organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Bromo-4-di­benzyl­amino-5-meth­oxy­furan-2(5H)-one

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: wangwangzhaoyang@tom.com

(Received 30 January 2010; accepted 2 March 2010; online 6 March 2010)

In the the title compound, C19H18BrNO3, the furan­one ring is almost planar [maximum atomic deviation = 0.019 (3) Å] and is nearly perpendicular to the two phenyl rings, making dihedral angles of 88.96 (17) and 87.71 (17)°. Inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

2(5H)-Furan­one is the simplest sub-unit of a large class of five-membered heterocyclic carbonyl compounds, see: Reva et al. (2008[Reva, I., Nowak, M. J., Lapinski, L. & Fausto, R. (2008). Chem. Phys. Lett. 452, 20-28.]). The title compound is a derivative of 4-amino-2(5H)-furan­one. For the biological activity of 4-amino-2(5H)-furan­ones, see: Kimura et al. (2000[Kimura, Y., Mizuno, T., Kawano, T., Okada, K. & Shimad, A. (2000). Phytochemistry, 53, 829-831.]); Tanoury et al. (2008[Tanoury, G. J., Chen, M. Z., Dong, Y., Forslund, R. E. & Magdziak, D. (2008). Org. Lett. 10, 185-188.]). For the synthesis, see: Toshiyuki & Yoshikazu (1955[Toshiyuki, S. & Yoshikazu, H. (1955). Nippon Kagaku Kaishi, 58, 692-693.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18BrNO3

  • Mr = 388.25

  • Orthorhombic, P b c a

  • a = 15.756 (2) Å

  • b = 11.2475 (14) Å

  • c = 19.779 (3) Å

  • V = 3505.2 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.36 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.16 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.613, Tmax = 0.704

  • 18029 measured reflections

  • 3429 independent reflections

  • 2028 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.089

  • S = 1.00

  • 3429 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O3i 0.98 2.49 3.396 (4) 154
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2(5H)-Furanone is a simplest sub-unit of a large class of five membered heterocyclic carbonyl compounds (Reva et al., 2008). At the same time, 4-amino-2(5H)-furanone is an attractive moiety in chemical, pharmaceutical and agrochemical research. Many 4-amino-2(5H)-furanones have been patented as prodrugs or insecticides and herbicides (Kimura et al., 2000; Tanoury et al., 2008).

Attracted by versatile 4-amino-2(5H)-furanones, we synthesized the title compound with 3,4-dibromo-5-methoxyfuran-2(5H)-one and dibenzylamine in the presence of potassium fluoride via the tandem asymmetric Michael addition-elimination reaction. With 2(5H)-furanone moiety and polyfunctional groups (carboxyl, amino, halo), the title compound is expected to be a biologically active product.

The structure of the title compound (I) is illustrated in Fig. 1. The title compound contains a five-membered furanone ring and two six-membered benzene rings. The furanone ring is approximately planar.

Related literature top

2(5H)-Furanone is the simplest sub-unit of a large class of five-membered heterocyclic carbonyl compounds, see: Reva et al. (2008). The title compound is a derivative of 4-amino-2(5H)-furanone; for the biological active of 4-amino-2(5H)-furanones, see: Kimura et al. (2000); Tanoury et al. (2008). For the synthesis, see: Toshiyuki & Yoshikazu (1955).

Experimental top

The precursor 3,4-dibromo-5-methoxyfuran-2(5H)-furanone was prepared according to the literature procedure (Toshiyuki & Yoshikazu, 1955).

After the mixture of dibenzylamine (2 mmol) and potassium fluoride (6 mmol) was dissolved in absolute tetrahydrofuran (2 ml) under nitrogen atmosphere, dichloromethane solution of 3,4-dibromo-5-methoxyfuran-2(5H)-furanone (2.0 mmol) was added. The residual liquid was dissolved in dichloromethane. The reaction was carried out under the stirring at room temperature for 48 h. Once the reaction was complete, the solvents were removed under reduced pressure. The residual solid was dissolved in dichloromethane. Then the combined organic layers from extraction were concentrated under reduced pressure, and the crude product was purified by silica gel column chromatography with the gradient mixture of petroleum ether and ethyl acetate to give the product yielding (I) 0.6224 g (80.2%).

Refinement top

H atoms were positioned in calculated positions with C—H = 0.93-0.98 Å and were refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level.
3-Bromo-4-dibenzylamino-5-methoxyfuran-2(5H)-one top
Crystal data top
C19H18BrNO3F(000) = 1584
Mr = 388.25Dx = 1.471 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2798 reflections
a = 15.756 (2) Åθ = 2.5–21.2°
b = 11.2475 (14) ŵ = 2.36 mm1
c = 19.779 (3) ÅT = 298 K
V = 3505.2 (8) Å3Block, colourless
Z = 80.23 × 0.20 × 0.16 mm
Data collection top
Bruker APEXII area-detector
diffractometer
3429 independent reflections
Radiation source: fine-focus sealed tube2028 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scanθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1918
Tmin = 0.613, Tmax = 0.704k = 1313
18029 measured reflectionsl = 1024
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0297P)2 + 1.9449P]
where P = (Fo2 + 2Fc2)/3
3429 reflections(Δ/σ)max = 0.002
218 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C19H18BrNO3V = 3505.2 (8) Å3
Mr = 388.25Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.756 (2) ŵ = 2.36 mm1
b = 11.2475 (14) ÅT = 298 K
c = 19.779 (3) Å0.23 × 0.20 × 0.16 mm
Data collection top
Bruker APEXII area-detector
diffractometer
3429 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2028 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.704Rint = 0.054
18029 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.00Δρmax = 0.30 e Å3
3429 reflectionsΔρmin = 0.27 e Å3
218 parameters
Special details top

Experimental. 1H NMR (400 MHz, CDCl3, TMS): 3.52 (3H, s, CH, CH3), 4.53 (2H, d, CH, CH2), 4.90 (2H, d, CH, CH2), 5.74 (1H, s, CH), 7.21-7.42 (10H, m, CH, Ar-H);

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.09981 (2)1.14889 (3)0.35209 (2)0.07708 (16)
C90.24254 (19)0.8956 (3)0.36299 (14)0.0447 (7)
C50.29710 (17)0.8590 (3)0.16073 (14)0.0440 (7)
C80.25104 (19)0.9658 (3)0.29832 (14)0.0506 (8)
H8A0.24231.04930.30830.061*
H8B0.30850.95700.28150.061*
C60.3624 (2)0.7779 (3)0.15594 (17)0.0689 (10)
H60.35980.70750.18050.083*
C70.22153 (18)0.8294 (2)0.20442 (15)0.0495 (8)
H7A0.17540.80270.17570.059*
H7B0.23650.76440.23440.059*
C100.1799 (2)0.8127 (3)0.37322 (17)0.0618 (9)
H100.13950.79970.33980.074*
C40.3031 (2)0.9608 (3)0.12329 (18)0.0674 (10)
H40.25981.01680.12520.081*
C140.3011 (2)0.9133 (3)0.41324 (17)0.0625 (9)
H140.34360.96960.40720.075*
C110.1764 (2)0.7486 (3)0.43241 (19)0.0750 (11)
H110.13350.69280.43880.090*
C130.2981 (3)0.8493 (4)0.47231 (18)0.0828 (12)
H130.33850.86230.50580.099*
C120.2358 (3)0.7666 (4)0.48199 (18)0.0806 (11)
H120.23370.72300.52190.097*
C20.4371 (3)0.9017 (4)0.0793 (2)0.0818 (12)
H20.48440.91680.05250.098*
C10.4314 (2)0.7997 (4)0.1153 (2)0.0858 (12)
H10.47470.74380.11250.103*
C30.3730 (3)0.9814 (4)0.0826 (2)0.0840 (12)
H30.37601.05090.05730.101*
N10.19202 (15)0.9304 (2)0.24524 (12)0.0448 (6)
O10.08872 (13)0.95812 (19)0.12416 (10)0.0558 (6)
O30.06901 (14)1.1434 (2)0.26344 (12)0.0691 (6)
O20.02363 (12)0.99727 (18)0.19541 (10)0.0532 (5)
C160.05326 (18)0.9313 (3)0.18643 (14)0.0434 (7)
H160.04260.84570.19040.052*
C180.11283 (18)0.9735 (2)0.24190 (14)0.0400 (7)
C200.0134 (2)1.0746 (3)0.24854 (16)0.0497 (8)
C190.06917 (18)1.0562 (2)0.27812 (14)0.0446 (7)
C150.0499 (3)0.8984 (4)0.07008 (18)0.0898 (13)
H15A0.05180.81420.07800.135*
H15B0.07940.91660.02890.135*
H15C0.00820.92350.06630.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0724 (3)0.0756 (3)0.0833 (3)0.0017 (2)0.0117 (2)0.0326 (2)
C90.0377 (17)0.0467 (16)0.0498 (19)0.0101 (14)0.0009 (15)0.0007 (14)
C50.0398 (17)0.0478 (17)0.0445 (18)0.0011 (15)0.0038 (13)0.0051 (15)
C80.0364 (17)0.0554 (19)0.060 (2)0.0035 (15)0.0035 (15)0.0059 (16)
C60.059 (2)0.074 (2)0.073 (2)0.0192 (19)0.0072 (19)0.026 (2)
C70.0452 (18)0.0435 (18)0.060 (2)0.0056 (14)0.0007 (15)0.0084 (15)
C100.053 (2)0.075 (2)0.057 (2)0.0080 (18)0.0030 (16)0.0139 (18)
C40.060 (2)0.057 (2)0.085 (3)0.0059 (17)0.0155 (19)0.020 (2)
C140.061 (2)0.068 (2)0.059 (2)0.0024 (18)0.0100 (18)0.0032 (19)
C110.079 (3)0.081 (3)0.066 (2)0.006 (2)0.005 (2)0.017 (2)
C130.088 (3)0.102 (3)0.058 (3)0.008 (3)0.022 (2)0.005 (2)
C120.097 (3)0.091 (3)0.054 (2)0.015 (3)0.002 (2)0.019 (2)
C20.059 (2)0.103 (3)0.083 (3)0.005 (2)0.023 (2)0.006 (3)
C10.060 (2)0.102 (3)0.095 (3)0.026 (2)0.024 (2)0.017 (3)
C30.080 (3)0.075 (3)0.098 (3)0.007 (2)0.026 (2)0.030 (2)
N10.0362 (14)0.0476 (14)0.0506 (15)0.0009 (12)0.0020 (11)0.0026 (12)
O10.0549 (13)0.0668 (14)0.0457 (13)0.0002 (11)0.0038 (11)0.0049 (11)
O30.0516 (13)0.0647 (14)0.0909 (18)0.0162 (12)0.0008 (12)0.0133 (13)
O20.0393 (12)0.0610 (13)0.0594 (14)0.0064 (10)0.0041 (10)0.0071 (11)
C160.0411 (17)0.0447 (17)0.0442 (18)0.0011 (14)0.0014 (14)0.0013 (14)
C180.0381 (17)0.0366 (16)0.0452 (17)0.0082 (13)0.0016 (13)0.0085 (13)
C200.048 (2)0.0440 (18)0.057 (2)0.0009 (16)0.0058 (16)0.0004 (16)
C190.0427 (17)0.0406 (16)0.0506 (18)0.0044 (14)0.0017 (14)0.0012 (14)
C150.086 (3)0.133 (4)0.050 (2)0.001 (3)0.004 (2)0.015 (2)
Geometric parameters (Å, º) top
Br1—C191.860 (3)C11—H110.9300
C9—C141.371 (4)C13—C121.366 (5)
C9—C101.372 (4)C13—H130.9300
C9—C81.509 (4)C12—H120.9300
C5—C41.367 (4)C2—C31.351 (5)
C5—C61.378 (4)C2—C11.353 (5)
C5—C71.508 (4)C2—H20.9300
C8—N11.458 (3)C1—H10.9300
C8—H8A0.9700C3—H30.9300
C8—H8B0.9700N1—C181.340 (3)
C6—C11.374 (5)O1—C161.386 (3)
C6—H60.9300O1—C151.404 (4)
C7—N11.469 (3)O3—C201.206 (3)
C7—H7A0.9700O2—C201.374 (3)
C7—H7B0.9700O2—C161.432 (3)
C10—C111.376 (4)C16—C181.520 (4)
C10—H100.9300C16—H160.9800
C4—C31.383 (5)C18—C191.361 (4)
C4—H40.9300C20—C191.441 (4)
C14—C131.373 (5)C15—H15A0.9600
C14—H140.9300C15—H15B0.9600
C11—C121.371 (5)C15—H15C0.9600
C14—C9—C10118.4 (3)C13—C12—H12120.3
C14—C9—C8118.6 (3)C11—C12—H12120.3
C10—C9—C8123.0 (3)C3—C2—C1119.1 (4)
C4—C5—C6117.7 (3)C3—C2—H2120.4
C4—C5—C7123.4 (3)C1—C2—H2120.4
C6—C5—C7118.9 (3)C2—C1—C6120.8 (4)
N1—C8—C9114.3 (2)C2—C1—H1119.6
N1—C8—H8A108.7C6—C1—H1119.6
C9—C8—H8A108.7C2—C3—C4120.8 (4)
N1—C8—H8B108.7C2—C3—H3119.6
C9—C8—H8B108.7C4—C3—H3119.6
H8A—C8—H8B107.6C18—N1—C8122.1 (2)
C1—C6—C5120.8 (3)C18—N1—C7123.2 (2)
C1—C6—H6119.6C8—N1—C7113.9 (2)
C5—C6—H6119.6C16—O1—C15113.4 (2)
N1—C7—C5113.2 (2)C20—O2—C16108.9 (2)
N1—C7—H7A108.9O1—C16—O2109.8 (2)
C5—C7—H7A108.9O1—C16—C18108.9 (2)
N1—C7—H7B108.9O2—C16—C18105.7 (2)
C5—C7—H7B108.9O1—C16—H16110.7
H7A—C7—H7B107.7O2—C16—H16110.7
C9—C10—C11120.7 (3)C18—C16—H16110.7
C9—C10—H10119.6N1—C18—C19133.8 (3)
C11—C10—H10119.6N1—C18—C16119.9 (2)
C5—C4—C3120.7 (3)C19—C18—C16106.3 (2)
C5—C4—H4119.7O3—C20—O2120.5 (3)
C3—C4—H4119.7O3—C20—C19130.5 (3)
C9—C14—C13121.2 (3)O2—C20—C19109.0 (3)
C9—C14—H14119.4C18—C19—C20109.9 (3)
C13—C14—H14119.4C18—C19—Br1131.8 (2)
C12—C11—C10120.2 (4)C20—C19—Br1118.2 (2)
C12—C11—H11119.9O1—C15—H15A109.5
C10—C11—H11119.9O1—C15—H15B109.5
C12—C13—C14120.0 (4)H15A—C15—H15B109.5
C12—C13—H13120.0O1—C15—H15C109.5
C14—C13—H13120.0H15A—C15—H15C109.5
C13—C12—C11119.4 (4)H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O3i0.982.493.396 (4)154
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H18BrNO3
Mr388.25
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)15.756 (2), 11.2475 (14), 19.779 (3)
V3)3505.2 (8)
Z8
Radiation typeMo Kα
µ (mm1)2.36
Crystal size (mm)0.23 × 0.20 × 0.16
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.613, 0.704
No. of measured, independent and
observed [I > 2σ(I)] reflections
18029, 3429, 2028
Rint0.054
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.089, 1.00
No. of reflections3429
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.27

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O3i0.982.493.396 (4)154
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

The work was supported by the National Natural Science Foundation of China (grant No. 20772035) and the Natural Science Foundation of Guangdong Province, China (grant No. 5300082).

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKimura, Y., Mizuno, T., Kawano, T., Okada, K. & Shimad, A. (2000). Phytochemistry, 53, 829–831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationReva, I., Nowak, M. J., Lapinski, L. & Fausto, R. (2008). Chem. Phys. Lett. 452, 20–28.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanoury, G. J., Chen, M. Z., Dong, Y., Forslund, R. E. & Magdziak, D. (2008). Org. Lett. 10, 185–188.  Web of Science CrossRef PubMed CAS Google Scholar
First citationToshiyuki, S. & Yoshikazu, H. (1955). Nippon Kagaku Kaishi, 58, 692–693.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds