C8—C9—N147.4 (7)C28—C29—C30—C310.2 (9)
N1—C9—C10—O161.7 (6)C29—C30—C31—C320.1 (10)
C8—C9—C10—O165.6 (7)C30—C31—C32—C330.3 (10)
C11—N1—C12—C1362.5 (6)C31—C32—C33—C34179.6 (5)
C1—N1—C12—C1355.8 (6)C31—C32—C33—C280.5 (8)
C9—N1—C12—C13173.5 (5)C29—C28—C33—C34179.8 (5)
N1—C12—C13—C14102.3 (6)C27—C28—C33—C340.8 (7)
C12—C13—C14—C16176.7 (5)C29—C28—C33—C320.4 (7)
C12—C13—C14—C152.3 (9)C27—C28—C33—C32179.3 (5)
O2—C17—C18—C19179.6 (5)C32—C33—C34—C35179.8 (5)
C26—C17—C18—C191.2 (7)C28—C33—C34—C350.1 (7)
C17—C18—C19—C201.3 (8)C33—C34—C35—C360.7 (8)
C18—C19—C20—C250.9 (8)C28—C27—C36—O3179.6 (4)
C18—C19—C20—C21180.0 (5)C26—C27—C36—O33.0 (7)
C19—C20—C21—C22179.7 (6)C28—C27—C36—C350.3 (8)
C25—C20—C21—C220.6 (8)C26—C27—C36—C35177.0 (5)
C20—C21—C22—C230.4 (9)C34—C35—C36—O3179.5 (5)
C21—C22—C23—C240.1 (9)C34—C35—C36—C270.6 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···Br1i0.74 (7)2.56 (7)3.294 (5)170 (6)
O2—H2O···Br10.83 (6)2.50 (6)3.291 (4)161 (6)
O3—H3O···Br1ii0.85 (10)2.50 (10)3.344 (4)174 (9)
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC16H24NO+·C20H14O2·Br·C20H14O2
Mr612.58
Crystal system, space groupMonoclinic, P21
Temperature (K)153
a, b, c (Å)11.3972 (5), 10.1329 (4), 13.8151 (5)
β (°) 107.976 (1)
V3)1517.58 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.39
Crystal size (mm)0.42 × 0.31 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.593, 0.788
No. of measured, independent and
observed [I > 2σ(I)] reflections
15042, 6319, 4162
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.180, 1.00
No. of reflections6319
No. of parameters386
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 0.68
Absolute structureFlack (1983), 2637 Friedel pairs
Absolute structure parameter0.002 (13)

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···Br1i0.74 (7)2.56 (7)3.294 (5)170 (6)
O2—H2O···Br10.83 (6)2.50 (6)3.291 (4)161 (6)
O3—H3O···Br1ii0.85 (10)2.50 (10)3.344 (4)174 (9)
Symmetry codes: (i) x1, y, z; (ii) x+1, y1/2, z+1.
 

Acknowledgements

This work was finically supported by the National Natural Science Foundation, China (No. 20672108).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFukushima, S., Hosomi, H., Ohba, S. & Kawashima, M. (1999). Acta Cryst. C55, 120–123.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMori, K., Masuda, Y. & Kashino, S. (1993). Acta Cryst. C49, 1224–1227.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSchultz, A. G., Guzi, T. J., Larsson, E., Rahm, R., Thakkar, K. & Bidlack, J. M. (1998). J. Org. Chem. 63, 7795–7804.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTayama, E. & Tanaka, H. (2007). Tetrahedron Lett. 48, 4183–4185.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds