organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1,2-Bis(1-allyl­benzimidazol-2-yl)ethene

aSchool of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People's Republic of China
*Correspondence e-mail: clz1977@sina.com

(Received 21 January 2010; accepted 2 March 2010; online 6 March 2010)

In the title compound, C22H20N4, the two benzimidazole ring systems are nearly coplanar [dihedral angle = 4.70 (5)°]. Two terminal C atoms of one allyl group are disordered over two sites of equal occupancy. The crystal structure is stabilized by ππ stacking inter­actions, the centroid–centroid distance between nearly parallel [dihedral angle = 19.82 (4)°] benzene and imidazole rings being 3.7885 (15) Å.

Related literature

For the properties of bis­(imidazole) compounds, see: Knapp et al. (1990[Knapp, S., Keenan, T. P., Zhang, X., Fikar, R., Potenza, J. A. & Schugar, H. J. (1990). J. Am. Chem. Soc. 112, 3452-3464.]); Stibrany (2001[Stibrany, R. T. (2001). US Patent No. 6 180 788.]); Stibrany et al. (2002[Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2002). Acta Cryst. E58, o1142-o1144.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N4

  • Mr = 340.42

  • Monoclinic, P 21 /n

  • a = 11.008 (2) Å

  • b = 13.884 (3) Å

  • c = 12.540 (3) Å

  • β = 106.98 (3)°

  • V = 1833.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.22 mm

Data collection
  • Rigaku SCXmini diffractometer

  • 18577 measured reflections

  • 4190 independent reflections

  • 2460 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.149

  • S = 1.03

  • 4190 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, much attention has been devoted to compounds containing bis(imidazoles) due to their interesting properties, such as electron self-exchange (Knapp et al., 1990), catalysts (Stibrany, 2001), and proton sponges (Stibrany et al., 2002). In our laboratory a compound containing bis(imidazoles) has been synthesized, its crystal structure is reported herein.

In the title compound, C22H20N4, the benzimidazole moieties are essentially planar; two allyl groups are not on the planar. The atoms C20 and C21 of terminal olefin show disorder. The crystal structure is stabilized by π-π stacking between benzimidazolium units [the centroid-to-centroid distances between stacking benzene rings and imidazole are 3.7885 (15) Å.

Related literature top

For the properties of bis(imidazole) compounds, see: Knapp et al. (1990); Stibrany (2001); Stibrany et al. (2002).

Experimental top

Under N2 atmosphere, NaH (60 mmol, 1.44 g) was added to a mixture of (E)-1,2-bis(benzimidazol-2-yl)ethene (10 mmol, 2.6 g ) dimethylformamide (30 ml). After a reaction time of 20 min, the appropriate allyl bromide (20 mmol, 2.4 g) was added dropwise. After an additional 30 min, the product was precipitated with water, collected by filtration and recrystallized to give products in 70% yield. Crystals of title compound (0.3 g) were obtained by slow evaporation of an ethanol/water mixture (1:1 v/v, 10 ml).

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93-0.98 Å, and refined with a riding model, Uiso(H) = 1.2Ueq(C). The atoms of C20 and C21 are disordered over two sites with 0.5 occupancy for each component.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level. One disordered component is omitted for clarity.
[Figure 2] Fig. 2. The unit cell packing diagram showing π-π stacking between benzene and imidazole rings. H atoms have been omitted for clarity.
(E)-1,2-Bis(1-allylbenzimidazol-2-yl)ethene top
Crystal data top
C22H20N4F(000) = 720
Mr = 340.42Dx = 1.233 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2460 reflections
a = 11.008 (2) Åθ = 3.3–27.5°
b = 13.884 (3) ŵ = 0.08 mm1
c = 12.540 (3) ÅT = 293 K
β = 106.98 (3)°Block, yellow
V = 1833.2 (6) Å30.30 × 0.25 × 0.22 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
2460 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
Detector resolution: 13.6612 pixels mm-1h = 1414
ω scansk = 1717
18577 measured reflectionsl = 1615
4190 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0589P)2 + 0.2641P]
where P = (Fo2 + 2Fc2)/3
4190 reflections(Δ/σ)max = 0.008
254 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C22H20N4V = 1833.2 (6) Å3
Mr = 340.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.008 (2) ŵ = 0.08 mm1
b = 13.884 (3) ÅT = 293 K
c = 12.540 (3) Å0.30 × 0.25 × 0.22 mm
β = 106.98 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2460 reflections with I > 2σ(I)
18577 measured reflectionsRint = 0.061
4190 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
4190 reflectionsΔρmin = 0.17 e Å3
254 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.70227 (17)0.49610 (14)0.68558 (15)0.0475 (5)
C20.7143 (2)0.47856 (16)0.79793 (16)0.0606 (6)
H2A0.69650.41600.82240.073*
C30.7536 (2)0.5530 (2)0.87212 (18)0.0695 (6)
H3A0.76240.54250.94970.083*
C40.7819 (2)0.64336 (18)0.83744 (18)0.0667 (6)
H4A0.80790.69380.89170.080*
C50.77246 (18)0.66223 (16)0.72750 (18)0.0607 (6)
H5A0.79300.72430.70360.073*
C60.73172 (17)0.58701 (14)0.65273 (15)0.0476 (5)
C70.66687 (17)0.48863 (13)0.50843 (15)0.0463 (5)
C80.63061 (18)0.45683 (15)0.39313 (16)0.0512 (5)
H8A0.63250.50300.33660.061*
C90.59503 (17)0.36809 (14)0.36025 (15)0.0497 (5)
H9A0.59260.32080.41540.060*
C100.55903 (17)0.34044 (14)0.24347 (15)0.0455 (4)
C110.48500 (17)0.25237 (14)0.09206 (15)0.0485 (5)
C120.4338 (2)0.18326 (17)0.01055 (19)0.0671 (6)
H12A0.40730.12100.02860.081*
C130.4604 (2)0.3003 (2)0.12454 (19)0.0736 (7)
H13A0.45320.31470.20100.088*
C140.5093 (2)0.36810 (17)0.04472 (16)0.0617 (6)
H14A0.53310.43080.06400.074*
C150.52313 (17)0.34327 (14)0.06632 (15)0.0487 (5)
C160.7238 (2)0.66083 (15)0.46662 (17)0.0606 (6)
H16A0.73230.63510.39810.073*
H16B0.79960.69640.50200.073*
C170.6124 (2)0.72847 (16)0.44099 (16)0.0595 (6)
H17A0.52850.70130.41940.071*
C180.6240 (3)0.82080 (18)0.4455 (2)0.0858 (8)
H18A0.70700.84940.46690.103*
H18B0.54990.86100.42850.103*
C190.4846 (2)0.17117 (16)0.27155 (19)0.0695 (6)
H19A0.41360.13290.22820.083*
H19B0.46610.19380.33830.083*
C200.6135 (9)0.1094 (6)0.3030 (5)0.0653 (18)0.625 (16)
H20A0.68990.13850.34130.078*0.625 (16)
C210.6122 (10)0.0200 (6)0.2758 (5)0.102 (3)0.625 (16)
H21A0.53610.00940.23750.122*0.625 (16)
H21B0.68740.01510.29450.122*0.625 (16)
C20'0.5505 (16)0.0869 (8)0.2990 (8)0.070 (3)0.375 (16)
H20B0.51140.03320.32420.084*0.375 (16)
C21'0.6665 (16)0.0799 (17)0.2913 (11)0.107 (6)0.375 (16)
H21C0.70400.13230.26720.129*0.375 (16)
H21D0.71130.02250.30990.129*0.375 (16)
C220.4227 (2)0.2096 (2)0.09844 (19)0.0763 (7)
H22A0.38710.16470.15750.092*
N10.70924 (15)0.58089 (11)0.53845 (13)0.0495 (4)
N20.66254 (15)0.43508 (11)0.59442 (13)0.0508 (4)
N30.50861 (14)0.25146 (11)0.20645 (13)0.0492 (4)
N40.56959 (15)0.39678 (12)0.16199 (13)0.0519 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0431 (10)0.0553 (12)0.0437 (11)0.0080 (9)0.0123 (8)0.0019 (9)
C20.0664 (14)0.0683 (14)0.0493 (13)0.0101 (11)0.0202 (10)0.0043 (11)
C30.0678 (15)0.0964 (18)0.0427 (12)0.0113 (13)0.0139 (11)0.0080 (13)
C40.0583 (13)0.0808 (17)0.0566 (14)0.0005 (12)0.0097 (10)0.0224 (12)
C50.0548 (13)0.0643 (13)0.0594 (14)0.0063 (11)0.0113 (10)0.0127 (11)
C60.0397 (10)0.0556 (12)0.0455 (11)0.0020 (9)0.0092 (8)0.0026 (9)
C70.0444 (10)0.0472 (11)0.0463 (11)0.0044 (9)0.0115 (8)0.0026 (9)
C80.0558 (12)0.0531 (12)0.0433 (11)0.0033 (9)0.0123 (9)0.0003 (9)
C90.0508 (11)0.0540 (12)0.0436 (11)0.0039 (9)0.0124 (9)0.0024 (9)
C100.0440 (10)0.0477 (11)0.0443 (11)0.0011 (9)0.0121 (8)0.0009 (9)
C110.0403 (10)0.0591 (12)0.0456 (11)0.0010 (9)0.0117 (8)0.0089 (9)
C120.0574 (13)0.0779 (16)0.0658 (15)0.0151 (12)0.0176 (11)0.0201 (12)
C130.0684 (15)0.104 (2)0.0456 (13)0.0098 (14)0.0120 (11)0.0023 (13)
C140.0674 (14)0.0716 (14)0.0464 (13)0.0084 (11)0.0169 (10)0.0015 (11)
C150.0464 (11)0.0558 (12)0.0446 (11)0.0046 (9)0.0143 (8)0.0021 (9)
C160.0659 (13)0.0631 (13)0.0562 (13)0.0127 (11)0.0233 (10)0.0037 (11)
C170.0653 (13)0.0626 (14)0.0462 (12)0.0072 (11)0.0095 (10)0.0053 (10)
C180.0754 (17)0.0703 (17)0.103 (2)0.0004 (13)0.0121 (14)0.0072 (15)
C190.0989 (18)0.0522 (13)0.0654 (15)0.0098 (13)0.0364 (13)0.0003 (11)
C200.077 (5)0.063 (4)0.061 (3)0.016 (3)0.028 (3)0.015 (2)
C210.116 (6)0.075 (5)0.112 (4)0.016 (4)0.031 (4)0.003 (3)
C20'0.080 (8)0.054 (6)0.083 (5)0.005 (5)0.037 (5)0.015 (4)
C21'0.095 (10)0.144 (17)0.097 (7)0.021 (9)0.053 (7)0.004 (9)
C220.0629 (15)0.105 (2)0.0547 (15)0.0058 (14)0.0068 (11)0.0297 (14)
N10.0527 (9)0.0499 (9)0.0451 (10)0.0033 (8)0.0127 (7)0.0031 (8)
N20.0559 (10)0.0492 (9)0.0473 (10)0.0033 (8)0.0149 (8)0.0004 (8)
N30.0505 (9)0.0498 (9)0.0485 (10)0.0029 (8)0.0163 (7)0.0027 (7)
N40.0586 (10)0.0524 (10)0.0451 (10)0.0021 (8)0.0155 (8)0.0013 (8)
Geometric parameters (Å, º) top
C1—N21.387 (2)C13—C221.395 (3)
C1—C61.395 (3)C13—H13A0.9600
C1—C21.398 (3)C14—C151.399 (3)
C2—C31.373 (3)C14—H14A0.9599
C2—H2A0.9600C15—N41.377 (2)
C3—C41.392 (3)C16—N11.467 (2)
C3—H3A0.9601C16—C171.503 (3)
C4—C51.377 (3)C16—H16A0.9599
C4—H4A0.9601C16—H16B0.9600
C5—C61.388 (3)C17—C181.288 (3)
C5—H5A0.9600C17—H17A0.9601
C6—N11.384 (2)C18—H18A0.9598
C7—N21.322 (2)C18—H18B0.9600
C7—N11.378 (2)C19—C20'1.367 (10)
C7—C81.452 (3)C19—N31.451 (2)
C8—C91.322 (3)C19—C201.605 (8)
C8—H8A0.9601C19—H19A0.9700
C9—C101.453 (3)C19—H19B0.9700
C9—H9A0.9598C20—C211.286 (14)
C10—N41.319 (2)C20—H20A0.9300
C10—N31.378 (2)C21—H21A0.9300
C11—N31.381 (2)C21—H21B0.9300
C11—C121.395 (3)C20'—C21'1.31 (3)
C11—C151.397 (3)C20'—H20B0.9601
C12—C221.385 (3)C21'—H21C0.9300
C12—H12A0.9600C21'—H21D0.9300
C13—C141.365 (3)C22—H22A0.9602
N2—C1—C6110.73 (16)C17—C16—H16A109.1
N2—C1—C2129.69 (19)N1—C16—H16B109.9
C6—C1—C2119.58 (19)C17—C16—H16B108.8
C3—C2—C1118.0 (2)H16A—C16—H16B107.9
C3—C2—H2A121.1C18—C17—C16123.2 (2)
C1—C2—H2A120.8C18—C17—H17A118.6
C2—C3—C4121.4 (2)C16—C17—H17A118.2
C2—C3—H3A119.3C17—C18—H18A119.9
C4—C3—H3A119.2C17—C18—H18B120.1
C5—C4—C3121.7 (2)H18A—C18—H18B120.0
C5—C4—H4A119.4C20'—C19—N3129.0 (7)
C3—C4—H4A118.9C20'—C19—C2027.7 (5)
C4—C5—C6116.6 (2)N3—C19—C20104.8 (3)
C4—C5—H5A121.8C20'—C19—H19A87.3
C6—C5—H5A121.6N3—C19—H19A110.8
N1—C6—C5132.12 (19)C20—C19—H19A110.8
N1—C6—C1105.28 (16)C20'—C19—H19B106.9
C5—C6—C1122.59 (19)N3—C19—H19B110.8
N2—C7—N1112.96 (16)C20—C19—H19B110.8
N2—C7—C8125.19 (18)H19A—C19—H19B108.9
N1—C7—C8121.85 (17)C21—C20—C19120.7 (10)
C9—C8—C7124.36 (19)C21—C20—H20A119.7
C9—C8—H8A117.4C19—C20—H20A119.7
C7—C8—H8A118.2C20—C21—H21A120.0
C8—C9—C10121.97 (18)C20—C21—H21B120.0
C8—C9—H9A118.8H21A—C21—H21B120.0
C10—C9—H9A119.3C20—C21—H20B73.3
N4—C10—N3112.87 (16)H21A—C21—H20B65.1
N4—C10—C9124.38 (17)H21B—C21—H20B135.0
N3—C10—C9122.75 (17)C21'—C20'—C19120.1 (19)
N3—C11—C12131.9 (2)C21'—C20'—H20B120.5
N3—C11—C15105.67 (16)C19—C20'—H20B119.5
C12—C11—C15122.43 (19)C20'—C21'—H21C120.0
C22—C12—C11116.2 (2)C20'—C21'—H21D120.0
C22—C12—H12A121.7H21C—C21'—H21D120.0
C11—C12—H12A122.1C12—C22—C13121.5 (2)
C14—C13—C22122.1 (2)C12—C22—H22A119.3
C14—C13—H13A119.2C13—C22—H22A119.2
C22—C13—H13A118.7C7—N1—C6106.49 (15)
C13—C14—C15117.7 (2)C7—N1—C16128.65 (16)
C13—C14—H14A121.3C6—N1—C16124.80 (15)
C15—C14—H14A121.0C7—N2—C1104.53 (16)
N4—C15—C11110.26 (16)C10—N3—C11106.07 (15)
N4—C15—C14129.74 (19)C10—N3—C19128.38 (17)
C11—C15—C14119.99 (18)C11—N3—C19125.55 (17)
N1—C16—C17112.04 (17)C10—N4—C15105.12 (16)
N1—C16—H16A108.9

Experimental details

Crystal data
Chemical formulaC22H20N4
Mr340.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.008 (2), 13.884 (3), 12.540 (3)
β (°) 106.98 (3)
V3)1833.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.25 × 0.22
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18577, 4190, 2460
Rint0.061
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.149, 1.03
No. of reflections4190
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.17

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

This work was supported by a start-up grant from Jiangsu University of Science and Technology, China.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKnapp, S., Keenan, T. P., Zhang, X., Fikar, R., Potenza, J. A. & Schugar, H. J. (1990). J. Am. Chem. Soc. 112, 3452–3464.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T. (2001). US Patent No. 6 180 788.  Google Scholar
First citationStibrany, R. T., Schugar, H. J. & Potenza, J. A. (2002). Acta Cryst. E58, o1142–o1144.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds